首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular genetic features of Vibrio cholerae classical strains which caused an epidemic of Asian cholera in Russia in 1942 have been studied for the first time. These strains had a high level of choleric toxin production and toxin-coregulated adhesion piles, the main virulence factors; all the strains were auxotrophs and needed purine and/or amino acids for growth in minimal medium. Moreover, having hapA structural gene in the chromosome (according to polymerase chain reaction), they did not produce soluble hemagglutinin protease promoting propagation of vibrios in the environment. These features of natural V. cholerae classical strains are apparently responsible for the peculiar infectious and epidemic processes in the cholera epidemic.  相似文献   

2.
Twenty-nine mutants of Bacillus cereus T were selected on casein agar for their inability to produce large amounts of extracellular protease. They all formed spores, and 27 were also auxotrophs for purines or pyrimidines. Upon reversion to prototrophy, a large fraction regained the capacity to produce protease. Conversely, reversion to normal protease production resulted in loss of the purine or pyrimidine requirement in a large fraction of the revertants. One spontaneous low-protease-producing pyrimidine auxotroph studied in detail grew as well as the wild type and produced spores which were identical to those produced by the wild type on the basis of heat resistance, dipicolinic acid content, density, and appearance in the electron microscope. The rate of protein turnover in the mutant was the same as the wild type. The mutant did grow poorly, however, when casein was the principal carbon source. A mutant excreting 5 to 10 times as much protease as the wild type was isolated as a secondary mutation from the hypoproducer discussed above. Loss of the pyrimidine requirement in this case did not alter the regulation of protease production. Although the secondary mutant grew somewhat faster in most media than the wild type, the final cell yield was lower. The spores of this mutant appeared to have excess coat on the basis of both electron microscopic and chemical studies. There appear to be closely related but distinct catabolic controls for both extracellular protease and spore formation. These controls can be dissociated as for the hypoproducers but can also appear integrated as for the hyperprotease producer.  相似文献   

3.
Regulation of the formation of protease inBacillus megaterium   总被引:4,自引:0,他引:4  
Protease is synthesized by the cultures growing in a glucose-containing mineral medium. However, it is formed even during incubation of the washed cells in a nitrogen free medium. The enzyme synthesis is decreased substantially by the addition of the individual amino acids or their mixture. Threonine, isoleucine, leucine and valine are the most inhibitory. Arginine, cysteine, glycine, lysine and tryptophan in concentrations of 103 m do not inhibit the production of protease. The growth of the culture is also somewhat inhibited by threonine and isoleucine, the repression of protease being, however, much higher. Concentrations of 103 m inhibit its synthesis by 80–90%. However, the enzyme activity is not influenced. The inhibition is caused byl,-isomers. Repression of the enzyme synthesis after the addition of threonine into the medium is much greater in a growing culture than in a culture starving in a nitrogen-free medium. However the level of free threonine in the pool is roughly the same in both growing and non-growing cultures. A mixture of 13 amino acids, which themselves are little inhibitory, suppresses the synthesis of protease much more than threonine or isoleucine. The inhibitory effect of the individual amino acids on the enzyme formation is apparently additive.  相似文献   

4.
Previously described Rhizobium leguminosarum bv. phaseoli mutants elicit nodules on bean without infection thread formation. These mutants were shown to be purine or, in one case, pyrimidine auxotrophs. Each of the seven purine auxotrophs grew normally when supplied the penultimate precursor of inosine, 5-aminoimidazole-4-carboxamide riboside. Four seemed blocked early in the purine pathway, because they were also thiamine auxotrophs. Reversion analysis and genetic complementation using cloned wild-type DNA showed that in each mutant a single mutation was responsible for both the symbiotic defect and purine or pyrimidine auxotrophy. The mutations were mapped to five dispersed chromosomal locations. The previously reported weak Calcofluor staining of these mutants on minimal agar appeared to be caused by partial growth on contaminating nutrients in the agar, rather than deficient exopolysaccharide production. Nodulation by the mutants was not enhanced by supplying purine or pyrimidine compounds exogenously. Furthermore, with or without added purine, the purine auxotrophs grew in the root environment as well as the wild type. However, nodulation by the purine auxotrophs was enhanced greatly in the presence of 5-aminoimidazole-4-carboxamide riboside. The results suggest that undiminished metabolic flow through de novo purine biosynthesis, or a particular intermediate in the pathway, is essential in early symbiotic interactions.  相似文献   

5.
D. R. Falk  David Nash 《Genetics》1974,76(4):755-766
Thirty-two mutants with improved growth response on a yeast-sucrose compared with a defined medium have been characterized with respect to ribonucleoside supplementability. Twenty mutants respond to either pyrimidine ribonucleoside. Four mutants respond to one or both purine ribonucleosides. Eight mutants ("putative" auxotrophs) do not respond to dietary RNA supplementation. Mapping and complementation studies suggest that eleven loci are represented: one, rudimentary, probably accounts for all pyrimidine requirers; there are three purine loci and seven at which the putative auxotrophs are found.  相似文献   

6.
Diploid Saccharomyces cerevisiae cells heterozygous for the mating type locus (MATa/MAT alpha) undergo meiosis and sporulation when starved for nitrogen in the presence of a poor carbon source such as potassium acetate. Diploid yeast adenine auxotrophs sporulated well at high cell density (10(7) cells per ml) under these conditions but failed to differentiate at low cell density (10(5) cells per ml). The conditional sporulation-deficient phenotype of adenine auxotrophs could be complemented by wild-type yeast cells, by medium from cultures that sporulate at high cell density, or by exogenously added adenine (or hypoxanthine with some mutants). Adenine and hypoxanthine in addition to guanine, adenosine, and numerous nucleotides were secreted into the medium, each in its unique temporal pattern, by sporulating auxotrophic and prototrophic yeast strains. The major source of these compounds was degradation of RNA. The data indicated that differentiating yeast cells cooperate during sporulation in maintaining sufficiently high concentrations of extracellular purines which are absolutely required for sporulation of adenine auxotrophs. Yeast prototrophs, which also sporulated less efficiently at low cell density (10(3) cells per ml), reutilized secreted purines in preference to de novo-made purine nucleotides whose synthesis was in fact inhibited during sporulation at high cell density. Adenine enhanced sporulation of yeast prototrophs at low cell density. The behavior of adenine auxotrophs bearing additional mutations in purine salvage pathway genes (ade apt1, ade aah1 apt1, ade hpt1) supports a model in which secretion of degradation products, uptake, and reutilization of these products is a signal between cells synchronizing the sporulation process.  相似文献   

7.
Showdomycin, 2-β-d-ribofuranosylmaleimide, inhibited the incorporation of amino acids and purine and pyrimidine bases into macromolecules in E. coli K-12 cells at low concentrations. The inhibitory action of showdomycin could be reversed by the addition of a nucleoside or a sulfhydryl compound. In marked contrast to common nucleosides, the pseudouridine showed no such effect. This may indicate that the N-glycosyl linkage in the nucleoside is a structural requirement for its reversing activity on the inhibitory action of showdomycin.

N-Ethylmaleimide, which has structural similarity to showdomycin, inhibited the incorporation of amino acids and purine and pyrimidine bases as well as showdomycin. The inhibitory action of N-ethylmaleimide, however, was not reversed by the addition of a nucleoside. This may indicate that there may be difference in the mechanism of the inhibitory action between N-ethylmaleimide and showdomycin.  相似文献   

8.
A protease, excreted by a sporogeneous strain of B. megaterium, growing exponentially in a minimum glucose ammonium medium, was isolated. It is a neutral endopeptidase, stabilized by Ca++, inhibited by o-phenanthroline, but not by di-isopropylfluorophosphate. The specificity, studied on insulin B-chain, glucagon, cytochrome c, and dipeptides substrates, indicated the need for a dipeptide backbone with both substituted amino and carboxyl groups. A requirement was observed for a nonpolar lateral chain in the amino acid whose amino group was involved in the peptide bond (Leu, Phe, Ala, He, Val). Rates of hydrolysis varied also with the amino acid whose carboxyl group was involved (e.g., His > Ser > Ala > Gly). In complex medium, supplemented with Yeast Extract, the biosynthesis of the protease was repressed during growth, but the same enzyme was excreted during sporulation. The repression was apparently of the same nature as that controlling sporulation during and after growth (e.g., repression by a mixture of amino acids or high concentration of glucose). An asporogeneous mutant showed a normal product ion of protease under all conditions, and a low intracellular protease turnover after growth. A mutant unable to produce protease showed a normal sporulation and a high protein turnover. This protease, here termed megapeptidase, seems to be a typical growth enzyme, not related to either the sporulation process or to the protein turnover after growth.  相似文献   

9.
Nutrition-based strategies to optimize xylose to ethanol conversion by Pichia stipitis were identified in growing and stationary-phase cultures provided with a defined medium varied in nitrogen, vitamin, purine/pyrimidine, and mineral content via full or partial factorial designs. It is surprising to note that stationary-phase cultures were unable to ferment xylose (or glucose) to ethanol without the addition of a nitrogen source, such as amino acids. Ethanol accumulation increased with arginine, alanine, aspartic acid, glutamic acid, glycine, histidine, leucine, and tyrosine, but declined with isoleucine. Ethanol production from 150 g/l xylose was maximized (61±9 g/l) by providing C:N in the vicinity of ∼57–126:1 and optimizing the combination of urea and amino acids to supply 40–80 % nitrogen from urea and 60–20 % from amino acids (casamino acids supplemented with tryptophan and cysteine). When either urea or amino acids were used as sole nitrogen source, ethanol accumulation dropped to 11 or 24 g/l, respectively, from the maximum of 46 g/l for the optimal nitrogen combination. The interaction of minerals with amino acids and/or urea was key to optimizing ethanol production by cells in both growing and stationary-phase cultures. In nongrowing cultures supplied with nitrogen as amino acids, ethanol concentration increased from 24 to 54 g/l with the addition of an optimized mineral supplement of Fe, Mn, Mg, Ca, Zn, and others.The mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

10.
Symbiotic phenotypes of auxotrophic mutants of Rhizobium meliloti 104A14   总被引:3,自引:0,他引:3  
Auxotrophic mutants of Rhizobium meliloti 104A14 were isolated using nitrous acid mutagenesis followed by penicillin enrichment. Mutants in ornithine transcarbamylase, argininosuccinate synthetase or serine-glycine biosynthesis formed nitrogen-fixing (Fix-nodules on the roost of alfalfa (Medicago sativa). Mutants with defects in ornithine, pyrimidine, purine, asparagine, leucine, methionine or tyrosine biosynthesis, in one-carbon metabolism or in carbamoylphosphate synthetase formed nodules but these nodules were unable to fix nitrogen. Prototrophic revertants were always Fix?Plasmids that would complement many of these auxotrophs were isolated by transduction with a P2 cosmid gene bank of R. meliloti 104A14. These plasmids were then introduced into mutants of the same and different classes and the growth and symbiotic phenotypes of the new strains were determined. In all cases, complementation of the nutritional defect restored symbiotic nitrogen fixation.  相似文献   

11.
12.
K. W. Joy 《Plant physiology》1969,44(6):845-848
Lemna minor grown in sterile culture on a minerals-sucrose medium can utilize as nitrogen source, in order of increasing growth rate: ammonia, nitrate, a mixture of glutamic and aspartic acids plus arginine, or a balanced mixture of amino acids (hydrolyzed casein). Maximum growth is found with nitrate plus hydrolyzed casein.Many synthetic mixtures of amino acids are unable to support growth. Many single amino acids are inhibitory, and when added (at 2 mm or less) to cultures, growing in the presence of nitrate, cause a decrease in growth rate or even death of the plants (e.g. with alanine, valine, methionine or leucine). Some of these inhibitory effects are also found when the amino acid is added to cultures growing on ammonia or hydrolyzed casein. Arginine was the only amino acid of those tested which gave a marked stimulation of growth when added to cultures growing with inorganic nitrogen.The rapid rate of growth, sterile nature of tissue, decreased biological variation of samples containing many plants and ability to utilize different culture media make this an attractive organism for studies on higher plant metabolism.  相似文献   

13.
Micrococcus glutamicus ATCC 13032, a glutamic acid-producing organism, was treated with 0.2M ethylmethane sulfonate, the auxotrophs isolated showing varied patterns of extracellular amino acids. Eighty auxotrophic strains were obtained, out of which 31 excreted 1.0-4.0 mg threonine per ml and all the auxotrophs required biotin for growth and production of the amino acid. Eleven auxotrophs produced 1.5 to 3.0 mg alanine per ml and these auxotrophs required amino acids for their growth. Other auxotrophs lost their excretion capacity in subsequent fermentation trials. Further mutation of the biotin-requiring auxotroph Micrococcus glutamicus EM with gamma rays resulted in the isolation of 89 auxotrophic strains, out of which 28 excreted threonine (up to 5.0 mg per ml) higher than the parent auxotroph. Exposure to X-rays yielded 97 auxotrophs, out of these 35 producing 1.0-3.0 mg methionine per ml and requiring biotin for growth and production of the amino acid. Other auxotrophs produced alanine (0.5 to 2.0 mg per ml) and threonine (2.0 to 3.3 mg per ml). Irradiation with gamma rays favoured the development of threonine producing auxotrophs while X-rays favoured methionine-producing auxotrophs.  相似文献   

14.
The stimulation by yeast extract of acid production in milk by various lactobacilli was studied. It was found that supplementing milk with purine and pyrimidine bases and amino acids allowed nearly maximal acid production by Lactobacillus bulgaricus strain 7994, L. acidophilus 4796, 4356, and 4357, and L. leichmannii 326 and 327. Further supplementation with deoxyribotides allowed maximal acid production by L. acidophilus 204, but L. acidophilus 207 required adenosine or adenylic acid. L. casei strain 7469 showed no appreciable response to the amino acids or purine and pyrimidine bases, and is presumed to require an unidentified factor in corn steep liquor.  相似文献   

15.
A defined medium capable of supporting growth and exocellular protease production by clinical isolates of Pseudomonas aeruginosa has been developed. Control of protease production is effected by a mixture of three amino acids and glucose.  相似文献   

16.
During germination and early growth of castor bean (Ricinus communis), all cellular constituents of the endosperm are eventually transferred to the growing embryo. The present results bear on the transport of breakdown products of nucleic acids. The total content of nucleic acids and nucleotides declines rapidly between day 4 and day 8 of seedling development. Concomitant with this decline, a secretion of adenosine, guanosine, and adenine from excised endosperms into the incubation medium takes place, accompanying a much more extensive release of sucrose and amino acids. Release of nucleotides could not be detected. The rates of release were linear for at least 5 hours for all compounds measured, indicating that they were liberated due to a coordinated metabolism. Uptake studies with cotyledons removed from the seedling showed that these have the ability to absorb all the substances released from the endosperm. Besides sucrose and amino acids, both nucleosides and free purine and pyrimidine bases were taken up by the cotyledons with high efficiency. AMP was also transported whereas ATP was not. Kinetic analyses were carried out to estimate the maximal uptake capacities of the cotyledons. Rates of uptake were linear for at least 1 to 2 hours and saturation kinetics were observed for all substances investigated. It is concluded that nucleosides can serve best as transport metabolites of nucleic acids, inasmuch as they are taken up by the cotyledons with the highest efficiency, the Vmax/Km ratios being considerably higher than those found for free purine and pyrimidine bases. For both adenosine and adenine transport, the Vmax was about 2 micromoles per hour per gram fresh weight, and the Km values were 0.12 and 0.37 millimolar, respectively. The rates of metabolite release from the endosperm and the capacity of the absorption system in the cotyledons are shown to account for the observed rates of disappearance of nucleic acids from the endosperm and efficient transport to the growing embryo.  相似文献   

17.
Perani M  Bishop AH 《Microbios》2000,101(398):47-66
Bacillus thuringiensis strains HD-73 and 4412, and two spontaneous mutants termed 4412aa-ind and 4412sph-cry were studied for the ability to produce crystals of different size and shape when grown in a rich medium and in an appropriate minimal medium defined during this study. Strain 4412aa-ind showed medium-dependent variation in the crystal phenotype. Scanning electron microscopy was utilized in order to show crystal variations in size and shape. B. thuringiensis strains 4412aa-ind and 4412sph-cry grown in rich and in minimal media produced differences in crystal morphology, and SDS-PAGE gel indicated that crystal variation was only at the morphological level and not in composition of the amino acids. A further nineteen B. thuringiensis strains were tested for the ability to sporulate in two simple defined media. Of these strains thirteen were able to complete sporulation with crystal production in one or both media. All strains grew and sporulated in a medium containing the usual twenty amino acids, and no vitamins or other growth factors were required.  相似文献   

18.
The growth of Saccharomyces cerevisiae wild-type strain X2180 in minimal medium was inhibited by the addition of higher-than-supplementary levels of alpha-aminoadipate. This inhibitory effect was reversed by the addition of arginine, asparagine, aspartate, glutamine, homoserine, methionine, or serine as single amino acid supplements. Mutants belonging to the lys2 and lys14 loci were able to grow in lysine-supplemented alpha-aminoadipate medium, although not as well as when selected amino acids were added. Growth in alpha-aminoadipate medium by all strains was accompanied by an accumulation of alpha-ketoadipate. Glutamate:keto-adipate transaminase levels were derepressed two- to fivefold in lys2 mutants using alpha-aminoadipate as a nitrogen source. Wild-type strain X2180 growing in amino acid-supplemented AA medium exhibited higher levels of alpha-aminoadipate reductase. Mutants unable to use alpha-aminoadipate without amino acid supplementation were obtained by treatment of lys2 strain MW5-64 and were shown to have glutamate: ketoadipate transaminase activity and to lack alpha-aminoadipate reductase activity. Altered cell morphologies, including increased size, multiple buds, pseudohyphae, and germ tubes, evidenced by cells grown in alpha-aminoadipate medium suggest that higher-than-supplementary levels of alpha-aminoadipate result in an impairment of cell division.  相似文献   

19.
Purine auxotrophs of various Rhizobium species are symbiotically defective, usually unable to initiate or complete the infection process. Earlier studies demonstrated that, in the Rhizobium etli-bean symbiosis, infection by purine auxotrophs is partially restored by supplementation of the plant medium with 5-amino-imidazole-4-carboxamide (AICA) riboside, the unphosphorylated form of the purine biosynthetic intermediate AICAR. The addition of purine to the root environment does not have this effect. In this study, purine auxotrophs of Rhizobium fredii HH303 and Rhizobium leguminosarum 128C56 (bv. viciae) were examined. Nutritional and genetic characterization indicated that each mutant was blocked in purine biosynthesis prior to the production of AICAR. R. fredii HH303 and R. leguminosarum 128C56 appeared to be deficient in AICA riboside transport and/or conversion into AICAR, and the auxotrophs derived from them grew very poorly with AICA riboside as a purine source. All of the auxotrophs elicited poorly developed, uninfected nodules on their appropriate hosts. On peas, addition of AICA riboside or purine to the root environment led to enhanced nodulation; however, infection threads were observed only in the presence of AICA riboside. On soybeans, only AICA riboside was effective in enhancing nodulation and promoting infection. Although AICA riboside supplementation of the auxotrophs led to infection thread development on both hosts, the numbers of bacteria recovered from the nodules were still 2 or more orders of magnitude lower than in fully developed nodules populated by wild-type bacteria. The ability to AICA riboside to promote infection by purine auxotrophs, despite serving as a very poor purine source for these strains, supports the hypothesis that AICAR plays a role in infection other than merely promoting bacterial growth.  相似文献   

20.
A chemically defined medium satisfactory for growth of a number of laboratory strains and recent isolates ofNeisseria gonorrhoeae has been devised. It contains inorganic salts, dextrose, guanine, cytosine, B-vitamin supplement, and the following amino acids:l-arginine,l-aspartic acid,l-cystine,l-isoleucine,l-leucine,l-proline,l-threonine, andl-valine.Nine of the eleven strains grew satisfactorily in this medium without being provided supplemental CO2 during incubation, and a tenth strain grew in the medium supplemented with glutamine. No single B-vitamin or purine or pyrimidine base was essential for growth of any of the strains, but some combinations of them were stimulatory. Riboflavin, however, was inhibitory. The strains showed variations in requirements for amino acids. The amino acids which were either essential or stimulatory for one or more of the strains were included in the medium. Those to which the strains responded differently were used at concentrations intermediate between those optimal for growth of one strain and inhibitory for another. Conventional agar was inhibitory, but a purified agar, having a gel strength twice that of conventional agar, was satisfactory. An aqueous solution of 0.1% cysteine and 0.86% NaCl was satisfactory for preparation of inocula.This investigation was supported by a Public Health Service Predoctoral Fellowship (F-FI-GM-24-755-01A1) from the National Institute of General Medical Sciences of the United States Public Health Service to the senior author.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号