首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic nucleotide-gated (CNG) ion channels are key mediators underlying signal transduction in retinal and olfactory receptors. Genetic defects in CNGA3 and CNGB3, encoding two structurally related subunits of cone CNG channels, lead to achromatopsia (ACHM). ACHM is a congenital, autosomal recessive retinal disorder that manifests by cone photoreceptor dysfunction, severely reduced visual acuity, impaired or complete color blindness and photophobia. Here, we report the first canine models for CNGA3-associated channelopathy caused by R424W or V644del mutations in the canine CNGA3 ortholog that accurately mimic the clinical and molecular features of human CNGA3-associated ACHM. These two spontaneous mutations exposed CNGA3 residues essential for the preservation of channel function and biogenesis. The CNGA3-R424W results in complete loss of cone function in vivo and channel activity confirmed by in vitro electrophysiology. Structural modeling and molecular dynamics (MD) simulations revealed R424-E306 salt bridge formation and its disruption with the R424W mutant. Reversal of charges in a CNGA3-R424E-E306R double mutant channel rescued cGMP-activated currents uncovering new insights into channel gating. The CNGA3-V644del affects the C-terminal leucine zipper (CLZ) domain destabilizing intersubunit interactions of the coiled-coil complex in the MD simulations; the in vitro experiments showed incompetent trimeric CNGA3 subunit assembly consistent with abnormal biogenesis of in vivo channels. These newly characterized large animal models not only provide a valuable system for studying cone-specific CNG channel function in health and disease, but also represent prime candidates for proof-of-concept studies of CNGA3 gene replacement therapy for ACHM patients.  相似文献   

2.
Progressive cone dystrophies are a genetically heterogeneous group of disorders characterized by early deterioration of visual acuity and color vision, together with psychophysical and electrophysiological evidence of abnormal cone function and cone degeneration. Recently, three mutations in the gene encoding the CNGA3 subunit of cone photoreceptor cyclic nucleotide-gated (CNG) channels have been linked to progressive cone dystrophy in humans. To investigate the functional consequences of these mutations, we expressed mutant human CNGA3 subunits in Xenopus oocytes, alone or together with human CNGB3, and studied these channels using patch-clamp recording. Compared with wild-type channels, homomeric and heteromeric channels containing CNGA3-N471S or CNGA3-R563H subunits exhibited an increase in apparent affinity for cGMP and an increase in the relative agonist efficacy of cAMP compared with cGMP. In contrast, R277C subunits did not form functional homomeric or heteromeric channels. Cell surface expression levels, determined using confocal microscopy of green fluorescent protein-tagged subunits and patch-clamp recording, were significantly reduced for both R563H and R277C but unchanged for N471S. Overall, these results suggest that the plasma membrane localization and gating properties of cone CNG channels are altered by progressive cone dystrophy-associated mutations, providing evidence that supports the pathogenicity of these mutations. phosphodiesterase  相似文献   

3.
Achromatopsia (ACHM) or rod monochromacy is an autosomal recessive and genetically heterogeneous retinal disorder. It is characterized by a lack of color discrimination, poor visual acuity, photodysphoria, pendular infantile nystagmus, and abnormal photopic electroretinographic (ERG) recordings with preservation of rod-mediated function. Mutations in three known genes are causative; including genes for the α and β subunits of the cyclic nucleotide-gated cation channel (CNGA3 and CNGB3, respectively) and cone photoreceptor transducin—GNAT2. We investigated the prevalence of mutations in achromatopsia-causing genes in a cohort of 16 families with both clinical and electrophysiologic evidence consistent with autosomal recessive transmission, including one subject with achromatopsia and maternal isodisomy for chromosome 14. The most frequent mutation, p.T383fsX in CNGB3, accounted for 75% (18/24) of disease-associated alleles; intragenic SNPs in unrelated patients revealed transmission of a common haplotype consistent with a founder effect. Homozygous p.T383fsX mutation in CNGB3 that maps to chromosome 8 was detected in a patient with achromatopsia and systemic features associated with uniparental disomy (UPD) of chromosome 14. Two novel variants, p.R223G and p.A621E were found in CNGA3. We conclude that CNGA3 and CNGB3 mutations are responsible for the substantial majority of achromatopsia. Furthermore, the CNGB3 mutation p.T383fsX is a predominant mutation, results from a founder effect, and is responsible for the ACHM in the original clinical report of UPD 14.  相似文献   

4.
Lambs with congenital day blindness show diminished cone function, which is characteristic of achromatopsia, a congenital disorder described in humans and dogs. To identify gene(s) associated with sheep day blindness, we investigated mutations in the CNGA3, CNGB3, and GNAT2 genes which have been associated with achromatopsia. Sequencing the coding regions of those genes from four affected and eight non-affected lambs showed that all affected lambs were homozygous for a mutation in the CNGA3 gene that changes amino acid R236 to a stop codon. By PCR-RFLP-based testing, homozygosity for the stop codon mutation was detected in another 19 affected lambs. Non-affected individuals (n = 386) were non-carriers or heterozygous for the mutation. While a selection program has been launched to eradicate the day blindness mutation from Improved Awassi flocks, a breeding nucleus of day-blind sheep has been established to serve as animal models for studying human achromatopsia.  相似文献   

5.
Cone photoreceptor cyclic nucleotide-gated (CNG) channels are thought to form by assembly of two different subunit types, CNGA3 and CNGB3. Recently, mutations in the gene encoding the CNGB3 subunit have been linked to achromatopsia in humans. Here we describe the functional consequences of two achromatopsia-associated mutations in human CNGB3 (hCNGB3). Co-expression in Xenopus oocytes of human CNGA3 (hCNGA3) subunits with hCNGB3 subunits containing an achromatopsia-associated mutation in the S6 transmembrane domain (S435F) generated functional heteromeric channels that exhibited an increase in apparent affinity for both cAMP and cGMP compared with wild type heteromeric channels. In contrast, co-expression of a presumptive null mutation of hCNGB3 (T383f.s.Delta C) with hCNGA3 produced channels with properties indistinguishable from homomeric hCNGA3 channels. The effect of hCNGB3 S435F subunits on cell-surface expression of green fluorescent protein-tagged hCNGA3 subunits and of non-tagged hCNGA3 subunits on surface expression of green fluorescent protein-hCNGB3 S435F subunits were similar to those observed for wild type hCNGB3 subunits, suggesting that the mutation does not grossly disturb subunit assembly or plasma membrane targeting. The S435F mutation was also found to produce changes in the pore properties of the channel, including decreased single channel conductance and decreased sensitivity to block by l-cis-diltiazem. Overall, these results suggest that the functional properties of cone CNG channels may be altered in patients with the S435F mutation, providing evidence supporting the pathogenicity of this mutation in humans. Thus, achromatopsia may arise from a disturbance of cone CNG channel gating and permeation or from the absence of functional CNGB3 subunits.  相似文献   

6.
Cone photoreceptor disorders form a clinical spectrum of diseases that include progressive cone dystrophy (CD) and complete and incomplete achromatopsia (ACHM). The underlying disease mechanisms of autosomal recessive (ar)CD are largely unknown. Our aim was to identify causative genes for these disorders by genome-wide homozygosity mapping. We investigated 75 ACHM, 97 arCD, and 20 early-onset arCD probands and excluded the involvement of known genes for ACHM and arCD. Subsequently, we performed high-resolution SNP analysis and identified large homozygous regions spanning the PDE6C gene in one sibling pair with early-onset arCD and one sibling pair with incomplete ACHM. The PDE6C gene encodes the cone α subunit of cyclic guanosine monophosphate (cGMP) phosphodiesterase, which converts cGMP to 5′-GMP, and thereby plays an essential role in cone phototransduction. Sequence analysis of the coding region of PDE6C revealed homozygous missense mutations (p.R29W, p.Y323N) in both sibling pairs. Sequence analysis of 104 probands with arCD and 10 probands with ACHM revealed compound heterozygous PDE6C mutations in three complete ACHM patients from two families. One patient had a frameshift mutation and a splice defect; the other two had a splice defect and a missense variant (p.M455V). Cross-sectional retinal imaging via optical coherence tomography revealed a more pronounced absence of cone photoreceptors in patients with ACHM compared to patients with early-onset arCD. Our findings identify PDE6C as a gene for cone photoreceptor disorders and show that arCD and ACHM constitute genetically and clinically overlapping phenotypes.  相似文献   

7.
Cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 account for >70% of all known cases of achromatopsia. Cones degenerate in achromatopsia patients and in CNGA3(-/-) and CNGB3(-/-) mice. This work investigates the molecular basis of cone degeneration in CNG channel deficiency. As cones comprise only 2-3% of the total photoreceptor population in the wild-type mouse retina, we generated mouse lines with CNG channel deficiency on a cone-dominant background, i.e. CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) mice. The retinal phenotype and potential cell death pathways were examined by functional, biochemical, and immunohistochemical approaches. CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) mice showed impaired cone function, opsin mislocalization, and cone degeneration similar to that in the single knock-out mice. The endoplasmic reticulum stress marker proteins, including Grp78/Bip, phospho-eIF2α, phospho-IP(3)R, and CCAAT/enhancer-binding protein homologous protein, were elevated significantly in CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) retinas, compared with the age-matched (postnatal 30 days) Nrl(-/-) controls. Along with these, up-regulation of the cysteine protease calpains and cleavage of caspase-12 and caspase-7 were found in the channel-deficient retinas, suggesting an endoplasmic reticulum stress-associated apoptosis. In addition, we observed a nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G in CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) retinas, implying a mitochondrial insult in the endoplasmic reticulum stress-activated cell death process. Taken together, our findings suggest a crucial role of endoplasmic reticulum stress in cone degeneration associated with CNG channel deficiency.  相似文献   

8.
Visual phototransduction relies on the function of cyclic nucleotide-gated channels in the rod and cone photoreceptor outer segment plasma membranes. The role of these ion channels is to translate light-triggered changes in the second messenger cyclic guanosine 3′–5′-monophosphate levels into an electrical signal that is further processed within the retinal network and then sent to higher visual centers. Rod and cone photoreceptors express distinct CNG channels. The rod photoreceptor CNG channel is composed of one CNGB1 and three CNGA1 subunits, whereas the cone channel is formed by one CNGB3 and three CNGA3 subunits. Mutations in any of these channel subunits result in severe and currently untreatable retinal degenerative diseases like retinitis pigmentosa or achromatopsia. In this review, we provide an overview of the human diseases and relevant animal models of CNG channelopathies. Furthermore, we summarize recent results from preclinical gene therapy studies using adeno-associated viral vectors and discuss the efficacy and translational potential of these gene therapeutic approaches.  相似文献   

9.
Mutation analysis was performed in eight families (16 patients) with glutaric aciduria type I (GA-I), which were all the families diagnosed in Israel in the years 1987-1994. Six families were of Moslem origin and two were non-Ashkenazi Jews. The entire coding region of the cDNA of the glutaryl-CoA dehydrogenase gene was sequenced in one patient of each family. Seven new mutations were identified in 15 of 16 mutated alleles, including six point mutations: T416I (4 alleles), G390R (1 allele), and S305L, A293T, L283P, and G1O1R (2 alleles each). In addition, a 1-bp deletion at position 1173 was identified in two alleles. These findings do not provide a molecular basis for the clinical variability in GA-I families. The occurrence of multiple novel mutations in a small geographic area may be explained by their recent onset in isolated communities with a high consanguinity rate.  相似文献   

10.
Achromatopsia is a rare autosomal recessive disorder which shows color blindness, severely impaired visual acuity, and extreme sensitivity to bright light. Mutations in the alpha subunits of the cone cyclic nucleotide-gated channels (CNGA3) are responsible for about 1/4 of achromatopsia in the U.S. and Europe. Here, we test whether gene replacement therapy using an AAV5 vector could restore cone-mediated function and arrest cone degeneration in the cpfl5 mouse, a naturally occurring mouse model of achromatopsia with a CNGA3 mutation. We show that gene therapy leads to significant rescue of cone-mediated ERGs, normal visual acuities and contrast sensitivities. Normal expression and outer segment localization of both M- and S-opsins were maintained in treated retinas. The therapeutic effect of treatment lasted for at least 5 months post-injection. This study is the first demonstration of substantial, relatively long-term restoration of cone-mediated light responsiveness and visual behavior in a naturally occurring mouse model of CNGA3 achromatopsia. The results provide the foundation for development of an AAV5-based gene therapy trial for human CNGA3 achromatopsia.  相似文献   

11.
Thirty-nine missense mutations, which had been identified in rod monochromacy or related disorders, in the CNGA3 subunit of cone photoreceptor cGMP-gated channels were analyzed. HEK293 cells were transfected with cDNA of the human CNGA3 subunit harboring each of these mutations in an expression vector. Patch-clamp recordings demonstrated that 32 of the 39 mutants did not show cGMP-activated current, suggesting that these 32 mutations cause a loss of function of the channels. From the remaining 7 mutants that showed cGMP-activated current, two mutations in the cyclic nucleotide-binding domain, T565M or E593K, were further studied. The half-maximal activating concentration (K(1/2)) for cGMP in the homomeric CNGA3-T565M channels (160microM) was 17.8-fold higher than that of the homomeric wild-type CNGA3 channels (9.0microM). Conversely, the K(1/2) for cGMP in the homomeric CNGA3-E593K channels (3.0microM) was 3-fold lower than that of the homomeric wild-type CNGA3 channels. These results suggest that the T565M and E593K mutations alter the apparent affinity for cGMP of the channels to cause cone dysfunction, resulting in rod monochromacy.  相似文献   

12.
13.
We examined cellular protein processing and functional expression of photoreceptor cyclic nucleotide-gated (CNG) ion channels. In a mammalian cell line, wild type bovine cone photoreceptor channel alpha subunits (bCNGA3) convert from an unglycosylated state, at 90 kDa, to two glycosylated states at 93 and 102 kDa as they transit within the cell to their final location at the plasma membrane. Glycosylation per se is not required to yield functional channels, yet it is a milestone that distinguishes sequential steps in channel protein maturation. CNG ion channels are not gated by membrane voltage although their structure includes the transmembrane S4 motif known to function as the membrane voltage sensor in all voltage-gated ion channels. S4 must be functionally important because its natural mutation in cone photoreceptor CNG channels is associated with achromatopsia, a human autosomal inherited loss of cone function. Point mutation of specific, not all, charged and neutral residues within S4 cause failure of functional channel expression. Cellular channel protein processing fails in every one of the non-functional S4 mutations we studied. Mutant proteins do not reach the 102-kDa glycosylated state and do not arrive at the plasma membrane. They remain trapped within the endoplasmic reticulum and fail to transit out to the Golgi apparatus. Coexpression of cone CNG beta subunit (CNGB3) does not rescue the consequence of S4 mutations in CNGA3. It is likely that an intact S4 is required for proper protein folding and/or assembly in the endoplasmic reticulum membrane.  相似文献   

14.
Mutations that perturb the function of photoreceptor CNG (cyclic nucleotide-gated) channels are associated with several human retinal disorders, but the molecular and cellular mechanisms leading to photoreceptor dysfunction and degeneration remain unclear. Many loss-of-function mutations result in intracellular accumulation of CNG channel subunits. Accumulation of proteins in the ER (endoplasmic reticulum) is known to cause ER stress and trigger the UPR (unfolded protein response), an evolutionarily conserved cellular programme that results in either adaptation via increased protein processing capacity or apoptotic cell death. We hypothesize that defective trafficking of cone photoreceptor CNG channels can induce UPR-mediated cell death. To test this idea, CNGA3 subunits bearing the R563H and Q655X mutations were expressed in photoreceptor-derived 661W cells with CNGB3 subunits. Compared with wild-type, R563H and Q655X subunits displayed altered degradation rates and/or were retained in the ER. ER retention was associated with increased expression of UPR-related markers of ER stress and with decreased cell viability. Chemical and pharmacological chaperones {TUDCA (tauroursodeoxycholate sodium salt), 4-PBA (sodium 4-phenylbutyrate) and the cGMP analogue CPT-cGMP [8-(4-chlorophenylthio)-cGMP]} differentially reduced degradation and/or promoted plasma-membrane localization of defective subunits. Improved subunit maturation was concordant with reduced expression of ER-stress markers and improved viability of cells expressing localization-defective channels. These results indicate that ER stress can arise from expression of localization-defective CNG channels, and may represent a contributing factor for photoreceptor degeneration.  相似文献   

15.
The present review summarizes the current status of achromatopsia (ACHM) gene therapy‐related research activities and provides an outlook for their clinical application. ACHM is an inherited eye disease characterized by a congenital absence of cone photoreceptor function. As a consequence, ACHM is associated with strongly impaired daylight vision, photophobia, nystagmus and a lack of color discrimination. Currently, six genes have been linked to ACHM. Up to 80% of the patients carry mutations in the genes CNGA3 and CNGB3 encoding the two subunits of the cone cyclic nucleotide‐gated channel. Various animal models of the disease have been established and their characterization has helped to increase our understanding of the pathophysiology associated with ACHM. With the advent of adeno‐associated virus vectors as valuable gene delivery tools for retinal photoreceptors, a number of promising gene supplementation therapy programs have been initiated. In recent years, huge progress has been made towards bringing a curative treatment for ACHM into clinics. The first clinical trials are ongoing or will be launched soon and are expected to contribute important data on the safety and efficacy of ACHM gene supplementation therapy.  相似文献   

16.
A detailed study of the mutant phenylalanine hydroxylase (PAH) gene from the eastern part of the Czech Republic (Moravia) is reported. A total of 190 mutant alleles from 95 phenylketonuria (PKU) families were analyzed for 21 prevalent Caucasian mutations and restriction fragment length polymorphism /variable number of tandem repeats (RFLP/VNTR) haplotypes. Eighty per cent of all mutant alleles were found to carry 11 mutations. The most common molecular defect was the mutation R408W (55.3%), with a very high degree of homozygosity (34.6%). Each of four other mutations (R158Q, R243X, G272X, IVS12nt1) accounted for more than 3% of PKU alleles. Rarely present were mutations IVS10nt546 (2.6%), R252W (2.6%), L48S (2.1%), R261Q (1.6%), Y414C (1.0%) and I65T (0.5%). Mutations that have been predominantly described in southern Europe (IVS7nt1, A259V, Y277D, R241H, T278N) were not detected. A total of 14 different mutant haplotypes were observed. Three unusual genotype-haplotype associations were identified (R158Q on haplotypes 2.3 and 7.8 and R252W on haplotype 69.3). There was a strong association between the mutation R408W and haplotype 2.3 (54.7%). Heterogeneity was found at mutations R408W (haplotypes 2.3 and 5.9), R158Q (haplotypes 4.3, 2.3 and 7.8) and IVS10nt546 (haplotypes 6.7 and 34.7). The molecular basis of PKU in the Moravian area appears to be relatively homogeneous in comparison with other southern and western European populations, thus providing a good starting point for prenatal diagnosis and early clinical classification.  相似文献   

17.
Acute intermittent porphyria (AIP) is a low-penetrant autosomal dominant disorder caused by mutations in the porphobilinogen deaminase gene (PBGD). Nearly 60% of all Swiss AIP patients carry a nonsense mutation W283X (G(7916)-->A). In France, the prevalence of W283X is <5%. To determine whether W283X was a founder mutation or originated from multiple de novo events, we studied 25 apparently unrelated W283X families and index patients, 21 of Swiss and 4 of French origins. In the absence of sufficient genealogical data to verify the ancestral background of these W283X families/patients, we identified haplotypes of seven intragenic single nucleotide polymorphisms (SNPs) in the PBGD gene as well as eight microsatellites flanking the PBGD gene covering 9.88 cM in chromosome 11. Molecular cloning and sequencing experiments were required in order to completely resolve the intragenic haplotypes in this study cohort which mainly consisted of single index patients and families with limited members. Thirteen of the 25 W283X families/patients carry a SNP haplotype [C-A-A-A-G-C-W283X-G] and 12 (including four French families) carry a [T-G-G-G-G-C-W283X-G] haplotype. A less conserved microsatellite haplotype was identified among the 25 W283X alleles which allowed us to estimate the age of the mutation. Since W283X is not explained by a methylcytosine mutation, we favor the hypothesis of a single mutational event which took place on the [T-G-G-G-G-C-G] background at approximately 40 generations or 1000 years ago. Around 550 years ago, a recombination event occurred between intron 3 and 10 of the PBGD gene which resulted in the [C-A-A-A-G-C-W283X-G] haplotype only found in a restricted region.  相似文献   

18.
19.
Autoimmune polyendocrinopathy type 1 (APS1) is an autosomal recessive disorder characterized by autoimmune hypoparathyroidism, autoimmune adrenocortical failure, and mucocutaneous candidiasis. Recently, an autoimmune regulator gene (AIRE-1), which is located on chromosome 21q22.3, has been identified, and mutations in European kindreds with APS1 have been described. We used SSCP analysis and direct DNA sequencing to screen the entire 1,635-bp coding region of AIRE-1 in 12 British families with APS1. A 13-bp deletion (964del13) was found to account for 17 of the 24 possible mutant AIRE-1 alleles, in our kindreds. This mutation was found to occur de novo in one affected subject. A common haplotype spanning the AIRE-1 locus was found in chromosomes that carried the 964del13 mutation, suggesting a founder effect in our population. One of 576 normal subjects was also a heterozygous carrier of the 964del13 mutation. Six other point mutations were found in AIRE-1, including two 1-bp deletions, three missense mutations (R15L, L28P, and Y90C), and a nonsense mutation (R257*). The high frequency of the 964del13 allele and the clustering of the other AIRE-1 mutations may allow rapid molecular screening for APS1 in British kindreds. Furthermore, the prevalence of the 964del13 AIRE-1 mutation may have implications in the pathogenesis of the more common autoimmune endocrinopathies in our population.  相似文献   

20.
Precursor mRNA encoding CNGA3 subunits of cone photoreceptor cyclic nucleotide-gated (CNG) channels undergoes alternative splicing, generating isoforms differing in the N-terminal cytoplasmic region of the protein. In humans, four variants arise from alternative splicing, but the functional significance of these changes has been a persistent mystery. Heterologous expression of the four possible CNGA3 isoforms alone or with CNGB3 subunits did not reveal significant differences in basic channel properties. However, inclusion of optional exon 3, with or without optional exon 5, produced heteromeric CNGA3 + CNGB3 channels exhibiting an ∼2-fold greater shift in K1/2,cGMP after phosphatidylinositol 4,5-biphosphate or phosphatidylinositol 3,4,5-trisphosphate application compared with channels lacking the sequence encoded by exon 3. We have previously identified two structural features within CNGA3 that support phosphoinositides (PIPn) regulation of cone CNG channels: N- and C-terminal regulatory modules. Specific mutations within these regions eliminated PIPn sensitivity of CNGA3 + CNGB3 channels. The exon 3 variant enhanced the component of PIPn regulation that depends on the C-terminal region rather than the nearby N-terminal region, consistent with an allosteric effect on PIPn sensitivity because of altered N-C coupling. Alternative splicing of CNGA3 occurs in multiple species, although the exact variants are not conserved across CNGA3 orthologs. Optional exon 3 appears to be unique to humans, even compared with other primates. In parallel, we found that a specific splice variant of canine CNGA3 removes a region of the protein that is necessary for high sensitivity to PIPn. CNGA3 alternative splicing may have evolved, in part, to tune the interactions between cone CNG channels and membrane-bound phosphoinositides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号