首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse ODC (ornithine decarboxylase) is quickly degraded by the 26S proteasome in mammalian and fungal cells. Its degradation is independent of ubiquitin but requires a degradation signal composed of residues 425-461 at the ODC C-terminus, cODC (the last 37 amino acids of the ODC C-terminus). Mutational analysis of cODC revealed the presence of two essential elements in the degradation signal. The first consists of cysteine and alanine at residues 441 and 442 respectively. The second element is the C-terminus distal to residue 442; it has little or no sequence specificity, but is intolerant of insertions or deletions that alter its span. Reducing conditions, which preclude all well-characterized chemical reactions of the Cys(441) thiol, are essential for in vitro degradation. These experiments imply that the degradative function of Cys(441) does not involve its participation in chemical reaction; it, instead, functions within a structural element for recognition by the 26S proteasome.  相似文献   

2.
3.
Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome   总被引:1,自引:0,他引:1  
Substrates tagged with (poly)ubiquitin for degradation can be targeted directly to the 26 S proteasome where they are proteolyzed. Independently, ubiquitin conjugates may also be delivered by bivalent shuttles. The majority of shuttles attach to the proteasome through a ubiquitin-like domain (UBL) while anchoring cargo at a C-terminal polyubiquitin-binding domain(s). We found that two shuttles of this class, Rad23 and Dsk2, dock at two different receptor sites embedded within a single subunit of the 19 S proteasome regulatory particle, Rpn1. Their association/dissociation constants and affinities for Rpn1 are similar. In contrast, another UBL-containing protein, the deubiquitinase Ubp6, is also anchored by Rpn1, yet it dissociates slower, thus behaving as an occasional proteasome subunit that is distinct from the transiently associated shuttles. Two neighboring subunits, Rpn10 and Rpn13, show a marked preference for polyubiquitin over UBLs. Rpn10 attaches to the central solenoid portion of Rpn1, although this association is stabilized by the presence of a third subunit, Rpn2. Rpn13 binds directly to Rpn2. These intrinsic polyubiquitin receptors may compete with substrate shuttles for their polyubiquitin-conjugate cargos, thereby aiding release of the emptied shuttles. By binding multiple ubiquitin-processing factors simultaneously, Rpn1 is uniquely suited to coordinate substrate recruitment, deubiquitination, and movement toward the catalytic core. The broad range of affinities for ubiquitin, ubiquitin-like, and non-ubiquitin signals by adjacent yet nonoverlapping sites all within the base represents a hub of activity that coordinates the intricate relay of substrates within the proteasome, and consequently it influences substrate residency time and commitment to degradation.  相似文献   

4.
5.
Mouse ornithine decarboxylase (ODC) degrades in proteasome in an ubiquitin-independent manner with an averagehalf-life of 2 h. The 37 amino acid long C-terminal fragment known as a degradation signal (degron) is responsible for the effective degradation of ODC. Recently, amino acids being critical for degradation in the ODC-degron have been mapped. Mutations of Cys441 and Ala442 led to protein stabilization, while a substitution of other amino acids composing ODC-degron had almost no effect on the protein turnover; whereas insertions or deletions in region between Ala442 and ODC C-terminus diminished greatly rate of protein degradation, e.g. positioning of the key amino acids from the C-terminus was shown to be crucial. Using these data we introduced both key amino acids into the alfa-fetoprotein with truncated exportation signal (deltaAFP), at the same distance from the C-terminus as they being in the ODC (deltaAFPCAG and deltaAFPLCAG). Removal of N-terminal exportation signal prevented secretion of modified proteins. Using in silico approach we demonstrated no significant difference in hydrophobicity or secondary structure between C-terminus of deltaAFP and mutated proteins. The degradation kinetics of deltaAFP, deltaAFPCAG, deltaAFPLCAG in cyloheximide-chase and proteasome inhibition assay (using MG132) was identical. Obtained results suggest that introduced substitutions are insufficient for effective recognition of mutated deltaAFP by26S proteasome. We assume thatadditional amino aci ds composing ODC-degron or their combine action could also affect degradation. Besides that, one cannot exclude that conformation of the mutated deltaAFP limits its C-terminus accessibility to proteasome.  相似文献   

6.
Intracellular proteins tagged with ubiquitin chains are targeted to the 26S proteasome for degradation. The two subunits, Rpn10 and Rpn13, function as ubiquitin receptors of the proteasome. However, differences in roles between Rpn10 and Rpn13 in mammals remains to be understood. We analyzed mice deficient for Rpn13 and Rpn10. Liver-specific deletion of either Rpn10 or Rpn13 showed only modest impairment, but simultaneous loss of both caused severe liver injury accompanied by massive accumulation of ubiquitin conjugates, which was recovered by re-expression of either Rpn10 or Rpn13. We also found that mHR23B and ubiquilin/Plic-1 and -4 failed to bind to the proteasome in the absence of both Rpn10 and Rpn13, suggesting that these two subunits are the main receptors for these UBL-UBA proteins that deliver ubiquitinated proteins to the proteasome. Our results indicate that Rpn13 mostly plays a redundant role with Rpn10 in recognition of ubiquitinated proteins and maintaining homeostasis in Mus musculus.  相似文献   

7.
8.

Background

The proteasome is a multi-subunit protein machine that is the final destination for cellular proteins that have been marked for degradation via an ubiquitin (Ub) chain appendage. These ubiquitylated proteins either bind directly to the intrinsic proteasome ubiqutin chain receptors Rpn10, Rpn13, or Rpt5, or are shuttled to the proteasome by Rad23, Dsk2, or Ddi1. The latter proteins share an Ub association domain (UBA) for binding poly-Ub chains and an Ub-like-domain (UBL) for binding to the proteasome. It has been proposed that shuttling receptors dock on the proteasome via Rpn1, but the precise nature of the docking site remains poorly defined.

Results

To shed light on the recruitment of shuttling receptors to the proteasome, we performed both site-directed mutagenesis and genetic screening to identify mutations in Rpn1 that disrupt its binding to UBA-UBL proteins. Here we demonstrate that delivery of Ub conjugates and docking of Ddi1 (and to a lesser extent Dsk2) to the proteasome are strongly impaired by an aspartic acid to alanine point mutation in the highly-conserved D517 residue of Rpn1. Moreover, degradation of the Ddi1-dependent proteasome substrate, Ufo1, is blocked in rpn1-D517A yeast cells. By contrast, Rad23 recruitment to the proteasome is not affected by rpn1-D517A.

Conclusions

These studies provide insight into the mechanism by which the UBA-UBL protein Ddi1 is recruited to the proteasome to enable Ub-dependent degradation of its ligands. Our studies suggest that different UBA-UBL proteins are recruited to the proteasome by distinct mechanisms.  相似文献   

9.
The mechanism of protein quality control and elimination of misfolded proteins in the cytoplasm is poorly understood. We studied the involvement of cytoplasmic factors required for degradation of two endoplasmic reticulum (ER)-import-defective mutated derivatives of carboxypeptidase yscY (DeltassCPY* and DeltassCPY*-GFP) and also examined the requirements for degradation of the corresponding wild-type enzyme made ER-import incompetent by removal of its signal sequence (DeltassCPY). All these protein species are rapidly degraded via the ubiquitin-proteasome system. Degradation requires the ubiquitin-conjugating enzymes Ubc4p and Ubc5p, the cytoplasmic Hsp70 Ssa chaperone machinery, and the Hsp70 cochaperone Ydj1p. Neither the Hsp90 chaperones nor Hsp104 or the small heat-shock proteins Hsp26 and Hsp42 are involved in the degradation process. Elimination of a GFP fusion (GFP-cODC), containing the C-terminal 37 amino acids of ornithine decarboxylase (cODC) directing this enzyme to the proteasome, is independent of Ssa1p function. Fusion of DeltassCPY* to GFP-cODC to form DeltassCPY*-GFP-cODC reimposes a dependency on the Ssa1p chaperone for degradation. Evidently, the misfolded protein domain dictates the route of protein elimination. These data and our further results give evidence that the Ssa1p-Ydj1p machinery recognizes misfolded protein domains, keeps misfolded proteins soluble, solubilizes precipitated protein material, and escorts and delivers misfolded proteins in the ubiquitinated state to the proteasome for degradation.  相似文献   

10.
Verma R  Oania R  Graumann J  Deshaies RJ 《Cell》2004,118(1):99-110
Recruitment of ubiquitinated proteins to the 26S proteasome lies at the heart of the ubiquitin-proteasome system (UPS). Genetic studies suggest a role for the multiubiquitin chain binding proteins (MCBPs) Rad23 and Rpn10 in recruitment, but biochemical studies implicate the Rpt5 ATPase. We addressed this issue by analyzing degradation of the ubiquitinated Cdk inhibitor Sic1 (UbSic1) in vitro. Mutant rpn10Delta and rad23Delta proteasomes failed to bind or degrade UbSic1. Although Rpn10 or Rad23 restored UbSic1 recruitment to either mutant, rescue of degradation by Rad23 uncovered a requirement for the VWA domain of Rpn10. In vivo analyses confirmed that Rad23 and the multiubiquitin binding domain of Rpn10 contribute to Sic1 degradation. Turnover studies of multiple UPS substrates uncovered an unexpected degree of specificity in their requirements for MCBPs. We propose that recruitment of substrates to the proteasome by MCBPs provides an additional layer of substrate selectivity in the UPS.  相似文献   

11.
Recognition of polyubiquitinated substrates by the 26S proteasome is a key step in the selective degradation of various cellular proteins. The Rpn10 subunit of the 26S proteasome can bind polyubiquitin conjugates in vitro. We have previously reported the unique diversity of Rpn10, which differs from other multiple proteasome subunits, and that the mouse Rpn10 mRNA family is generated from a single gene by developmentally regulated alternative splicing. To determine whether such alternative splicing mechanisms occur in other species, we searched for Rpn10 isoforms in databases and in our original PCR products. Here we report the genomic organization of the Rpn10 gene in lower vertebrates and provide evidence for the competent generation of distinct forms of Rpn10 by alternative splicing through evolution.  相似文献   

12.
The Epstein-Barr virus thwarts immune surveillance through a Gly-Ala repeat (GAr) within the viral Epstein-Barr virus-encoded nuclear antigen 1 protein. The GAr inhibits proteasome processing, an early step in antigen peptide presentation, but the mechanism of proteasome inhibition has been unclear. By embedding a GAr within ornithine decarboxylase, a natural proteasome substrate that does not require ubiquitin conjugation, we now demonstrate inhibition in a purified system, excluding involvement of ubiquitin conjugation or of proteins extraneous to substrate and proteasome. We show further that the GAr acts as a stop-transfer signal in proteasome substrate processing, resulting in vivo in partial proteolysis that halts just short of the GAr. Similarly, introducing a GAr into green fluorescent protein destabilized by the ornithine decarboxylase degradation domain also stops the progress of proteolysis, leading to the accumulation of partial degradation products. We postulate that the ATP motor of the proteasome slips when it encounters the GAr, impeding further insertion and, in this way, halting degradation.  相似文献   

13.
Proteasomes are responsible for the turnover of most cellular proteins, and thus are critical to almost all cellular activities. A substrate entering the proteasome must first bind to a substrate receptor. Substrate receptors can be classified as ubiquitin receptors and non‐ubiquitin receptors. The intrinsic ubiquitin receptors, including proteasome regulatory particle base subunits 1, 10 and 13 (Rpn1, Rpn10, and Rpn13), determine the capability of the proteasome to recognize a ubiquitin chain, and thus provide selectivity for the 26S proteasome. However, the non‐ubiquitin receptors, including proteasome activator 200 (PA200) and PA28γ, have received great attention due to their remarkable compensatory roles relative to canonical ubiquitin‐mediated proteasomal degradation. Herein we review recent advances in understanding the contributions of these substrate receptors to proteasomal degradation, and introduce their substrates and interacting factors. We also provide insights into their biological functions related to spermatogenesis, immune responses, cellular homeostasis, and tumour development. Finally, we summarize advances in developing small‐molecule inhibitors of these substrate receptors and discuss their potential as drug targets.  相似文献   

14.
15.
Mammalian ornithine decarboxylase (ODC) is a very unstable protein which is degraded in an ATP-dependent manner by proteasome 26S, after making contact with the regulatory protein antizyme. PEST regions are sequences described as signals for protein degradation. The C-terminal PEST region of mammalian ODC is essential for its degradation by proteasome 26S. Mammalian histidine decarboxylase (HDC) is also a short-lived protein. The full primary sequence of mammalian HDC contains PEST-regions at both the N- and C-termini. Rat ODC and different truncated and full versions of rat HDC were expressed in vitro. In vitro degradation of rat ODC and rat 1-512 HDC were compared. Like ODC, rat 1-512 HDC is degraded mainly by an ATP-dependent mechanism. However, antizyme has no effect on the degradation of 1-512 HDC. The use of the inhibitors MG-132 and lactacystine significantly inhibited the degradation of 1-512 HDC, suggesting that a ubiquitin-dependent, proteasome 26S proteolytic pathway is involved. Results obtained with the different modifications of rat HDC containing all three PEST regions (full version, 1-656 HDC), only the N-terminal PEST region (1-512 HDC), or no PEST region (69-512 HDC), indicate that the N-terminal (1-69) fragment, but not the C-terminal fragment, determines that the HDC protein is a proteasome substrate in vitro.  相似文献   

16.
The ubiquitin-binding Rpn10 protein serves as an ubiquitin receptor that delivers client proteins to the 26S proteasome, the protein degradation complex. It has been suggested that the ubiquitin-dependent protein degradation is critical for neuronal differentiation and for preventing neurodegenerative diseases. Our previous study indicated the importance of Rpn10 in control of cellular differentiation (Shimada et al., Mol Biol Cell 17:5356–5371, 2006), though the functional relevance of Rpn10 in neuronal cell differentiation remains a mystery to be uncovered. In the present study, we have examined the level of Rpn10 in a proteasome-containing high molecular weight (HMW) protein fraction prepared from the mouse neuroblastoma cell line Neuro2a. We here report that the protein level of Rpn10 in HMW fraction from un-differentiated Neuro2a cells was significantly lower than that of other cultured cell lines. We have found that retinoic acid-induced neural differentiation of Neuro2a cells significantly stimulates the incorporation of Rpn10 into HMW fractions, although the amounts of 26S proteasome subunits were not changed. Our findings provide the first evidence that the modulation of Rpn10 is linked to the control of retinoic acid-induced differentiation of neuroblastoma cells.  相似文献   

17.
The number of proteasomal substrates that are degraded without prior ubiquitylation continues to grow. However, it remains poorly understood how the proteasome recognizes substrates lacking a ubiquitin (Ub) signal. Here we demonstrated that the Ub-independent degradation of Rpn4 requires the 19S regulatory particle (RP). The Ub-independent degron of Rpn4 was mapped to an N-terminal region including the first 80 residues. Inspection of its amino acid sequence revealed that the Ub-independent degron of Rpn4 consists of an intrinsically disordered domain followed by a folded segment. Using a photo-crosslinking-label transfer method, we captured three 19S RP subunits (Rpt1, Rpn2 and Rpn5) that bind the Ub-independent degron of Rpn4. This is the first time that specific 19S RP subunits have been identified interacting with a Ub-independent degron. This study provides insight into the mechanism by which Ub-independent substrates are recruited to the 26S proteasome.  相似文献   

18.
The 26S proteasome is a multisubunit protein- destroying machinery that degrades ubiquitin-tagged proteins. To date only a single species of Rpn10, which possibly functions as a multiubiquitin chain-binding subunit, has been identified in various organisms. Here we report that mouse Rpn10 mRNAs occur in at least five distinct forms, named Rpn10a to Rpn10e, and that they are generated from a single gene by developmentally regulated, alternative splicing. Rpn10a is ubiquitously expressed, whereas Rpn10e is expressed only in embryos, with the highest levels of expression in the brain. Both forms of Rpn10 are components of the 26S proteasome, with an apparently similar affinity for multiubiquitylated [(125)I]lysozyme in vitro. However, they exert markedly divergent effects on the destruction of B-type cyclin in Xenopus egg extracts. Thus, the 26S proteasome occurs in at least two functionally distinct forms: one containing a ubiquitously expressed Rpn10a and the other a newly identified, embryo-specific Rpn10e. While the former is thought to perform proteolysis constitutively in a wide variety of cells, the latter may play a specialized role in early embryonic development.  相似文献   

19.
20.
We determined composition and relative roles of deubiquitylating proteins associated with the 26S proteasome in mammalian cells. Three deubiquitylating activities were associated with the 26S proteasome: two from constituent subunits, Rpn11/S13 and Uch37, and one from a reversibly associated protein, Usp14. RNA interference (RNAi) of Rpn11/S13 inhibited cell growth, decreased cellular proteasome activity via disrupted 26S proteasome assembly, and inhibited cellular protein degradation. In contrast, RNAi of Uch37 or Usp14 had no detectable effect on cell growth, proteasome structure or proteolytic capacity, but accelerated cellular protein degradation. RNAi of both Uch37 and Usp14 also had no effect on proteasome structure or proteolytic capacity, but inhibited cellular protein degradation. Thus, proper proteasomal processing of ubiquitylated substrates requires Rpn11 plus either Uch37 or Usp14. Although the latter proteins feature redundant deubiquitylation functions, they also appear to exert noncatalyic effects on proteasome activity that are similar to but independent of one another. These results reveal unexpected functional relationships among multiple deubiquitylating proteins and suggest a model for mammalian 26S proteasome function whereby their concerted action governs proteasome function by linking deubiquitylation to substrate hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号