首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of a number of lanthanide tetracyanometallate (TCM) compounds have been carried out by reaction of Ln3+ nitrate salts and potassium tetracyanometallates in solvent systems containing dimethylsulfoxide and water. These reactions result in the isolation of three distinct structure types: (1) monoclinic [Ln(DMSO)4(H2O)3M(CN)4](M(CN)4)0.5·2H2O (Ln = Eu, Tb and M = Pd, Pt), (2) orthorhombic {La(DMSO)3(H2O)2(NO3)M(CN)4}·H2O (M = Pd, Pt), and (3) orthorhombic {Ln(DMSO)3(H2O)(NO3)M(CN)4} (Ln = Tb and M = Pd, Pt; Ln = Er, Yb and M = Pt) in the form of single crystals. Single-crystal X-ray diffraction has been used to investigate their structural features. Structure type 1 is a zero dimensional ionic compound with a M/Ln ratio of 1.5:1. It contains coordinated as well as uncoordinated [M(CN)4]2− (M = Pd, Pt) anions and features relatively long platinophilic interactions. Structure types 2 and 3 differ quite drastically from structure type 1, but they are very similar to each other. Both of the latter are one-dimensional in nature due to chains containing linkage of Ln3+ coordination spheres with trans-bridging [M(CN)4]2− anions. These coordination polymers both have a M/Ln ratio of 1:1, a lack of platinophilic interactions, and incorporation of a bidentate NO3 for charge balance. Photoluminescence properties for select Eu3+ and Tb3+ compounds have been investigated. They show characteristic absorption and emission for the Ln3+ ions, but no significant influence of the tetracyanometallate anions.  相似文献   

2.
Crystallisation of simple cyanoruthenate complex anions [Ru(NN)(CN)4]2− (NN = 2,2′-bipyridine or 1,10-phenanthroline) in the presence of Lewis-acidic cations such as Ln(III) or guanidinium cations results, in addition to the expected [Ru(NN)(CN)4]2− salts, in the formation of small amounts of salts of the dinuclear species [Ru2(NN)2(CN)7]3−. These cyanide-bridged anions have arisen from the combination of two monomer units [Ru(NN)(CN)4]2− following the loss of one cyanide, presumably as HCN. The crystal structures of [Nd(H2O)5.5][Ru2(bipy)2(CN)7] · 11H2O and [Pr(H2O)6][Ru2(phen)2(CN)7] · 9H2O show that the cyanoruthenate anions form Ru-CN-Ln bridges to the Ln(III) cations, resulting in infinite coordination polymers consisting of fused Ru2Ln2(μ-CN)4 squares and Ru4Ln2(μ-CN)6 hexagons, which alternate to form a one-dimensional chain. In [CH6N3]3[Ru2(bipy)2(CN)7] · 2H2O in contrast the discrete complex anions are involved in an extensive network of hydrogen-bonding involving terminal cyanide ligands, water molecules, and guanidinium cations. In the [Ru2(NN)2(CN)7]3− anions themselves the two NN ligands are approximately eclipsed, lying on the same side of the central Ru-CN-Ru axis, such that their peripheries are in close contact. Consequently, when NN = 4,4′-tBu2-2,2′-bipyridine the steric bulk of the t-butyl groups prevents the formation of the dinuclear anions, and the only product is the simple salt of the monomer, [CH6N3]2[Ru(tBu2bipy)(CN)4] · 2H2O. We demonstrated by electrospray mass spectrometry that the dinuclear by-product [Ru2(phen)2(CN)7]3− could be formed in significant amounts during the synthesis of monomeric [Ru(phen)(CN)4]2− if the reaction time was too long or the medium too acidic. In the solid state the luminescence properties of [Ru2(bipy)2(CN)7]3− (as its guanidinium salt) are comparable to those of monomeric [Ru(bipy)(CN)4]2−, with a 3MLCT emission at 581 nm.  相似文献   

3.
The synthesis and characterisation of eight new octahedral PtIV complexes of the type trans,trans,trans-[Pt(N3)2(OH)2(NH3)(Am)] where Am = methylamine (2), ethylamine (4), thiazole (6), 2-picoline (8), 3-picoline (10), 4-picoline (12), cyclohexylamine (14), and quinoline (16) are reported, including the X-ray crystal structures of complexes 2, 8, and 14 as well as that of two of the precursor PtII complexes (trans-[Pt(N3)2(NH3)(methylamine)] (1) and trans-[Pt(N3)2(NH3)(cyclohexylamine)] (13)). Irradiation with UVA light rapidly induces loss in intensity of the azide-to-PtIV charge-transfer bands and gives rise to photoreduction of platinum. These complexes have potential for use as photoactivated anticancer agents.  相似文献   

4.
Reaction of PPN[W(CO)3(R2PC2H4PR2)(SH)] (PPN=Ph3PNPPh3; R=Me, 1; R=Ph, 2) with aromatic aldehydes in the presence of trifluoroacetic acid gave tungsten complexes of thiobenzaldehydes mer-[W(CO)3(R2PC2H4PR2)(η2-SCHR)] (R=Me, 3a-3f; R=Ph, 4a-4e) in high yields. Analogous complexes of aliphatic thioaldehydes mer-[W(CO)3(Me2PC2H4PMe2)(η2-SCHR)] (3g-3l) could only be obtained from the highly electron-rich thiolate complex 1. The structure of 3i (R=i-Bu) was determined by X-ray crystallography. In solution the complexes 3 and 4 are in equilibrium with small quantities of their isomers fac-[W(CO)3(R2PC2H4PR2)(η2-SCHR)]. Reaction of complexes 3 with dimethylsulfate followed by salt metathesis with NH4PF6 gave the alkylation products mer-[W(CO)3(Me2PC2H4PMe2)(η2-MeSCHR)]PF6 (5a-5l) as mixtures of E and Z isomers. The methylated thioformaldehyde complex mer-[W(CO)3(Me2PC2H4PMe2)(η2-MeSCH2)]PF6 (5m) was prepared similarly. Nucleophilic addition of hydride (from LiAlH4) to 5 initially gave thioether complexes mer-[W(CO)3(Me2PC2H4PMe2)(MeSCH2R)] (mer-6) which rapidly isomerized to fac-[W(CO)3(Me2PC2H4PMe2)(MeSCH2R)] (fac-6).  相似文献   

5.
Synthesis and single crystal X-ray structures of H2L1 and VO(L1)(HL) [H2L1 = N,N-bis(2-hydroxy-3,5-ditertiarybutyl)-N′,N′-dimethylethylendiamine) or simply aminebis(phenol) and H2L = salicylic acid) are reported here. The complex [VO(L1)(HL)] is in distorted octahedral geometry under O4N2 donor environment where the basal core is defined by O(1), O(3), O(2) and N(5) atoms and two axial coordinates are occupied by O(4), an alkoxo-group and N(1), an imino-nitrogen atom. The electron spray mass spectrometric study on [VO(L1)(HL)] in MeCN clearly points out the existence of single species in solution. Again, the 51V NMR of the bulk polycrystalline sample reveals that the complex [VO(L1)(HL)] mainly exists in three out of four possible isomers. The formation of [VO(L1)(HL)] from both [VO(L1)(OMe)] and [VO(L1)(OEt)] was followed kinetically by reacting with salicylic acid in MeCN. The presence of isosbestic point indicates a clean conversion of the reactants to product.  相似文献   

6.
The reactions of 2,2′-bipyridyl-3,3′-dicarboxylic acid (H2bpdc) and 1,10-phenanthroline (phen) with lanthanide (III) salts in different concentrations under hydrothermal conditions formed two series of supramolecular isomers of 1D zigzag chains of [Ln(bpdc)1.5(phen)(H2O)]n·3nH2O (1Ln·3H2O), and 2D frameworks of [Ln(bpdc)1.5(phen)(H2O)]n (2Ln), (Ln = Ho, Er, Tm, and Yb). At lower concentrations, the supramolecular isomers of 1Ln were formed, in which each isomer has a dinuclear centrosymmetric dimeric unit of [Ln2(phen)2(H2O)22-bpdc)2]2+, and the dimeric units are alternately connected by μ2-bpdc2− to form a 1D zigzag chain of 1Ln. At higher concentrations, the supramolecular isomers of 2Ln were formed. All the compounds of 2Ln are isomorphous, in which two μ3-bpdc2− bridge two [Ln(phen)(H2O)]3+ units to yield a 1D double-chains of [Ln2(phen)2(H2O)2(bpdc)2]n2n+, and [Ln2(phen)2(H2O)2(bpdc)2]n2n+ chains are further connected by μ4-bpdc2− to form a 2D network of [Ln(bpdc)1.5(phen)(H2O)]n. The 2D sheets are combined through the intersheet π-π interactions between the adjacent phen molecules to form a 3D structure of 2Ln. The compounds of Er(III), and Yb(III) exhibit corresponding characteristic photoluminescence in the near-infrared (NIR) region, in which 1Ln and 2Ln show obviously different emission intensity due to their different structures.  相似文献   

7.
The reaction of FcCOCl (Fc = (C5H5)Fe(C5H4)) with benzimidazole or imidazole in 1:1 ratio gives the ferrocenyl derivatives FcCO(benzim) (L1) or FcCO(im) (L2), respectively. Two molecules of L1 or L2 can replace two nitrile ligands in [Mo(η3-C3H5)(CO)2(CH3CN)2Br] or [Mo(η3- C5H5O)(CO)2(CH3CN)2Br] leading to the new trinuclear complexes [Mo(η3-C3H5)(CO)2(L)2Br] (C1 for L = L1; C3 for L = L2) and [Mo(η3-C5H5O)(CO)2(L)2Br] (C2 for L = L1; C4 for L = L2) with L1 and L2 acting as N-monodentade ligands. L1, L2 and C2 were characterized by X-ray diffraction studies. [Mo(η3-C5H5O)(CO)2(L1)2Br] was shown to be a trinuclear species, with the two L1 molecules occupying one equatorial and one axial position in the coordination sphere of Mo(II). Cyclic voltammetric studies were performed for the two ligands L1 and L2, as well as for their molybdenum complexes, and kinetic and thermodynamic data for the corresponding redox processes obtained. In agreement with the nature of the frontier orbitals obtained from DFT calculations, L1 and L2 exhibit one oxidation process at the Fe(II) center, while C1, C3, and C4 display another oxidation wave at lower potentials, associated with the oxidation of Mo(II).  相似文献   

8.
Using a phosphorus based Mannich condensation reaction the new pyridylphosphines {5-Ph2PCH2N(H)}C5H3(2-Cl)N (1-Cl) and {2-Ph2PCH2N(H)}C5H3(5-Br)N (1-Br) have been synthesised in good yields (60% and 88%, respectively) from Ph2PCH2OH and the appropriate aminopyridine. The ligands 1-Cl and 1-Br display variable coordination modes depending on the choice of late transition-metal complex used. Hence P-monodentate coordination has been observed for the mononuclear complexes AuCl(1-Cl) (2), AuCl(1-Br) (3), RuCl2(p-cymene)(1-Cl) (4), RuCl2(p-cymene)(1-Br) (5), RhCl2(Cp)(1-Cl) (6), RhCl2(Cp)(1-Br) (7), IrCl2(Cp)(1-Cl) (8), IrCl2(Cp)(1′-Cl) (8′), IrCl2(Cp)(1-Br) (9), cis-/trans-PdCl2(1-Cl)2 (10), cis-/trans-PdCl2(1-Br)2 (11), cis-PtCl2(1-Cl)2 (12) and cis-PtCl2(1-Br)2 (13). Reaction of Pd(Me)Cl(cod) (cod = cycloocta-1,5-diene) with either 1 equiv. of 1-Br or the known pyridylphosphines 1′-Cl, 1-OH or 1-H gave the P/N-chelate complexes Pd(Me)Cl(1-Br-1-H) (14)-(17). All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 4, 5, 10 and 16 · (CH3)2SO have been elucidated by single crystal X-ray crystallography. A crystal structure of the dinuclear metallocycle trans,trans-[PdCl2{μ-P/N-{Ph2PCH2N(H)}C5H4N}]2 · CHCl3, 18 · CHCl3, has also been determined. Here 1-H bridges, using both P and pyridyl N donors, two dichloropalladium centres affording a 12-membered ring with the PdCl2 units adopting a head-to-tail arrangement.  相似文献   

9.
The organometallic tin(IV) complexes [SnPh2(SRF)2] SRF = SC6F4-4-H (1), SC6F5 (2), were synthesized and their reactivity with [MCl2(PPh3)2] M = Ni, Pd and Pt explored. Thus, transmetallation products were obtained affording polymeric [Ni(SRF)(μ-SRF)]n, monomeric cis-[Pt(PPh3)2(SC6F4-4-H)2] (3) and cis-[Pt(PPh3)2(SC6F5)2] (4) and dimeric species [Pd(PPh3)(SC6F4-4-H)(μ-SC6F4-4-H)]2 (5) and [Pd(PPh3)(SC6F5)(μ-SC6F5)]2 (6) for Ni, Pt and Pd, respectively. The crystal structures of complexes 1, 2, 3, 4 and 6 were determined.  相似文献   

10.
The “amidate-hanging” Pt mononuclear complexes, which can easily bind a second metal ion with the non-coordinated oxygen atoms in the amidate moieties, have been synthesized and characterized by 1H NMR, MS, IR spectroscopy, and single crystal X-ray analysis. Five new complexes with various amidate ligands and co-ligands, cis-[Pt(PVM)2(en)] · 4H2O (1, PVM = pivaloamidate, en = ethylenediamine), cis-[Pt(PVM)2(NH2CH3)2] · H2O (2), cis-[Pt(PVM)2(NH2tBu)2] (3), cis-[Pt(TCM)2(NH3)2] (4, TCM = trichloroacetamidate), and cis-[Pt(BZM)2(NH3)2] (5, BZM = benzamidate), were successfully synthesized by direct base hydrolysis of the corresponding Pt nitrile complexes, cis-[Pt(NCR)2(Am)2]2+ (P1, P2, P3, and P5) (NCR = nitrile, Am = amine). These nitrile complexes were obtained by introducing nitriles into the Pt aqua complexes, cis-[Pt(OH2)2(Am)2](ClO4)2, whereas introduction of trichloronitrile into [Pt(OH2)2(NH3)2](ClO4)2 induced more facilitated water nucleophilic attack to afford [Pt(TCM)(NH(COH)CCl3)(NH3)2](ClO4) (P4). The base treatments of the precursor complexes (P1-5) lead to produce “amidate-hanging” Pt mononuclear complexes (1-5) without geometry isomerization. The 195Pt chemical shifts for 1-5 exhibit subtle differences of the Pt electron densities among them.  相似文献   

11.
Four new hetero-bimetallic Co3+-Na+ and Co3+-K+ coordination polymers having the molecular formulae [Na(H2O)Co(L)(N3)3]n (1), [Na2Co(L)(N3)3(H2O)5][Co(L)(N3)3] (2), K[Co(L)(NCS)3]·H2O (3) and K[Co(L)2][Co(NCS)4]·0.5H2O (4), were synthesized. Compounds 1-4 were characterized by single crystal X-ray diffraction, IR, UV-Vis, and thermogravimetric methods. These bimetallic systems have EE, EO azide bridge (1, 2) as well as bent (1, 2, 3) and linear (1, 4) aquo bridges. Important features observed among them were: a Z-shaped and diamond-shaped Co2Na2 clusters in 1, a centrosymmetric double ladder like polymer based on Na4 cluster in 2, and a linear KOK core having paddle-wheel structure in 4.  相似文献   

12.
Palladium [PdCl2(L)] complexes with N-alkylpyridylpyrazole derived ligands [2-(5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L1), 2-(1-ethyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L2), 2-(1-octyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L3), and 2-(3-pyridin-2-yl-5-trifluoromethyl-pyrazol-1-yl)ethanol (L4) were synthesised. The crystal and molecular structures of [PdCl2(L)] (L = L2, L3, L4) were resolved by X-ray diffraction, and consist of monomeric cis-[PdCl2(L)] molecules. The palladium centre has a typical square-planar geometry, with a slight tetrahedral distortion. The tetra-coordinate metal atom is bonded to one pyridinic nitrogen, one pyrazolic nitrogen and two chlorine ligands in cis disposition. Reaction of L (L2, L4) with [Pd(CH3CN)4](BF4)2, in the ratio 1M:2L, gave complexes [Pd(L)]2(BF4)2. Treatment of [PdCl2(L)] (L = L2, L4) with NaBF4 and pyridine (py) and treatment of the same complexes with AgBF4 and triphenylphosphine (PPh3) yielded [Pd(L)(py)2](BF4)2 and [Pd(L)(PPh3)2](BF4)2 complexes, respectively. Finally, reaction of [PdCl2(L4)] with 1 equiv of AgBF4 yields [PdCl(L4)](BF4).  相似文献   

13.
New neutral Pd(II) and Pt(II) complexes of the type [M(L)(PPh3)] (MPd or Pt) were prepared in crystalline form in high-yield synthesis with the S-benzyldithiocarbazates and S-4-nitrobenzyldithiocarbazates derivatives from 2-hydroxyacetophenone, H2L1a and H2L1b, and benzoylacetone, H2L2a and H2L2b. The new complexes [Pt(L1a)(PPh3)] (1), [Pd(L1a)(PPh3)] (2), [Pt(L1b)(PPh3)] (3), [Pd(L1b)(PPh3)] (4), [Pt(L2a)(PPh3)] (5), [Pd(L2a)(PPh3)] (6), [Pt(L2b)(PPh3)] (7) and [Pd(L2b)(PPh3)] (8) were characterized on the basis of elemental analysis, conductivity measurements, UV-visible, IR, electrospray ionization mass spectrometry (ESI-MS), NMR (1H and 31P) and by X-ray diffraction studies. The studies showed that differently from what was observed for the H2L1a and H2L1b ligands, H2L2a and H2L2b assume cyclic forms as 5-hydroxypyrazolinic. Upon coordination, H2L2a and H2L2b suffer ring-opening reaction, coordinating in the same manner as H2L1a and H2L1b, deprotonated and in O,N,S-tridentate mode to the (MPPh3)2+ moiety. All complexes show a quite similar planar fourfold environment around the M(II) center. Furthermore, these complexes exhibited biological activity on extra and intracellular forms of Trypanosoma cruzi in a time- and concentration-dependent manner with IC50 values ranging from 7.8 to 18.7 μM, while the ligand H2L2a presented a trypanocidal activity on trypomastigote form better than the standard drug benznidazole.  相似文献   

14.
Hydrothermal reactions of rare earth ions(III) with a flexible building unit (1,3,4-thiadiazole-2,5-diyldithio)diacetic acid (H2tzda) lead to five novel coordination polymers with 1D chain and 3D network structures, namely, {[Y2(tzda)3(H2O)10] · 5H2O}n (1) and [Ln2(tzda)3(H2O)5]n [Ln = Er (2), Pr (3), Nd (4), Eu (5)]. Compound 1 has one-dimensional ribbon-like chain structure constructed by [Y2(tzda)3] units through the syn-anti bidentate bridging mode of carboxylate groups. Compounds 2-5 possess compact three-dimensional network structures which are made up of [Ln2(tzda)3] (Ln = Er, Pr, Nd and Eu) units bridged by carboxylate groups. In these compounds, the flexible tzda2− ligand is versatile and displays six different coordination fashions to meet the requirement of the coordination preference of the metal center. Furthermore, the magnetic behaviors for 2-5 in the temperature range of 5.0-300 K and photoluminescent property of 5 are significantly investigated in this paper.  相似文献   

15.
New complexes of formulae [Cu(HL2)(H2O)(NO3)](NO3) (1), [{Cu(L1)(tfa)}2] (2), [{Cu(L1)}2(pz)](ClO4)2 (3) and {[{Cu(L1)}2(dca)](ClO4)}n (4), where HL1 = pyridine-2-carbaldehyde thiosemicarbazone, HL2 = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone, Htfa = trifluoroacetic acid (CF3COOH), pz = pyrazine (C4H4N2) and dca = dicyanamide [N(CN)2], have been synthesized and characterized. The crystal structures of these compounds are built up of monomers (1), dinuclear entities with the metal centers bridged through the non-thiosemicarbazone coligand (2 and 3) and 1D chains of dimers (4). In all the cases, square-pyramidal copper(II) ions are present, except for the square-planar ones in 3. Magnetic measurements show antiferromagnetic couplings in 2, 3 and 4. The susceptibility data were fitted by the Bleaney-Bowers’ equation for copper(II) dimers derived from H = -2JS1S2 being the obtained J/k values −4.8, −4.3 and −5.1 K for compounds 2-4, respectively. The magnetic susceptibility of the already known [{Cu(HL1)(tfa)}2](tfa)2 compound has been also measured for the first time. The J/k value is -0.3 K, lower than that in 2. The nuclease activity of 3 and 4 has been analyzed.  相似文献   

16.
Reaction of Mo2(O2CCH3)2(DMepyF)2 (HDMepyF=N,N-di(6-methyl-2-pyridyl)formamidine) with HBF4 in CH2Cl2/CH3CN afforded the complex trans-[Mo2(H2DMepyF)2(CH3CN)4](BF4)6 (1), which crystallized in two forms, trans-[Mo2(H2DMepyF)2(CH3CN)4](ax-CH3CN)2(BF 4)6 · 2CH3CN (1a), and trans- [Mo2(H2DMepyF)2(CH3CN)4](ax-BF4) 2(BF4)4 · 2CH3CN (1b). The molecular structures of complexes (1) consist of two quadruply bonded molybdenum atoms, which are spanned by two trans-bridging formamidinate ligands and coordinated by four trans-CH3CN. Each H2DMepyF+ ligand adopts an s-cis,s-cis- conformation. The difference between 1a and 1b is that complex 1a contains two CH3CN molecules as axial ligands, while 1b contains two BF4 anions as axial ligands. Complex 1 is the first dimolybdenum complex containing a pair of trans bridging ligands and two pairs of trans-CH3CN ligands.  相似文献   

17.
Assembly of N,N′-bis(4-picolinoyl)hydrazine (H2L) with cadmium nitrate in the presence of dicyanamide anion (dca) affords a new coordination polymer {[Cd(HL)(dca)] · (H2O)0.5}n (1), in which the [Cd(HL)]n layers are extended by dca bridges to result in a three-dimensional (3-D) coordination framework. The network structure of 1 has unusual (3,5)-connectivity and represents a new type of (4·62)(4·66·83) topology. Two such identical and complementary networks are entangled to generate a twofold parallel interpenetrating supramolecular lattice.  相似文献   

18.
In air, hydrated ethanolic (95%) solution of 2-(aminomethyl) substituted pyridine and quinoline, on stirring with half equivalent of Cu(OAc)2·H2O, respectively afforded [Cu(bpca)(OAc)(H2O)]·H2O (1) and [Cu(bqca)(OAc)(H2O)] (2) {bpca = bis(2-pyridylcarbonyl)diimide ion and bqca = bis(2-quinolylcarbonyl)diimide ion} in good yields. These reactions involve oxidation of the methylene group and formation of the bond between nitrogen and carbon in N-C(O) through coupling. The complex [Cu(pqca)(OAc)(H2O)]3[Cu2(OAc)4(EtOH)2]1.5 (3) {pqca = (2-pyridylcarbonyl)(2-quinolylcarbonyl)diimide ion} was synthesized by stirring an ethanolic solution of the Schiff base [(2-pyridyl)-N-((2-quinolyl)methylene)methanamine] (L1) and with one equivalent of Cu(OAc)2·H2O. A plausible mechanism for the conversion has been proposed. The free ligands were isolated as crystalline solids from compounds 1-3, by extrusion of Cu2+ ion using EDTA2−. The molecular structures of 1-3 and bqcaH were established by X-ray crystallography and compounds having quinolyl group have π-stacking interactions.  相似文献   

19.
The reactions of 2-amino-anthracene with [Os3(CO)10(CH3CN)2] have been studied and the products structurally characterized by spectroscopic, X-ray diffraction, photophysical and electrochemical techniques. At room temperature in CH2Cl2 two major, isomeric products are obtained [Os3(CO)10(μ-η2-(N-C(1))-NH2C14H8)(μ-H)] (1, 14%) and [Os3(CO)10(μ-η2-(N-C(3))-NHC14H9)(μ-H)] (2, 35%) along with a trace amount of the dihydrido complex [Os3(CO)9(μ-η2-(N-C(3))-NHC14H8)(μ-H)2] (3). In refluxing tetrahydrofuran only complexes 2 and 3 are obtained in 24% and 28%, respectively. A separate experiment shows that complex 1 slowly converts to 2 and that the rearrangement is catalyzed by adventitious water and involves proton transfer to the anthracene ring. Complex 1 is stereochemically non-rigid; exhibiting edge to edge hydride migration while 2 is stereochemically rigid. Complex 3 is also stereochemically non-rigid showing a site exchange process of the magnetically nonequivalent hydrides typical for trinuclear dihydrides. Interestingly, 2 decarbonylates cleanly to the electronically unsaturated 46e cluster [Os3(CO)932-(N-C(3))-NHC10H9)(μ-H)] (4, 68%) in refluxing cyclohexane, while photolysis of 2 in CH2Cl2 yields only a small amount of 3 along with considerable decomposition. The mechanism of the conversion of 1 to 2 and the dependence of the product distribution on solvent are discussed. All four compounds are luminescent with compounds 1-3 showing emissions that can be assigned to radiative decay associated with the anthracene ligand. Complexes 1-3 all show irreversible 1e reductions in the range of −1.85-2.14 V while 4 shows a nicely reversible 1e wave at −1.16 V and a quasi-reversible second 1e wave at −1.62 V. Irreversible oxidations are observed in the range from +0.35 to +0.49 V. The relationship between the cluster ligand configurations and the observed electrochemical and photochemical behavior is discussed and compared with that of the free ligand.  相似文献   

20.
The reaction of the octahedral mononuclear complex, trans(N)-[Co(l-pen-N,O,S)2] (pen = penicillaminate), with [PtCl2(bpy)] (bpy = 2,2′-bipyridine) stereoselectively gave an optically active S-bridged dinuclear complex, [Pt(bpy){Co(l-pen)2}]Cl · 3H2O (2Cl · 3H2O), whose structure is enantiomeric to the previously reported [Pt(bpy){Co(d-pen)2}]Cl · 3H2O (1Cl · 3H2O). The mixture of equimolar amounts of 1Cl · 3H2O and 2Cl · 3H2O in H2O crystallizes as [Pt(bpy){Co(d-pen)2}]0.5[Pt(bpy){Co(l-pen)2}]0.5Cl · 7H2O (3Cl · 7H2O), in which the enantiomeric complex cations 1 and 2 are included in the ratio of 1:1. The crystal structures of 2Cl · 3H2O and 3Cl · 7H2O were determined by X-ray crystallography, and compared with that of 1Cl · 3H2O. The structural feature for 2 is essentially consistent with that for 1, except for the absolute configurations around the octahedral Co(III) center. The optically active complex cation 2 exists as a monomer, accompanied by no intermolecular interactions in the π-electronic systems of bpy moieties. In the crystals of 3Cl · 7H2O, on the other hand, the enantiomeric complex cations, [Pt(bpy){Co(d-pen)2}]+ and [Pt(bpy){Co(l-pen)2}]+, are arranged alternately while overlapping the bpy planes along a axis, and the π electronic system of the bpy framework in [Pt(bpy){Co(d-pen)2}]+ interacts with those in [Pt(bpy){Co(l-pen)2}]+. Differences between the crystal structures of 2Cl · 3H2O and3Cl · 7H2O significantly reflect their diffuse reflectance spectra. In aqueous solution, each cation in both 2Cl · 3H2O and 3Cl · 7H2O is comparatively put on a free environment without such intermolecular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号