首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification and study of genetic variation in recently admixed populations not only provides insight into historical population events but also is a powerful approach for mapping disease loci. We studied a population (OG-W-IP) that is of African-Indian origin and has resided in the western part of India for 500 years; members of this population are believed to be descendants of the Bantu-speaking population of Africa. We have carried out this study by using a set of 18,534 autosomal markers common between Indian, CEPH-HGDP, and HapMap populations. Principal-components analysis clearly revealed that the African-Indian population derives its ancestry from Bantu-speaking west-African as well as Indo-European-speaking north and northwest Indian population(s). STRUCTURE and ADMIXTURE analyses show that, overall, the OG-W-IPs derive 58.7% of their genomic ancestry from their African past and have very little inter-individual ancestry variation (8.4%). The extent of linkage disequilibrium also reveals that the admixture event has been recent. Functional annotation of genes encompassing the ancestry-informative markers that are closer in allele frequency to the Indian ancestral population revealed significant enrichment of biological processes, such as ion-channel activity, and cadherins. We briefly examine the implications of determining the genetic diversity of this population, which could provide opportunities for studies involving admixture mapping.  相似文献   

2.
Over the past 500 years, North America has been the site of ongoing mixing of Native Americans, European settlers, and Africans (brought largely by the trans-Atlantic slave trade), shaping the early history of what became the United States. We studied the genetic ancestry of 5,269 self-described African Americans, 8,663 Latinos, and 148,789 European Americans who are 23andMe customers and show that the legacy of these historical interactions is visible in the genetic ancestry of present-day Americans. We document pervasive mixed ancestry and asymmetrical male and female ancestry contributions in all groups studied. We show that regional ancestry differences reflect historical events, such as early Spanish colonization, waves of immigration from many regions of Europe, and forced relocation of Native Americans within the US. This study sheds light on the fine-scale differences in ancestry within and across the United States and informs our understanding of the relationship between racial and ethnic identities and genetic ancestry.  相似文献   

3.
The risk of type 2 diabetes is approximately 2-fold higher in African Americans than in European Americans even after adjusting for known environmental risk factors, including socioeconomic status (SES), suggesting that genetic factors may explain some of this population difference in disease risk. However, relatively few genetic studies have examined this hypothesis in a large sample of African Americans with and without diabetes. Therefore, we performed an admixture analysis using 2,189 ancestry-informative markers in 7,021 African Americans (2,373 with type 2 diabetes and 4,648 without) from the Atherosclerosis Risk in Communities Study, the Jackson Heart Study, and the Multiethnic Cohort to 1) determine the association of type 2 diabetes and its related quantitative traits with African ancestry controlling for measures of SES and 2) identify genetic loci for type 2 diabetes through a genome-wide admixture mapping scan. The median percentage of African ancestry of diabetic participants was slightly greater than that of non-diabetic participants (study-adjusted difference = 1.6%, P<0.001). The odds ratio for diabetes comparing participants in the highest vs. lowest tertile of African ancestry was 1.33 (95% confidence interval 1.13-1.55), after adjustment for age, sex, study, body mass index (BMI), and SES. Admixture scans identified two potential loci for diabetes at 12p13.31 (LOD = 4.0) and 13q14.3 (Z score = 4.5, P = 6.6 × 10(-6)). In conclusion, genetic ancestry has a significant association with type 2 diabetes above and beyond its association with non-genetic risk factors for type 2 diabetes in African Americans, but no single gene with a major effect is sufficient to explain a large portion of the observed population difference in risk of diabetes. There undoubtedly is a complex interplay among specific genetic loci and non-genetic factors, which may both be associated with overall admixture, leading to the observed ethnic differences in diabetes risk.  相似文献   

4.
Elucidating genetic influences on bison growth and body composition is of interest, not only because bison are important for historical, cultural, and agricultural reasons, but also because their unusual population history makes them valuable models for finding influential loci in both domestic cattle and humans. We tested for trait loci associated with body weight, height, and bison mass index (BMI) while controlling for estimated ancestry to reduce potential confounding effects due to population admixture in 1316 bison sampled from four U.S. herds. We used 60 microsatellite markers to model each phenotype as a function of herd, sex, age, marker genotypes, and individual ancestry estimates. Statistical significance for genotype and its interaction with ancestry was evaluated using the adaptive false discovery rate. Of the four herds, two appeared to be admixed and two were nonadmixed. Although none of the main effects of the loci were significant, estimated ancestry and its interaction with marker loci were significantly associated with the phenotypes, illustrating the importance of including ancestry in the models and the dependence of genotype-phenotype associations on background ancestry. Individual loci contributed approximately 2.0% of variation in weight, height, and BMI, which confirms the utility and potential importance of adjusting for population stratification.  相似文献   

5.
Primates - The origins and taxonomy of the introduced vervet monkey population in Dania Beach, Florida has been unconfirmed due to a lack of documentation and genetic research. Our goal was to...  相似文献   

6.
Knowledge about genetic diversity and population structure is useful for designing effective strategies to improve the production, management and conservation of farm animal genetic resources. Here, we present a comprehensive genome-wide analysis of genetic diversity, population structure and admixture based on 244 animals sampled from 10 cattle populations in Asia and Africa and genotyped for 69 903 autosomal single-nucleotide polymorphisms (SNPs) mainly derived from the indicine breed. Principal component analysis, STRUCTURE and distance analysis from high-density SNP data clearly revealed that the largest genetic difference occurred between the two domestic lineages (taurine and indicine), whereas Ethiopian cattle populations represent a mosaic of the humped zebu and taurine. Estimation of the genetic influence of zebu and taurine revealed that Ethiopian cattle were characterized by considerable levels of introgression from South Asian zebu, whereas Bangladeshi populations shared very low taurine ancestry. The relationships among Ethiopian cattle populations reflect their history of origin and admixture rather than phenotype-based distinctions. The high within-individual genetic variability observed in Ethiopian cattle represents an untapped opportunity for adaptation to changing environments and for implementation of within-breed genetic improvement schemes. Our results provide a basis for future applications of genome-wide SNP data to exploit the unique genetic makeup of indigenous cattle breeds and to facilitate their improvement and conservation.  相似文献   

7.
8.
The annual rings in suitable living trees have provided significant, centuries-long histories of past rainfall, temperature and river flow for many regions and have served to precisely date several hundred Southwestern ruins by overlap-matching with ancient timbers. Some of the stunted trees in very adverse environments were found to have the most sensitive chronologies and to attain ages twice or more the usual maxima on optimum sites. Tree-ring data for the western United States show that in pre-Columbian times the accumulated excess or deficit in rainfall occasionally greatly exceeded that recorded by gages during the past decades.  相似文献   

9.
Peninsular Malaysia is a strategic region which might have played an important role in the initial peopling and subsequent human migrations in Asia. However, the genetic diversity and history of human populations—especially indigenous populations—inhabiting this area remain poorly understood. Here, we conducted a genome-wide study using over 900,000 single nucleotide polymorphisms (SNPs) in four major Malaysian ethnic groups (MEGs; Malay, Proto-Malay, Senoi and Negrito), and made comparisons of 17 world-wide populations. Our data revealed that Peninsular Malaysia has greater genetic diversity corresponding to its role as a contact zone of both early and recent human migrations in Asia. However, each single Orang Asli (indigenous) group was less diverse with a smaller effective population size (N e) than a European or an East Asian population, indicating a substantial isolation of some duration for these groups. All four MEGs were genetically more similar to Asian populations than to other continental groups, and the divergence time between MEGs and East Asian populations (12,000—6,000 years ago) was also much shorter than that between East Asians and Europeans. Thus, Malaysian Orang Asli groups, despite their significantly different features, may share a common origin with the other Asian groups. Nevertheless, we identified traces of recent gene flow from non-Asians to MEGs. Finally, natural selection signatures were detected in a batch of genes associated with immune response, human height, skin pigmentation, hair and facial morphology and blood pressure in MEGs. Notable examples include SYN3 which is associated with human height in all Orang Asli groups, a height-related gene (PNPT1) and two blood pressure-related genes (CDH13 and PAX5) in Negritos. We conclude that a long isolation period, subsequent gene flow and local adaptations have jointly shaped the genetic architectures of MEGs, and this study provides insight into the peopling and human migration history in Southeast Asia.  相似文献   

10.
Folk taxonomies of race are the categorizations used by people in their everyday judgments concerning the persons around them. As cultural traditions, folk taxonomies may shape gene flow so that it is unequal among groups sharing geography. The history of the United States is one of disparate people being brought together from around the globe, and provides a natural experiment for exploring the relationship between culture and gene flow. The biohistories of African Americans and European Americans were compared to examine whether population histories are shaped by culture when geography and language are shared. Dental morphological data were used to indicate phenotypic similarity, allowing diachronic change through United States history to be considered. Samples represented contemporary and historic African Americans and European Americans and their West African and European ancestral populations (N = 1445). Modified Mahalanobis' D2 and Mean Measure of Divergence statistics examined how biological distances change through time among the samples. Results suggest the social acceptance for mating between descendents of Western Europeans and Eastern and Southern European migrants to the United States produced relatively rapid gene flow between the groups. Although African Americans have been in the United States much longer than most Eastern and Southern Europeans, social barriers have been historically stronger between them and European Americans. These results indicate that gene flow is in part shaped by cultural factors such as folk taxonomies of race, and have implications for understanding contemporary human variation, relationships among prehistoric populations, and forensic anthropology. Am J Phys Anthropol 2009. © 2009 Wiley-Liss, Inc.  相似文献   

11.
The peopling of Comoro Archipelago is defined by successive waves of migration from three main areas: the East African Coast (Bantu-speaking populations), the Persia and Arabian Peninsula, and Southeast Asia (especially Indonesia). It follows an apparent classic trihybrid admixture model. To better understand the Comorian population admixture dynamics, we analyzed the contributions of these three historical parental components to its genetic pool. To enhance accuracy and reliability, we used both classical and molecular markers. Samples consist of published data: blood group frequencies, 14 KIR genes, 19 mitochondrial DNA SNPs (to highlight female migrations), 14 Y chromosome SNPs (male migrations). We revealed distinct admixture patterns for autosomal and uniparental markers. KIR gene frequencies had never been used to estimate admixture rates, this being a first assessment of their informative power in admixture studies. To avoid major methodological and statistical bias, we determined admixture coefficients through nine well-tried estimators and their associated software programs (ADMIX95, ADMIX, admix 2.0, LEA, LEADMIX, and Mistura). Results from mtDNA and Y chromosome markers point to an important sex-bias in the admixture event. The original Bantu gene pool received a predominant male-mediated contribution from the Arabian Peninsula and Persia, and a female-mediated contribution from Southeast Asia. Admixture rates estimated from autosomal KIR gene markers point also to an unexpected elevated Austronesian contribution.  相似文献   

12.
Analysing the population genetic structures of sympatric species provides opportunities to compare patterns of population genetic structure and phylogeography in order to gain insight into the factors that influence the development of the observed patterns. In this study, we compared the population genetic structures and phylogeographies of brown shrimp (Farfantepenaeus aztecus) and white shrimp (Litopenaeus setiferus), two sympatric penaeid shrimp species that inhabit the waters of the eastern USA, using sequence analysis of the mitochondrial DNA control region. Brown shrimp showed no significant phylogenetic structure or population subdivision, and closely related haplotypes were geographically dispersed. Mismatch analysis indicated that brown shrimp experienced a late-Pleistocene era sudden population expansion. In contrast, white shrimp had a complex haplotype phylogeny consisting of two distinct lineages and two less well-defined sublineages, and the haplotypes and lineages were geographically structured. Mismatch analysis for white shrimp also showed evidence of sudden population expansion, albeit for each lineage separately and more recently than in the brown shrimp. These disparate patterns may have developed as a result of species-specific differences in physiological tolerances and habitat preferences that caused greater fluctuations in white shrimp population sizes and reductions in long-term effective population size relative to that of the brown shrimp, and thereby increased the susceptibility of the white shrimp populations to stochastic genetic change.  相似文献   

13.
The roots of the Hispanic populations of the Caribbean Islands and Central and South America go back to three continents of the Old World. In Puerto Rico major genetic contributions have come from (1) Asians in the form of the aboriginal Taino population, an Arawak tribe, present when Columbus arrived on the Island, (2) Europeans, largely Spanish explorers, settlers, government administrators, and soldiers, and (3) Africans who came as part of the slave trade. Since JC virus (JCV) genotypes characteristic of Asia, Europe, and Africa have been identified, and excretion of JCV in urine has been proposed as a marker for human migrations, we sought to characterize the JCV strains present in a Caribbean Hispanic population. We found that the strains of JCV present today in Puerto Rico are those derived from the Old World populations represented there: Types 1B and 4 from Spain, Types 3A, 3B, and 6 from Africa, and Type 2A from Asia. The Type 2A genotype represents the indigenous Taino people. This JCV genotype was represented much more frequently (61%) than would be predicted by the trihybrid model of genetic admixture. This might be attributable to characteristics of JCV Type 2A itself, as well as to the nature of the early relationships between Spanish men and native women. These findings indicate that the JCV strains carried by the Taino Indians can be found in today's Puerto Rican population despite the apparent demise of these people more than two centuries ago. Therefore, molecular characterization of JCV provides a tool to supplement genetic techniques for reconstructing population histories including admixed populations.  相似文献   

14.
Selection for performance in diverse production settings has resulted in variation across sheep breeds worldwide. Although sheep are an important species to the United States, the current genetic relationship among many terminal sire breeds is not well characterized. Suffolk, Hampshire, Shropshire and Oxford (terminal) and Rambouillet (dual purpose) sheep (n = 248) sampled from different flocks were genotyped using the Applied Biosystems Axiom Ovine Genotyping Array (50K), and additional Shropshire sheep (n = 26) using the Illumina Ovine SNP50 BeadChip. Relationships were investigated by calculating observed heterozygosity, inbreeding coefficients, eigenvalues, pairwise Wright’s FST estimates and an identity by state matrix. The mean observed heterozygosity for each breed ranged from 0.30 to 0.35 and was consistent with data reported in other US and Australian sheep. Suffolk from two different regions of the United States (Midwest and West) clustered separately in eigenvalue plots and the rectangular cladogram. Further, divergence was detected between Suffolk from different regions with Wright’s FST estimate. Shropshire animals showed the greatest divergence from other terminal breeds in this study. Admixture between breeds was examined using admixture , and based on cross-validation estimates, the best fit number of populations (clusters) was K = 6. The greatest admixture was observed within Hampshire, Suffolk, and Shropshire breeds. When plotting eigenvalues, US terminal breeds clustered separately in comparison with sheep from other locations of the world. Understanding the genetic relationships between terminal sire breeds in sheep will inform us about the potential applicability of markers derived in one breed to other breeds based on relatedness.  相似文献   

15.
16.
Both mtDNA and the Y chromosome have been used to investigate how modern humans dispersed within and out of Africa. This issue can also be studied using the JC virus (JCV) genotype, a novel marker with which to trace human migrations. Africa is mainly occupied by two genotypes of JCV, designated Af1 and Af2. Af1 is localized to central/western Africa, while Af2 is spread throughout Africa and in neighboring areas of Asia and Europe. It was recently suggested that Af1 represents the ancestral type of JCV, which agrees with the African origin of modern humans. To better understand the origin of modern Africans, we examined the phylogenetic relationships among Af2 isolates worldwide. A neighbor-joining phylogenetic tree was constructed based on the complete JCV DNA sequences of 51 Af2 isolates from Africa and neighboring areas. According to the resultant tree, Af2 isolates diverged into two major clusters, designated Af2-a and -b, with high bootstrap probabilities. Af2-a contained isolates mainly from South Africa, while Af2-b contained those from the other parts of Africa and neighboring regions of Asia and Europe. These findings suggest that Af2-carrying Africans diverged into two groups, one carrying Af2-a and the other carrying Af2-b; and that the former moved to southern Africa, while the latter dispersed throughout Africa and to neighboring regions of Asia and Europe. The present findings are discussed with reference to relevant findings in genetic and linguistic studies.  相似文献   

17.
18.
19.
Drosophila melanogaster is postulated to have colonized North America in the past several 100 years in two waves. Flies from Europe colonized the east coast United States while flies from Africa inhabited the Caribbean, which if true, make the south‐east US and Caribbean Islands a secondary contact zone for African and European D. melanogaster. This scenario has been proposed based on phenotypes and limited genetic data. In our study, we have sequenced individual whole genomes of flies from populations in the south‐east US and Caribbean Islands and examined these populations in conjunction with population sequences from the west coast US, Africa, and Europe. We find that west coast US populations are closely related to the European population, likely reflecting a rapid westward expansion upon first settlements into North America. We also find genomic evidence of African and European admixture in south‐east US and Caribbean populations, with a clinal pattern of decreasing proportions of African ancestry with higher latitude. Our genomic analysis of D. melanogaster populations from the south‐east US and Caribbean Islands provides more evidence for the Caribbean Islands as the source of previously reported novel African alleles found in other east coast US populations. We also find the border between the south‐east US and the Caribbean island to be the admixture hot zone where distinctly African‐like Caribbean flies become genomically more similar to European‐like south‐east US flies. Our findings have important implications for previous studies examining the generation of east coast US clines via selection.  相似文献   

20.
Effectively managing take of wildlife resulting from human activities poses a major challenge for applied conservation. Demographic data essential to decisions regarding take are often expensive to collect and are either not available or based on limited studies for many species. Therefore, modeling approaches that efficiently integrate available information are important to improving the scientific basis for sustainable take thresholds. We used the prescribed take level (PTL) framework to estimate allowable take for bald eagles (Haliaeetus leucocephalus) in the conterminous United States. We developed an integrated population model (IPM) that incorporates multiple sources of information and then use the model output as the scientific basis for components of the PTL framework. Our IPM is structured to identify key parameters needed for the PTL and to quantify uncertainties in those parameters at the scale at which the United States Fish and Wildlife Service manages take. Our IPM indicated that mean survival of birds >1 year old was high and precise (0.91, 95% CI = 0.90–0.92), whereas mean survival of first-year eagles was lower and more variable (0.69, 95% CI = 0.62–0.78). We assumed that density dependence influenced recruitment by affecting the probability of breeding, which was highly imprecise and estimated to have declined from approximately 0.988 (95% CI = 0.985–0.993) to 0.66 (95% CI = 0.34–0.99) between 1994 and 2018. We sampled values from the posterior distributions of the IPM for use in the PTL and estimated that allowable take (e.g., permitted take for energy development, incidental collisions with human made structures, or removal of nests for development) ranged from approximately 12,000 to 20,000 individual eagles depending on risk tolerance and form of density dependence at the scale of the conterminous United States excluding the Southwest. Model-based thresholds for allowable take can be inaccurate if the assumptions of the underlying framework are not met, if the influence of permitted take is under-estimated, or if undetected population declines occur from other sources. Continued monitoring and use of the IPM and PTL frameworks to identify key uncertainties in bald eagle population dynamics and management of allowable take can mitigate this potential bias, especially where improved information could reduce the risk of permitting non-sustainable take.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号