首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amino acid sequence of the N-terminus of the immunoglobulin binding factor of human seminal plasma was determined. The initial 30 amino acids showed complete identity with that of prostatic secretory protein, beta-microseminoprotein and beta-inhibin. In conclusion, these proteins are probably a single entity.  相似文献   

2.
The amino acid sequence of human beta-microseminoprotein   总被引:2,自引:0,他引:2  
The complete amino acid sequence of beta-microseminoprotein of human seminal plasma was determined by automated Edman degradation of the protein and peptides which were obtained by enzymatic cleavage with trypsin, chymotrypsin and Staphylococcus aureus V8 proteinase. The carboxyl-terminal sequence of the protein was established with the aid of carboxypeptidase A. The amino acid sequence of this protein proved to be as follows: (sequence; see text) Thus, beta-microseminoprotein consisting of 93 amino acid residues has a molecular mass of 10 652 Da. The linear structure of this protein represents the first complete amino acid sequence of a sperm-coating protein specific to human seminal plasma.  相似文献   

3.
Sasaki T  Shimizu N 《Gene》2007,396(2):312-320
The Argonaute family and DICER proteins are major key proteins involved in the RNA-mediated gene silencing mechanism of various species. In this mechanism, cleavage of messenger RNAs (mRNA) or suppression of mRNA translation takes place via small RNAs that are uniquely processed by DICER. Previously, we demonstrated that human Argonaute family proteins bind to DICER. In this study, we identified a unique amino acid sequence of 127 amino acids in the RIBOc-A domain of human DICER protein as a "binding site" to Argonaute proteins. Comparative genomics analysis revealed that this unique amino acid sequence is highly conserved in the vertebrates, but not found in the non-vertebrate species. Significant difference in the RIBOc-A domain of DICER protein between vertebrate and non-vertebrate species may help exploring the functional complexity in the RNA-mediated gene silencing mechanism.  相似文献   

4.
5.
A cDNA encoding for a 68 kDa GTP-binding protein was isolated from Arabidopsis thaliana (aG68). This clone is a member of a gene family that codes for a class of large GTP-binding proteins. This includes the mammalian dynamin, yeast Vps1p and the vertebrate Mx proteins. The predicted amino acid sequence was found to have high sequence conservation in the N-terminal GTP-binding domain sharing 54% identity to yeast Vps1p, 56% amino acid identity to rat dynamin and 38% identity to the murine Mx1 protein. The northern analysis shows expression in root, leaf, stem and flower tissues, but in mature leaves at lower levels. Southern analysis indicates that it may be a member of a small gene family or the gene may contain an intron.  相似文献   

6.
Vertebrate eye lenses mostly contain two abundant types of proteins, the alpha-crystallins and the beta/gamma-crystallins. In addition, certain housekeeping enzymes are highly expressed as crystallins in various taxa. We now observed an unusual approximately 41-kd protein that makes up 16% to 18% of the total protein in the platypus eye lens. Its cDNA sequence was determined, which identified the protein as muscle-type lactate dehydrogenase A (LDH-A). It is the first observation of LDH-A as a crystallin, and we designate it upsilon (upsilon)-crystallin. Interestingly, the related heart-type LDH-B occurs as an abundant lens protein, known as epsilon-crystallin, in many birds and crocodiles. Thus, two members of the ldh gene family have independently been recruited as crystallins in different higher vertebrate lineages, suggesting that they are particularly suited for this purpose in terms of gene regulatory or protein structural properties. To establish whether platypus LDH-A/upsilon-crystallin has been under different selective constraints as compared with other vertebrate LDH-A sequences, we reconstructed the vertebrate ldh-a gene phylogeny. No conspicuous rate deviations or amino acid replacements were observed.  相似文献   

7.
Despite differences in behaviors and living conditions, vertebrate organisms share the great majority of proteins, often with subtle differences in amino acid sequence. Here, we present a simple way to analyze the difference in amino acid occurrence by comparing highly homologous proteins on a subproteome level between several vertebrate model organisms. Specifically, we use this method to identify a pattern of amino acid conservation as well as a shift in amino acid occurrence between homeotherms (warm-blooded species) and poikilotherms (cold-blooded species). Importantly, this general analysis and a specific example further establish a broad correlation, if not likely connection between the thermal adaptation of protein sequences and two of their physical features: on average a change in their protein dynamics and, even more strongly, in their solvation. For poikilotherms, such as frog and fish, the lower body temperature is expected to increase the protein–protein interaction due to a decrease in protein internal dynamics. In order to counteract the tendency for enhanced binding caused by low temperatures, poikilotherms enhance the solvation of their proteins by favoring polar amino acids. This feature appears to dominate over possible changes in dynamics for some proteins. The results suggest that a general trend for amino acid choice is part of the mechanism for thermoadaptation of vertebrate organisms at the molecular level.  相似文献   

8.
9.
10.
Wu ML  Lin TP  Lin MY  Cheng YP  Hwang SY 《Annals of botany》2007,99(3):461-475
BACKGROUND AND AIMS: Evolutionary and ecological roles of the chloroplast small heat shock protein (CPsHSP) have been emphasized based on variations in protein contents; however, DNA sequence variations related to the evolutionary and ecological roles of this gene have not been investigated. In the present study, a basal angiosperm, Machilus, together with the eudicot Rhododendron were used to illustrate the evolutionary dynamics of gene divergence in CPsHSPs. METHODS: Degenerate primers were used to amplify CPsHSP-related sequences from 16 Rhododendron and eight Machilus species that occur in Taiwan. Manual DNA sequence alignment was carried out according to the deduced amino acid sequence alignment performed by CLUSTAL X. A neighbour-joining tree was generated in MEGA using conceptual translated amino acid sequences from consensus sequences of cloned CPsHSP genes from eight Machilus and 16 Rhododendron species as well as amino acid sequences of CPsHSPs from five monocots and seven other eudicots acquired from GenBank. CPsHSP amino acid sequences of Funaria hygrometrica were used as the outgroups. The aligned DNA and amino acid sequences were used to estimate several parameters of sequence divergence using the MEGA program. Separate Bayesian inference of DNA sequences of Rhododendron and Machilus species was analysed and the resulting gene trees were used for detection of putative positively selected amino acid sites by the Codeml program implemented in the PAML package. Mean hydrophobicity profile analysis was performed with representative amino acid sequences for both Rhododendron and Machilus species by the Bioedit program. The computer program SplitTester was used to examine whether CPsHSPs of Rhododendron lineages and duplicate copies of the Machilus CPsHSPs have evolved functional divergence based on the hydrophobicity distance matrix. KEY RESULTS: Only one copy of the CPsHSP was found in Rhododendron. However, a higher evolutionary rate of amino acid substitutions in the Hymenanthes lineage of Rhododendron was inferred. Two positively selected amino acid sites may have resulted in higher hydrophobicity in the region of the alpha-crystallin domain (ACD) of the CPsHSP. By contrast, the basal angiosperm, Machilus, possessed duplicate copies of the CPsHSP, which also differed in their evolutionary rates of amino acid substitutions. However, no apparent relationship of ecological relevance toward the positively selected amino acid sites was found in Machilus. CONCLUSIONS: Divergent evolution was found for both Rhododendron lineages and the paralogues of CPsHSP in Machilus that were directed to the shift in hydrophobicity in the ACD and/or methionine-rich region, which might have played important roles in molecular chaperone activity.  相似文献   

11.
The most abundant protein found in blood plasma from the sea lamprey (Petromyzon marinus) has the hallmarks of a plasma albumin: namely, high abundance, solubility in distilled water, a small number of tryptophans, and a high content of cysteines and charged residues. As in other vertebrate albumins, not all the cysteines are disulfide bonded. An unusual feature of this protein is its molecular weight of 175,000, roughly 2.5 times the size of other vertebrate albumins. Its amino acid sequence, deduced from a series of overlapping cDNA clones, can be aligned with other members of the gene family including plasma albumin, alpha-fetoprotein, and vitamin-D binding protein, confirming that it is indeed an oversized albumin. An unusual feature of the sequence is a 28-amino acid stretch consisting of a serine-threonine repeat with the general motif (STTT). Lamprey albumin contains a 23-amino acid putative signal peptide and a 6-residue putative propeptide, which, when cleaved, yield a mature protein of 1,394 amino acids with a calculated molecular weight of 157,000. The sequence also includes nine potential N-linked glycosylation sites (Asn-X-Ser/Thr), consistent with observation that lamprey albumin is a glycoprotein. If all the potential glycosylation sites were occupied by clusters of 2,000 molecular weight each, the total molecular weight would be 175,000. Like other members of the gene family, lamprey albumin is composed of a series of 190-amino acid repeats, there being seven such domains all together. Quantitative amino acid sequence comparisons of lamprey albumin with the other members of the gene family indicate that it diverged from an ancestral albumin prior to the gene duplications leading to this diverse group. This notion is confirmed by the pattern of amino acid insertions and deletions observed in a consideration of all domains that compose this family. Furthermore, it suggests that the invention of albumin antedates the vertebrate radiation.  相似文献   

12.
The 2.2S spore storage protein (matteuccin) of the ostrich fern, Matteuccia struthiopteris, has been isolated and characterized. It is a small basic protein consisting of two disulfide-linked polypeptides with approximate molecular masses of 3.0 kDa and 8.0 kDa. At least four different isoforms exist where two of the forms differ from the other by having a slightly smaller heavy chain. Amino acid analysis reveals that the 2.2S protein is rich in arginine. Almost complete amino acid sequence information was obtained for the light chain and a partial sequence for the heavy chain. Amino acid sequence comparison reveals that this protein shows a high similarity to seed storage proteins in different angiosperm species in spite of the fact that the common ancestor of ferns and angiosperms lived more than 300 million years ago.  相似文献   

13.
Napin is a 2S storage protein found in the seeds of oilseed rape (Brassica napus L.) and related species. Using protein structural prediction programs we have identified a region in the napin protein sequence which forms a `hydrophilic loop' composed of amino acid residues located at the protein surface. Targeting this region, we have constructed two napin chimeric genes containing the coding sequence for the peptide hormone leucine-enkephalin as a topological marker. One version has a single enkephalin sequence of 11 amino acids including linkers and the second contains a tandem repeat of this peptide comprising 22 amino acids, inserted into the napin large subunit. The inserted peptide sequences alter the balance of hydrophilic to hydrophobic amino acids and introduce flexibility into this region of the polypeptide chain. The chimeric genes have been expressed in tobacco plants under the control of the seed-specific napA gene promoter. Analyses indicate that the engineered napin proteins are expressed, transported, post-translationally modified and deposited inside the protein bodies of the transgenic seeds demonstrating that the altered napin proteins behave in a similar fashion to the authentic napin protein. Detailed immunolocalisation studies indicate that the insertion of the peptide sequences has a significant effect on the distribution of the napin proteins within the tobacco seed protein bodies.  相似文献   

14.
15.
P Bossier  I T Fitch  H Boucherie  M F Tuite 《Gene》1989,78(2):323-330
The nucleotide sequence of the Saccharomyces cerevisiae gene encoding a small heat-shock protein (Hsp26) has been determined. It reveals a 213-amino acid protein (27 kDa) that contains no methionine (Met) residues. Radiolabelling studies demonstrate the N-terminal Met residue is cleaved post-translationally. The Hsp26 amino acid sequence shows significant homology with both a range of eukaryotic small Hsps and with vertebrate alpha-crystallins. Particularly highly conserved among these proteins is a hydrophobic tetrapeptide sequence Gly-Val-Leu-Thr. These findings are discussed in relation to the structure and function of small Hsps.  相似文献   

16.
We describe a new RNA binding protein from Xenopus we have named ePABP2 (embryonic poly(A) binding protein type II). Based on amino acid similarity, ePABP2 is closely related to the ubiquitously expressed nuclear PABP2 protein that directs the elongation of mRNA poly(A) tails during pre-mRNA processing. However, in contrast to known PABP2 proteins, Xenopus ePABP2 is a cytoplasmic protein that is predominantly expressed during the early stages of Xenopus development and in adult ovarian tissue. Biochemical experiments indicate ePABP2 binds poly(A) with specificity and that this binding requires the RRM domain. Mouse and human ePABP2 proteins were also identified and mouse ePABP2 expression is also confined to the earliest stages of mouse development and adult ovarian tissue. We propose that Xenopus ePABP2 is the founding member of a new class of poly(A) binding proteins expressed in vertebrate embryos. Possible roles for this protein in regulating mRNA function in early vertebrate development are discussed.  相似文献   

17.
The work focused on the penultimate enzyme, prothrombin, in the coagulation cascade. Prothrombin was purified and characterized from ostrich plasma. The results obtained contribute to a better understanding of blood coagulation in the ostrich and the evolution of prothrombin and the coagulation cascade. Prothrombin was purified from ostrich plasma by barium chloride precipitation, ammonium sulfate fractionation, and DEAE-cellulose and Cu(2+)-chelate Sepharose chromatography. Ostrich prothrombin exhibited a M(r) of 72,800 and a pI of 6.9 using SDS-PAGE and PAG-isoelectrofocusing, respectively. The N-terminal sequence of ostrich prothrombin showed 78 and 87% identity with human and bovine, respectively. The cDNA was isolated from ostrich liver and the predicted amino acid sequence compared with those from other species. Ostrich prothrombin shares sequence identity with chicken (84%), human (60%), bovine (59%), rat (60%), mouse (59%) and hagfish (50%) prothrombin, suggesting a common function of prothrombin in these vertebrates. Amino acid sequence identities indicate that the thrombin beta-chain (62%) and the propeptide-Gla (75%) domains are the regions most constrained for the common functions of vertebrate prothrombins. Ostrich prothrombin, therefore, shows similarity in structure to other vertebrate prothrombins.  相似文献   

18.
Hu  Xu  Reddy  A.S.N. 《Plant molecular biology》1997,34(6):949-959
Pathogenesis-related (PR)-5 proteins are a family of proteins that are induced by different phytopathogens in many plants and share significant sequence similarity with thaumatin. We isolated a complementary DNA (ATLP-3) encoding a PR5-like protein from Arabidopsis which is distinct from two other previously reported PR5 cDNAs from the same plant species. The predicted ATLP-3 protein with its amino-terminal signal sequence is 245 amino acids in length and is acidic with a pI of 4.8. The deduced amino acid sequence of ATLP-3 shows significant sequence similarity with PR5 and thaumatin-like proteins from Arabidopsis and other plants and contains a putative signal sequence at the amino-terminus. The expression of ATLP-3 and a related gene (ATLP-1) that we previously isolated from Arabidopsis was induced by pathogen infection and salicylic acid, a known inducer of pathogenesis-related genes. Southern blot analysis indicates that the ATLP-1 and ATLP-3 are coded by single-copy genes. To study the effect of ATLP-1 and ATLP-3 proteins on fungal growth, the cDNA regions corresponding to putative mature protein were expressed in Escherichia coli and the cDNA encoded proteins were purified. ATLP-1 and ATLP-3 proteins cross-reacted with anti-osmotin and anti-zeamatin antibodies. ATLP-3 protein showed antifungal activity against several fungal pathogens suggesting that ATLP-3 may be involved in plant defense against fungal pathogens.  相似文献   

19.
Male-specific protein (MSP) is a soluble protein that accumulates in high amounts in the hemolymph and other organs of adult male wax moth. The MSP was purified from adult male wax moth by gel filtration and reversed phase column chromatography, and its amino acid sequence was determined. Because of blocked N-terminus, several internal amino acid sequences of MSP were obtained by the in-gel digestion method using trypsin. RT-PCR was conducted using degenerate primers designed from the internal amino acid sequences. 5'-RACE PCR was used to obtain the complete coding region and 5'-UTR sequence. The full length MSP cDNA sequence encodes a 239 amino acid polypeptide with an 18 amino acid signal peptide. The putative mature MSP has a molecular mass of 24,317 Da and an isoelectric point (pI) of 6.00, but shows a molecular mass of 27 kDa on SDS-PAGE. Sequence alignment showed a significant similarity between MSP and juvenile hormone binding proteins (JHBPs) of several lepidopteran species, including G. mellonella.  相似文献   

20.
Calpains are non-lysosomal, Ca 2+ -dependent cysteine proteases, which are ubiquitously distributed across cell types and vertebrate species. The rules that govern calpain specificity have not yet been determined. To elucidate the cleavage pattern of calpains, we carried out calpain-induced proteolytic studies on the insulin-like growth factor binding proteins IGFBP-4 and -5. Proteolysis of IGFBPs is well characterized in numerous reports. Our results show that calpain cleavage sites are in the non-conserved unstructured regions of the IGFBPs. Compilation of the calpain-induced proteolytic cleavage sites in several proteins reported in the literature, together with our present study, has not revealed clear preferences for amino acid sequences. We therefore conclude that calpains seem not to recognize amino acid sequences, but instead cleave with low sequence specificity at unstructured or solvent-exposed fragments that connect folded, stable domains of target proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号