首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In vitro luteinization of bovine granulosa (LGC) and theca (LTC) cells was achieved by culturing cells with forskolin (10 microM) and insulin (2 micrograms/ml) for 9 days. This treatment induced the presence of cytochrome P450scc and adrenodoxin in both cell types, but to substantially higher levels in LGC than in LTC. Forskolin dose-dependently stimulated the secretion of progesterone and cAMP after 3 h of incubation in both cell types although LGC were less sensitive to this stimulation than were LTC. Only LTC were responsive to LH, in accordance with their higher LH/hCG binding capacity. Both prostaglandin F2 alpha (PGF2 alpha) and phorbol 12-myristate 13-acetate (TPA) increased progesterone production during 3 h incubation of LGC and LTC, and treatment with staurosporine (a protein kinase C inhibitor) reversed this effect. Neither TPA nor PGF2 alpha alone affected cAMP levels but each acted synergistically with forskolin to increase cAMP accumulation. These results indicate that 1) elevated progesterone output from LGC is related to steroidogenic enzyme level; 2) bovine LH (up to 100 ng/ml) does not provoke a response in LGC due to their low LH/hCG binding capacity; 3) cAMP-protein kinase A and protein kinase C pathways are both involved in progesterone production by LGC and LTC, possibly by enhancing cholesterol transport.  相似文献   

3.
Although inhibin (IN) is secreted by granulosa cells (GC) of preovulatory follicles, the major source of immunoreactive IN circulating during the primate ovarian cycle is the corpus luteum. The aims of this study were (1) to investigate culture conditions for optimal IN production by luteinized GC (LGC) from rhesus monkeys and (2) to compare IN and progesterone (P) production by nonluteinized GC (NGC) and LGC in response to putative agonists. Animals were treated for up to 9 days with human menopausal gonadotropins to promote the development of multiple preovulatory follicles. GC were obtained from large follicles before (NGC) or 27 h after (LGC) an ovulatory injection of hCG. For Aim 1, cells were cultured in Hams F-10 medium +/- hCG (100 ng/ml) with or without the addition of insulin/transferrin/selenium, 10% fetal bovine serum, or 10% Serum-Plus (JRH Biosciences, Lenexa, KS). Medium was changed on Days 1, 2, 4, 6, and 8, and IN and P concentrations were determined by RIA. Basal (unstimulated) IN production by LGC was enhanced and maintained for 6-8 days in the presence of serum, but rapidly declined in the absence of serum. In contrast, basal P secretion declined regardless of exposure to serum. Human CG consistently increased (p less than 0.05) IN production only in the presence of serum but stimulated (p less than 0.05) P production under all conditions. For Aim 2, cells were cultured for 4 days in Ham's F-10 medium + 10% macaque serum +/- hCG (100 ng/ml), hFSH (100 ng/ml), prostaglandin E2(PGE2; 14 microns), or dibutyryl(db)-cAMP (5 mM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Granulosa cells derived from preovulatory bovine follicles were cultured in the presence of insulin-like growth factor-I (IGF-I, 10-100 ng/ml), forskolin (10 microM), or a combination of the two agents. Forskolin alone was the most potent stimulator of both oxytocin (OT) and progesterone (P4) secretion. The two hormones had different patterns of secretion during the course of incubation. OT production peaked on Day 5 of culture and declined thereafter, whereas P4 rose gradually to a peak between Days 7 and 9. The addition of IGF-I to forskolin did not augment OT release beyond that achieved with forskolin alone, but it did maintain higher levels of OT secretion beyond the Day-5 peak. Two antisera, (antiserum I and antiserum II) directed against OT and its C-terminally extended forms, respectively, were used to identify the OT forms in culture media and granulosa cell and corpus luteum extracts. Fully processed OT was detected only in small amounts (0.43 ng/mg protein) in granulosa cell extracts, whereas the corpus luteum extracts contained 6 ng/mg protein. However, granulosa cells that had been incubated with forskolin contained stores of the OT precursor oxytocin-neurophysin, which is found in young corpora lutea. These data indicate that forskolin (whose action probably mimics gonadotropin action) is an effective stimulator of OT biosynthesis and release in cultured bovine granulosa cells.  相似文献   

5.
Previously described models for avian ovarian steroidogenesis, using mature, 25-40-mm preovulatory follicles as the source of tissues, were based on the assumption that interaction of the granulosa layer, as the predominant source of progesterone, with adjacent theca cells is required for maximal production of C21, C19, and C18 steroids. In the present study, we evaluated the steroidogenic capacity of ovarian cells isolated from less mature, 6-8-mm and 9-12-mm follicles in the chicken ovary (representative of a stage of development 2-3 wk prior to ovulation) to determine at which stage of follicular development granulosa and/or theca cells become steroidogenically competent. Granulosa cells collected from 6-8-mm follicles were found to be virtually incompetent to produce steroids, containing extremely low basal levels of progesterone (12 pg/5 x 10(5) cells) and failing to respond with increased steroid output following a 3-h exposure to ovine LH (oLH; 0.1 and 100 ng/0.5 ml), ovine FSH (oFSH; 100, 500, and 1,000 ng/0.5 ml), 8-bromo-cyclic adenosine monophosphate (8-bromo-cAMP; 0.33 and 3.33 mM) or 25-hydroxycholesterol (250 and 2,500 ng/0.5 ml). However, addition of pregnenolone (20 and 200 ng/0.5 ml) to granulosa incubations resulted in significantly increased progesterone levels. Granulosa cells of 6-8-mm follicles also failed to increase cAMP formation in the presence of oLH (10, 100, and 1,000 ng/0.5 ml) and 3-isobutyl-1-methylxanthine (IBMX; 10 microM), but responded to stimulation with 1,000 ng oFSH (4.4-fold increase over basal) or 10 microM forskolin (32-fold increase over basal) in the presence of IBMX. In contrast, granulosa cells isolated from 9-12-mm follicles and incubated for 3 h in vitro were found to contain basal progesterone levels 200-fold higher than those found in granulosa cells of 6-8-mm follicles. Furthermore, granulosa cells of 9-12-mm follicles markedly increased progesterone production following incubation in the presence of oFSH (100-1,000 ng/0.5 ml), 8-bromo-cAMP (0.33 and 3.33 mM), or 25-hydroxycholesterol (250 and 2,500 ng/0.5 ml). However, these granulosa cells remained unresponsive to oLH (0.1, 10, and 100 ng/0.5 ml), failing to increase cAMP accumulation (in the presence of IBMX) and progesterone output. Theca cells of small yellow follicles were found to produce measurable basal levels of progesterone, androstenedione, and estradiol, and levels of each steroid were significantly increased following a 3-h challenge with oLH, 8-bromo-cAMP, 25-hydroxycholesterol, and pregnenolone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Granulosa cells from fully differentiated bovine follicles were cultured in serum-free medium for 4 days. At the end of culture, the number of viable cells was low (10-15% of cells plated on day one) and only progesterone secretion responded to FSH. Insulin increased the number of viable cells at the end of culture (ED50 # 70 ng/ml) and stimulated progesterone secretion (ED50 # 50 ng/ml); the secretion of oestradiol-17 beta over basal value was evident only for concentrations of 1000 and 10,000 ng/ml. FSH acted synergistically with insulin to modify steroid secretion. In the presence of 50 ng/ml of insulin, dose-response studies indicated that secretion of progesterone was maximal at 10 ng/ml of FSH and plateaud thereafter, while oestradiol output peaked at 2 ng/ml of FSH, decreasing at higher concentrations. When cells were seeded in wells precoated with fibronectin, a comparison with cells cultured on plastic showed an increase (30-40%) in the number of viable cells at the end of culture and in oestradiol secretion but a decrease in progesterone output. These results indicate that granulosa cells from large bovine follicles, cultured in a serum-free medium containing insulin, maintain their steroidogenic potency for at least 4 days. Moreover, they show that oestradiol and progesterone synthesis are differentially sensitive to FSH concentrations and that fibronectin increases oestradiol secretion in response to FSH.  相似文献   

7.
The effects of kaurenol, a diterpene alcohol, were evaluated on progesterone and cyclic AMP (cAMP) production in freshly dispersed avian granulosa cells. Kaurenol (50 microM) alone caused a fourfold increase in progesterone synthesis without a measurable influence on cAMP levels. When granulosa cells were challenged with near-maximally stimulating concentrations of LH (50 ng/ml) or forskolin (10 microM), kaurenol (10-100 microM) dose-dependently suppressed steroidogenesis. Similarly, cAMP production in response to LH and forskolin stimulation was also inhibited. When progesterone synthesis was stimulated by the addition of pregnenolone or 25-hydroxycholesterol substrates to the culture medium, the typical dose response to the latter precursor, but not to pregnenolone, was abolished by kaurenol. Whereas the mechanism of kaurenol's stimulatory effect on basal steroidogenesis remains unknown, it is suggested that its inhibitory action on LH- and forskolin-promoted progesterone production may be due to the inhibition of the adenylate cyclase cAMP effector system as well as to the impairment of the action of the mitochondrial cholesterol side chain cleavage enzyme system.  相似文献   

8.
The steroid secreting activities of dispersed granulosa and theca interna cells from preovulatory follicles of prepubertal gilts 72 h after pregnant mare's serum gonadotropin treatment (750 IU) were compared. The cells were cultured for 24 h with or without steroid substrate (10(-8) to 10(-5) M progesterone, 17 alpha-hydroxyprogesterone, or androstenedione), FSH (100 ng/mL), LH (100 ng/mL), and cyanoketone (0.25 microM, an inhibitor of 3 beta-hydroxysteroid dehydrogenase). Granulosa cells cultured alone secreted mainly progesterone. Theca interna cells secreted mainly 17 alpha-hydroxyprogesterone and androstenedione, with secretion being markedly enhanced by LH. In the presence of cyanoketone, which inhibited endogenous progesterone production, theca interna but not granulosa cells were able to convert exogenous progesterone to 17 alpha-hydroxyprogesterone and androstenedione, and exogenous 17 alpha-hydroxyprogesterone to androstenedione and estradiol-17 beta in high yield. The secretion of the latter steroids from exogenous substrates was unaffected by LH. Theca interna cells secreted more estradiol-17 beta than did granulosa cells in the absence of aromatizable substrate, but estradiol-17 beta secretion by the latter was markedly increased after the addition of androstenedione. These apparent differences in steroid secreting activity between the cell types suggest that the enzymes responsible for conversion of C21 to C19 steroids, i.e., 17 alpha-hydroxylase and C17,20-lyase, reside principally in the theca interna cells. However, aromatase activity appears to be much higher in granulosa cells.  相似文献   

9.
We report the isolating and sequencing of three cDNA clones encoding rat P-450scc, the nucleotide and protein sequences of which are highly homologous to those of bovine and human P-450scc, especially in the putative heme and steroid binding domains. We document that different molecular mechanisms regulate P-450scc in granulosa cells of preovulatory (PO) follicles prior to and after luteinization. Luteinizing hormone/human chorionic gonadotropin (LH/hCG) and cAMP are obligatory to induce P-450scc mRNA in PO granulosa cells in vivo and in vitro. Once P-450scc mRNA is induced as a consequence of the LH/hCG surge it is constitutively maintained by luteinized cells in vivo (0-4 days) and in vitro (0-9 days) in the absence of gonadotropins, is susceptible to modulation by prolactin and is no longer regulated by cAMP. Exposure to elevated concentrations of hCG in vivo for 5-7 h was required for PO granulosa cells to undergo a functional transition establishing the stable luteal cell phenotype. Transient exposure of PO + hCG (7 h) follicles in vitro to the RNA synthesis inhibitor actinomycin D (1 microgram/ml) or the protein synthesis inhibitor cycloheximide (10 micrograms/ml), for 1-5 h prior to culturing the granulosa cells failed to disrupt the induction of P-450scc mRNA, progesterone biosynthesis, and appearance of the luteal cell morphology. Inhibitors of protein kinase A (Rp-cAMPS; 1-500 microM and N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H8); 1-200 microM) added directly to the luteinized cell cultures also failed to alter P-450scc mRNA in these cells, although the cells contain in vivo amounts of mRNA for RII beta, RI alpha, and C alpha, the primary subunits of protein kinase A found in the rat ovary. These data suggest that expression of the P-450scc gene in rat ovarian follicular cells is regulated in a sequential manner by cAMP-dependent and cAMP-independent mechanisms associated with granulosa cells and luteal cells, respectively.  相似文献   

10.
The regulation of pig theca cell steroidogenesis was studied by the development of a physiological serum-free culture system, which was subsequently extended to investigate potential theca-granulosa cell interactions. Theca cells were isolated from antral follicles 6-9 mm in diameter and the effects of plating density (50-150x10(3) viable cells per well), LH (0.01-1.0 ng ml(-1)), Long R3 insulin-like growth factor I (IGF-I) (10, 100 ng ml(-1)) and insulin (1, 10 ng ml(-1)) on the number of cells and steroidogenesis were examined. The purity of the theca cell preparation was verified biochemically and histologically. Co-cultures contained 50x10(3) viable cells per well in granulosa to theca cell ratio of 4:1. Wells containing granulosa cells only were supplemented with 'physiological' doses of androstenedione or 100 ng ml(-1). Oestradiol production by co-cultures was compared with the sum of the oestradiol synthesized by granulosa and theca cells cultured separately. Oestradiol and androstenedione production continued throughout culture. High plating density decreased steroid production (P < 0.01). LH increased androstenedione (P < 0.001) and oestradiol (P < 0.05) synthesis and the sensitivity of the cells increased with time in culture. Oestradiol production was increased by 10 ng IGF-I ml(-1) (P < 0.001) but androstenedione required 100 ng ml(-1) (P < 0.001). Co-cultures produced more oestradiol than the sum of oestradiol synthesized by theca and granulosa cells cultured separately (P < 0. 001), irrespective of the androstenedione dose. This serum-free culture system for pig theca cells maintained in vivo steroidogenesis and gonadotrophin responsiveness. Thecal androstenedione and oestradiol production were differentially regulated and were primarily stimulated by LH and IGF-I, respectively. Theca-granulosa cell interactions stimulated oestradiol synthesis and this interaction was mediated by factors additional to the provision of thecal androgen substrate to granulosa cells.  相似文献   

11.
Follicle-regulatory protein (FRP) affects ovarian steroidogenesis and thus follicular maturation. However, secretion of FRP by cells from different-sized follicles as well as the modulation of FRP production by gonadotropins and locally produced steroids are unknown. To evaluate which cell type secretes FRP, theca and granulosa cells were obtained from porcine follicles. In addition, the effects of follicle-stimulating hormone (FSH) and steroids on FRP secretion from granulosa cells of small (less than 3 mm), medium (3-6 mm), and large (greater than 8 mm) porcine follicles and theca cells of large follicles were determined. Granulosa cells were obtained from follicular aspirates, whereas theca cells were recovered after digestion of the stereomicroscopically removed thecal layer. Both were cultured in monolayer in serum-free medium. Granulosa cells were treated as follows: 1) control; 2) FSH (250 ng/ml); 3) progesterone (500 ng/ml, 3 micrograms/ml), or estradiol-17 beta (500 ng/ml, 4 micrograms/ml), or dihydrotestosterone (500 ng/ml, 1 microgram/ml); 4) FSH + progesterone, or estradiol-17 beta, or dihydrotestosterone. Theca cells received the same treatment except that human chorionic gonadotropin (hCG) (5m IU/ml) was used in place of FSH. At 48 or 96 h, media were removed and FRP was quantitated by an Enzyme-Linked Immunosorbent Assay (ELISA). FRP was identified in granulosal medium from follicles of all sizes, but was not present in thecal cultures. At 48 h, granulosa cells from small and medium-sized follicles produced more FRP (20.04 +/- 4.4, 35.42 +/- 4.1 immunoreactive units [IRU]) than cells from large (3.53 +/- 0.97 IRU) follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The experiments described here were conducted to examine regulation of cytochrome P-450 side-chain cleavage (SCC) mRNA accumulation in porcine granulosa cells isolated from small (1-4-mm) and medium (5-6-mm) follicles. Granulosa cells were cultured under the following conditions: 1) for 48 h or 96 h with 0, 50, or 200 ng/ml porcine FSH; 2) for 96 h with 200 ng/ml FSH and aminoglutethimide (100 microM); and 3) for 96 h with forskolin (100 microM). Total RNA was extracted and examined by Northern and dot-blot hybridization analysis, and culture media were assayed for progesterone concentration. Northern blot analysis revealed a single band approximately 2.1 kb in size. Accumulation of SCC mRNA by granulosa cells was both FSH dose- and culture time-dependent (p less than 0.05) with maximal increases approximately 4.5 times control levels. Aminoglutethimide reduced progesterone production by about 80% while having no effect on granulosa cell accumulation of SCC mRNA compared to cells stimulated with 200 ng/ml of FSH. Forskolin-treated cells produced significantly more progesterone than did cells treated with FSH, but accumulation of SCC mRNA was similar. In response to FSH, concentration of SCC mRNA did not vary with follicle size, but granulosa cells from small follicles produced significantly more progesterone than did those from medium follicles. These results demonstrate that concentration of SCC mRNA in cultured porcine granulosa cells is FSH dose-dependent, does not vary significantly in cells from small- and medium-sized follicles, and is correlated with progesterone production, but may not parallel progesterone secretion. This last observation indicates that control at sites other than SCC mRNA can affect progesterone production.  相似文献   

13.
In cattle, leptin has been implicated in the control of ovarian function and has been shown to modulate steroid production by theca and granulosa cells in a number of species. However, a direct effect of leptin on bovine luteal function has not been demonstrated. This study was conducted to determine if the leptin receptor (OB-R) is expressed in the bovine corpus luteum (CL), and to examine the effects of leptin on progesterone production by dispersed luteal cells in vitro. RT-PCR was used to detect the presence of OB-R and, more specifically, the long, biologically active isoform (OB-Rb), in CL, collected on days 2-18 of the oestrous cycle (n=18). The effects of leptin on progesterone production were investigated in dispersed luteal cells prepared from CL collected on days 5 and 8 (n=14) of the cycle. The dispersed luteal cells were cultured for 24 hr with recombinant human leptin and/or LR3-IGF-1 and/or LH. OB-Rs, in particular, OB-Rb, were expressed in the CL at all stages of development. Progesterone production by luteal cells was increased (P<0.001) by treatment with LH (10 ng/ml) but treatment with leptin alone had no effect. However, in the presence of IGF-1 (100 ng/ml), leptin (10 ng/ml) caused a significant (P<0.005) increase in progesterone production. In conclusion, we have shown that the leptin receptor is expressed in the bovine CL and have demonstrated a modulatory effect of leptin on luteal progesterone production in vitro.  相似文献   

14.
The aims of the study were: (1) to examine 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and/or prolactin (PRL) effects on in vitro secretion of progesterone (P4) and estradiol (E2) by luteinized granulosa and theca cells from porcine preovulatory follicles; and (2) to determine the effects of TCDD on PRL, luteinizing hormone (LH), and melatonin luteal phase in pigs. We found that TCDD itself did not affect progesterone secretion, but it abolished the stimulatory effect of PRL in the follicular cells. TCDD stimulated PRL secretion during the luteal phase and inhibited during the follicular phase. Moreover, TCDD increased luteinizing hormone secretion by pituitary cells during the follicular phase. In contrast to protein and steroid hormones, melatonin secretion in vitro was not affected by TCDD. In conclusion, it was found that the pituitary-ovarian axis in pigs is sensitive to TCDD, and the dioxin exhibited a profound ability to disrupt the ovarian actions of prolactin.  相似文献   

15.
Regulation by PRL of aromatase (P450arom) mRNA and protein and estradiol (E) biosynthesis was examined in granulosa cells during early stages of luteinization in vitro and in vivo. PRL caused a dose-dependent (10-1000 ng/ml) decrease in P450arom mRNA and E biosynthesis (greater than 99%) in luteinized rat granulosa cells in vitro, even when the cells were cultured in the presence of insulin and hydrocortisone (hormones known to synergize with PRL to induce proteins in mammary tissue) or in the presence of forskolin (a nonhormonal stimulator of cAMP). PRL also prevented the marked increases in aromatase mRNA and E biosynthesis stimulated by FSH and forskolin in nonluteinized preovulatory granulosa cells in culture. These effects of PRL on granulosa cells in culture were specific for aromatase and were not observed for other proteins, such as cholesterol side-chain cleavage cytochrome P450 (P450scc) and alpha 2-macroglobulin. PRL also decreased P450arom mRNA and protein during the early stages of luteinization in vivo. PRL administered to rats beginning day 1 postovulation to mimic hormone release during pseudopregnancy reduced the progressive increase in P450arom mRNA occurring in corpora lutea on days 3-4 in ovulated rats not treated with PRL. CB 154, a dopamine agonist that inhibits pituitary release of PRL, caused P450arom mRNA and protein to decrease 50% if given to pregnant rats on days 8-10 of gestation, but increased P450arom mRNA and protein if given to pregnant rats on days 10-12 of gestation. These diverse effects of PRL in pregnancy suggest that placental factors may modify the response of luteal cells to PRL during gestation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
The administration of PMSG to sheep early in the oestrous cycle (Days 2 or 3) results in the formation of follicular cysts of varied morphology by Days 8 or 9. These may persist for up to 14 days after injection. If PMSG is given on Day 5 or later approximately 50% of such cysts ovulate. However, when PMSG is given at the beginning of the cycle (Day 2 or 3), the membrana granulosa is lost from the majority of the cysts and the theca interna luteinizes. The major hormone secreted by such luteinized follicles is progesterone. The structure of the steroid-secreting cells of the follicles is similar to that of large luteal cells of granulosa cell origin in cyclic corpora lutea. It is suggested that under suitable luteinizing conditions thecal cells may acquire many of the characteristics of granulosa cells.  相似文献   

18.
Cultures of granulosa cells from small (less than 3 mm), medium (3-6 mm), or large (8-10 mm) pig follicles were treated as follows: (1) basal controls, (2) cyclic adenosine 3',5'-monophosphate (cAMP) pathway agonists (pig FSH: 100 ng/ml; forskolin: 10 microM; dibutyryl cAMP; 1 mM), (3) calcium ionophore A23187 (0.005-1 micrograms), or (4) phorbol 12-myristate 13-acetate (TPA; 0.05-4 ng/ml). The combination of A23187 or TPA together with cAMP agonists was also examined in cultures of granulosa cells from follicles of different sizes. All substances were added at the time of culture, and oestradiol and progesterone were measured in the culture media after 48 h. All cAMP agonists were most potent in their stimulation of steroidogenesis (as a % of control) in cells from small follicles (P less than 0.05) with the exception of forskolin, which increased oestradiol in cells from large follicles to a greater extent than in cells of small follicles (P less than 0.05) (cells from medium follicles demonstrated less stimulation than those from small follicles except in progesterone production, for which FSH was equipotent). With the exception of forskolin, however, granulosa from large follicles showed little (oestradiol) or no stimulation (progesterone) with cAMP agonists. Under basal conditions, A23187 inhibited progesterone in all groups (P less than 0.05), and oestradiol production was reduced in granulosa cells from small follicles (P less than 0.05), unchanged in cells from medium follicles, and significantly stimulated in cells from large follicles. A23187 inhibited the enhanced production of both hormones after administration of cAMP agonists from cells of small and medium follicles (P less than 0.05), with inhibition significantly greater in cells of small follicles compared with medium. In cells from large follicles challenged with cAMP agonists, A23187 inhibited progesterone but stimulated oestradiol production; substitution of TPA (a protein kinase C stimulator) for A23187 gave identical results under basal or FSH-treated cultures of granulosa cells from small-, medium- or large-sized follicles. Our results suggest that TPA, A23187 and cAMP agonists modulate steroidogenesis differently in pig granulosa cells, depending on the stage of maturation of the follicle. Oestradiol production in granulosa cells from large preovulatory follicles may come under the stimulatory control of regulators of protein kinase C as in follicles near ovulation.  相似文献   

19.
Ovarian, endometrial and myometrial cells and strips of longitudinal myometrium from cows on defined days of estrous cycle were treated for 24-72 h with different doses (1-100 ng/ml) of PCBs mixture (Aroclor 1248) or with one of PCB congeners (126, 77, 153). The administered doses of PCBs neither affected the viability of cells nor influenced the ovarian steroidogenesis as measured by progesterone (P(4)), estradiol (E(2)) and testosterone secretion from luteal, granulosa and theca cells, respectively. In contrast, PCBs clearly inhibited a FSH and LH-stimulated effect on steroids secretion from granulosa and luteal cells. Moreover, PCBs significantly stimulated oxytocin (OT) secretion from the studied ovarian cells, and at least part of this effect is elicited through activation of glucocorticoid receptors. Further, PCBs were found to increase basal intracellular concentrations of Ca(2+) and both spontaneous and OT-stimulated contractions of myometrial strips. Concomitantly, PCBs increased endometrial secretion of PGF(2alpha), hence the ratio of PGF(2alpha):PGE(2) was also increased. Phytoestrogens (genistein, daidzein, coumestrol), with a different intensity, reduced the effect of PCBs on PGF(2alpha) secretion and myometrial contractions. Genistein inhibited PCBs' effect on OT secretion from granulosa cells, while PCB's effect on OT release from luteal cells was reduced mainly by genistein and daidzein. We conclude that PCBs can impair both ovarian functioning and uterine contractility, while phytoestrogens are able to reduce this effect.  相似文献   

20.
赵玉莲  王京花 《生理学报》1991,43(6):580-583
Isolated ovarian corpus luteal cells and granulosa cells of rat were employed to investigate the effect of alpha-ANP on the secretion of progesterone and estradiol. The contents of the steroid hormones are determined by RIA. The results showed that 0.1-10 ng/ml ANP promoted progesterone production in a dose dependent manner. alpha-ANP also enhanced progesterone production by granulosa cells, but not estradiol. It seems that the effect of alpha-ANP on ovarian steroidogenesis is a direct one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号