首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Two novel Cd(II) and Zn(II) complexes with the condensation product of 2-formylpyridine and selenosemicarbazide were synthesized. The structure of Cd(II) complex was determined by X-ray crystallography. The ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms and the selenium donor. The cadmium ion completes its five-coordination by two chloride ligands, forming a square-pyramidal geometry. The structure of Zn(II) complex was established by analysis of spectroscopic data, which indicated coordination of the ligand as a bidentate via the selenium and the azomethine nitrogen atoms. The cytotoxic activity of the newly synthesized complexes, as well as if five structurally related complexes and the ligand evaluated against eight tumor cell lines. The new Cd(II) complex showed the highest activity similar to cisplatin with IC50 less than 10 μM for all cell lines. Cell cycle distribution and apoptosis study showed that Cd(II) complex and cisplatin might have some similarity in anticancer activity, which was not the case for cisplatin and other studied complexes. Effects of the complexes on matrix metalloproteinases (MMPs) MMP-9 and MMP-2 was also studied. Cd(II) and Zn(II) complexes and cisplatin increased MMP-2 activity in supernatants of tested cells, while Ni(II) complex with the same ligand decreased the activity, implying a possible activity in preventing tumor invasion and metastasis processes.  相似文献   

2.
An anthracene-based novel ligand (L), 9,10-bis((4,6-dimethylpyrimidin-2-ylthio)methyl)anthracene, was synthesised and fully characterised. Interactions of the ligand with selected metal ions, Hg(II), Cu(II), Ag(I), Pb(II), Zn(II), Ni(II), Co(II), and Cr(III), were spectroscopically investigated. Of the examined metal ions, both Hg(II) and Cu(II) showed responses in both UV-Vis and fluorescent spectroscopy towards the ligand in acetonitrile solution. Spectroscopic titration indicated that the ligand forms complexes with the two metal ions in 1:1 and 1:2 ratios, respectively. DFT calculations revealed that Hg(II) binds possibly with two pairs of donor-set {SN} of the ligand to form a mononuclear complex in a distorted planar geometry whereas Cu(II) forms likely a binuclear complex in a tetrahedral geometry in which each Cu(II) is further coordinated with possibly two acetonitrile molecules.  相似文献   

3.
BackgroundSchiff base metal complexes are considered promising chemotherapeutic agents due to their potential application in cancer therapy.MethodsThe current work sought to synthesize a brand-new Schiff base ligand obtained from 2-hydroxybenzohydrazide and (E)− 1-(2-(p-tolyl)hydrazono)propan-2-one with metal ions which included Pd(II) and Zn(II) ions. Elemental analyses, FT-IR, mass spectra, 1H NMR, UV-Vis spectrometer, and computational analysis characterized the compound's structure. In vitro, the breast cancer cell line (MCF-7) was tested for its sensitivity to Schiff base (HL) and its Pd(II) and Zn(II) complexes. The half-maximal inhibitory concentration IC50 of the compounds was determined and used to perform the comet assay, which was carried out to reveal the photo-induced DNA damaging ability of the compounds of individual cells. Moreover, the compounds' effects on antioxidant defense systems of enzymes in cells: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and oxidant Malondialdehyde (MDA) were examined in MCF-7 cells.ResultsThe Pd(II) complex displayed approximately the same IC50 as Cisplatin, while Zn(II) complex had better activity than Cisplatin with very low IC50, 1.40 μg/ml. Significant alterations in SOD, CAT, GPx, and MDA production were discovered, inducing oxidative stress, enlarging ROS production, and reducing the antioxidant amount. This change was approximately similar in most compounds. Consequently, it promoted apoptosis, particularly the Zn(II) complex, which demonstrated an improved impact because of its ability to influence the antioxidant defense systems of enzymes, mostly SOD and GPx, besides increasing MDA levels.ConclusionIt can be concluded that Zn(II) complex is the most effective anticancer drug since it induced a very similar genotoxic effect as Cisplatin and has a very low IC50 value.  相似文献   

4.
A new ethyl bis(pyridin-2-ylmethyl)phosphate (2-bis(pm)Ope) ligand has been synthesized and used for synthesis of copper(II) and zinc(II) complexes of the formula [MCl2(2-bis(pm)Ope)] [M = Cu(II), Zn(II)]. Despite having the same general formula, Cu(II) and Zn(II) complexes are not isostructural. The Zn(II) complex is four coordinated (MCl2N2) forming probably tetrahedral structure whereas the Cu(II) complex of distorted square pyramidal geometry is five coordinated (MCl2ON2). The later compound not only coordinates by two nitrogen atoms of pyridine rings but also by the oxygen atom of pyridin-2-ylmethoxyl residue. The compound (2-bis(pm)Ope) has been obtained as the product of diethyl (pyridin-2-ylmethyl)phosphate’s (2-pmOpe) transestrification. The compounds have been identified and characterized by IR, far-IR, 1H NMR, 31P NMR and elemental analyses. The crystal structure of copper(II) complex i.e. [CuCl2(2-bis(pm)Ope)] has been determined by the X-ray diffraction method. The low temperature magnetic study reveals significant antiferromagnetic interaction between copper centers through the H-bond system.  相似文献   

5.
Two pentaaza macrocycles containing pyridine in the backbone, namely 3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),14,16-triene ([15]pyN5), and 3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),15,17-triene ([16]pyN5), were synthesized in good yields. The acid-base behaviour of these compounds was studied by potentiometry at 298.2 K in aqueous solution and ionic strength 0.10 M in KNO3. The protonation sequence of [15]pyN5 was investigated by 1H NMR titration that also allowed the determination of protonation constants in D2O. Binding studies of the two ligands with Ca2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ metal ions were performed under the same experimental conditions. The results showed that all the complexes formed with the 15-membered ligand, particularly those of Cu2+ and especially Ni2+, are thermodynamically more stable than with the larger macrocycle. Cyclic voltammetric data showed that the copper(II) complexes of the two macrocycles exhibited analogous behaviour, with a single quasi-reversible one-electron transfer reduction process assigned to the Cu(II)/Cu(I) couple. The UV-visible-near IR spectroscopic and magnetic moment data of the nickel(II) complexes in solution indicated a tetragonal distorted coordination geometry for the metal centre. X-band EPR spectra of the copper(II) complexes are consistent with distorted square pyramidal geometries. The crystal structure of [Cu([15]pyN5)]2+ determined by X-ray diffraction showed the copper(II) centre coordinated to all five macrocyclic nitrogen donors in a distorted square pyramidal environment.  相似文献   

6.
We have studied the binding interactions of biologically important carbohydrates (d-glucose, d-xylose and d-mannose) with the newly synthesized five-coordinate dinuclear copper(II) complex, [Cu2(hpnbpda)(μ-OAc)] (1) and zinc(II) complex, [Zn2(hpnbpda)(μ-OAc)] (2) [H3hpnbpda = N,N′-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N′-diacetic acid] in aqueous alkaline solution. The complexes 1 and 2 are fully characterized both in solid and solution using different analytical techniques. A geometrical optimization was made of the ligand H3hpnbpda and the complexes 1 and 2 by molecular mechanics (MM+) method in order to establish the stable conformations. All carbohydrates bind to the metal complexes in a 1:1 molar ratio. The binding events have been investigated by a combined approach of FTIR, UV–vis and 13C NMR spectroscopic techniques. UV–vis spectra indicate a significant blue shift of the absorption maximum of complex 1 during carbohydrate coordination highlighting the sugar binding ability of complex 1. The apparent binding constants of the substrate-bound copper(II) complexes have been determined from the UV–vis titration experiments. The binding ability and mode of binding of these sugar substrates with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in 13C NMR spectra for carbon atoms C1, C2, and C3 of sugar substrates.  相似文献   

7.
A new series of compounds derived from thiophene-2-carboxamide were synthesized and characterized by IR, 1H-NMR and 13C-NMR, mass spectrometry and elemental analysis. These compounds were further used to prepare their Co(II), Ni(II), Cu(II) and Zn(II) metal complexes. All metal(II) complexes were air and moisture stable. Physical, spectral and analytical data have shown the Ni(II) and Cu(II) complexes to exhibit distorted square-planar and Co(II) and Zn(II) complexes tetrahedral geometries. The ligand (L1) and its Cu(II) complex were characterized by the single-crystal X-ray diffraction method. All the ligands and their metal(II) complexes were screened for their in-vitro antimicrobial activity. The antibacterial and antifungal bioactivity data showed that the metal(II) complexes were found to be more potent than the parent ligands against one or more bacterial and fungal strains.  相似文献   

8.
For the first time, complexes of Zn(II), Cd(II) and Co(II) (1-3) with N-benzyloxycarbonylglycine have been synthesized and characterized. The complexes adopt tetrahedral, pentagonal-bipyramidal and octahedral geometry, respectively. The structure of the polymeric cadmium complex was resolved by single crystal X-ray analysis. The cadmium ion has a distorted pentagonal-bipyramidal coordination formed by two water molecules and two N-benzyloxycarbonylglycinato ligands (N-Boc) coordinated in different fashions, one as bidentate and the second connecting three cadmium atoms. In a rather complicated 2D supramolecular structure, the phenyl rings interact mutually exclusively by the CH?π interactions.Investigation of the antimicrobial activity of the obtained complexes and N-benzyloxycarbonylglycine revealed that the ligand does not inhibit the growth of Candida albicans, whereas the newly synthesized complexes suppress the growth of this human fungal pathogen.  相似文献   

9.
Pt(II) and Pd(II) compounds containing the free radical 4-aminoTEMPO (4amTEMPO) were synthesized and characterised by X-ray diffraction methods. The disubstituted complexes cis- and trans-Pt(4amTEMPO)2I2 were studied. The trans isomer was prepared from the isomerisation of the cis analogue. The two Pd(II) compounds trans-Pd(4amTEMPO)2X2 (X = Cl and I) were also characterised by crystallographic methods. A mixed-ligand complex cis-Pt(DMSO)(4amTEMPO)Cl2 was synthesized from the isomerisation of the trans isomer in hot water. Its crystal structure was also determined. In all the complexes, the 4amTEMPO ligand is bonded to the metal through the -NH2 group, since the nitroxide O atom is not a good donor atom for the soft Pt(II) and Pd(II) metals. The conformation of the 4-aminoTEMPO ligand was compared to those of the few reported structures in the literature.  相似文献   

10.
One-pot metal promoted reactions between salicylaldehyde and 4-methyl-1,3-phenylenediamine in the presence of metal salts acting as template agents yield zinc(II) salicylaldimine complexes containing N,N′-bis(salicylidene)-4-methyl-1,3-phenylenediamine (H2L) as a result of the [2 + 1] Schiff base condensation. The complexes of formula [Zn(HL)Cl(H2O)2] · C2H5OH and [Zn(H2L)2Cl(NO3)(H2O)] · CH3OH were characterized as powder solids and in solution by spectroscopic methods (IR, 1H and 13C NMR, FAB-MS, ESI-MS, UV-Vis), thermogravimetric and elemental analysis, potentiometry, and tested for antimicrobial activity against Staphylococcusaureus in a minimum inhibitory concentration (MIC) experiment. In these two powder solid species, the salicylaldimine, formed in a self-assembly process, acts in two different coordination modes: as monodeprotonated bidentate chelator with an N,O donor set or as a neutral monodentate using exclusively oxygen as the donor atom without involving the nitrogen atoms in the coordination. However, crystals of these two complexes are isomorphous, with 1:2 metal:ligand stoichiometry, and display the latter, relatively rare coordination pattern. In solution, the presence of a 1:1 complex of monodeprotonated state is only detected. The complexes exhibit antimicrobial activity against S.aureus.  相似文献   

11.
Tracking of drugs in cancer cells is important for basic biology research and therapeutic applications. Therefore, we designed and synthesised a Zn(II)-thiosemicarbazone complex with photoluminescent property for organelle-specific imaging and anti-cancer proliferation. The Zn(AP44eT)(NO3)2 coordination ratio of metal to ligand was 1:1, which was remarkably superior to 2-((3-aminopyridin-2-yl) methylene)-N, N-diethylhydrazinecarbothioamide (AP44eT·HCl) in many aspects, such as fluorescence and anti-tumour activity. Confocal fluorescence imaging showed that the Zn(AP44eT)(NO3)2 was aggregated in mitochondria. Moreover, Zn(AP44eT)(NO3)2 was more effective than the metal-free AP44eT·HCl in shortening the G2 phase in the MCF-7 cell cycle and promoting apoptosis of cancer cells. Supposedly, the effects of these complexes might be located mainly in the mitochondria and activated caspase-3 and 9 proteins.  相似文献   

12.
Reaction of the potent hydroxamate-based histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), with hydrated metal salts of Fe(III), Cu(II), Ni(II) and Zn(II) yielded a tris-hydroxamato complex in the case of Fe(III) and bis-hydroxamato complexes in the case of Cu(II), Ni(II) and Zn(II) both in the solid state and in solution. Reaction of the secondary hydroxamic acid, N-Me-SAHA, also yielded a tris-hydroxamato complex in the case of Fe(III) and bis-hydroxamato complexes in the case of Cu(II), Ni(II) and Zn(II) in solution. These metal complexes have the hydroxamato moiety coordinated in an O,O’-bidentate fashion. Stability constants of the metal complexes formed with SAHA and N-Me-SAHA in a DMSO/H2O 70/30%(v/v) mixture are described. A novel crystal structure of SAHA together with a novel synthesis for N-Me-SAHA are also reported.  相似文献   

13.
The synthesis and X-ray crystal structure of acetatobis(l-arginine)zinc(II) acetate trihydrate, [Zn(OAc)(l-Arg)2]OAc·3H2O is reported. In this structure, the first of a zinc(II)-arginine complex to be reported, the geometry around zinc(II) is distorted square-pyramidal containing two trans-N,O chelated l-Arg ligands in the basal plane and the acetato ligand in an axial position. The structure contains a second acetate which is salt-bridged to the δ and ω NH groups of the guanidinium side chain of an arginine ligand and also contains three hydrogen bonded water molecules.  相似文献   

14.
The copper(II) complex of the acyclic EBTA ligand (H4EBTA = 1,2-bis(2-aminoethoxy)benzene-N,N,N′,N′-tetraacetic acid) has been prepared and characterized by X-ray analysis. The two copper ions of the dinuclear unit present the same distorted octahedral coordination polyhedra. The EBTA ligand is shared between two copper coordination centres, with the formation of centrosymmetric dimers, which are linked in a supramolecular tridimensional structure via additional interactions through the coordinated waters molecules with adjacent carboxylic oxygen atoms. The stability and protonation constants of EBTA with Cu(II) and Zn(II) ions indicate a higher stability of these complexes with respect to the corresponding complexes with the more flexible EGTA ligand (H4EGTA = ethyleneglycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid). On the other hand, the lower stability of [Gd(EBTA)] than [Gd(EGTA)] results in a decreased overall selectivity (lower Ksel) of EBTA towards Gd(III) and suggests that this complex may undergoes transmetallation reactions under physiological conditions.  相似文献   

15.
Raman and IR studies are carried out on carnosine (beta-alanyl-L-histidine, Carnos) and its complexes with cobalt(II) at different metal/ligand ratios and basic pH. Binuclear complexes that bind molecular oxygen are formed and information regarding the O-O bridge is obtained from the Raman spectra. When the Co(II)/Carnos ratio is 相似文献   

16.
The crystal structures of four Ag(I) and Hg(II) complexes of the ligand 1,4-bis(1-benzyl-benzimidazol-2-yl)cyclohexane (N-BBzBimCH) have been described, that is, [Hg2(N-BBzBimCH)Cl4] (1), [Hg(N-BBzBimCH)Br2] (2), [Ag(N-BBzBimCH)](NO3)(H2O) (3) and [Ag2(N-BBzBimCH)(CF3OCO)2] (4). All these compounds show 1D polymeric structures in the solid state. In complexes 1 and 4, the chloride ions and the trifluoroacetate groups bridge the [Hg2(N-BBzBimCH)Cl2] and [Ag2(N-BBzBimCH)] fragments, respectively, to generate 1D polymers. While the bromide ions in complex 2 and nitrate groups in complex 3 are only serving as terminal ligands to suffice the coordination geometry of the metal centers. In all cases, weak intermolecular interactions such as C-H?X (X = Cl, Br) contacts, hydrogen bonds, π-π interactions and C-H?π stacking play important roles to extend the 1D chain structures to 2D network. Solid state fluorescence of these compounds was also studied.  相似文献   

17.
The reaction of the tripod ligand hydrotris(2-mercapto-1-imidazolyl)borate Tmxylyl with zinc(II) perchlorate in methanol afforded the mononuclear complex of the type [Tmxylyl-Zn(mimxylyl)]ClO4 (1). Whereas under the same conditions, the reaction with copper(II) perchlorate gives rise to the simultaneous formation of the dinuclear copper(I) complex [TmxylylCu]2 (2). The chemical formulae of the complexes have been characterized by elemental chemical analysis, IR-NMR spectroscopies, and single crystal X-ray methods. In complex 1, the zinc(II) atom displays a distorted tetrahedral environment. While in complex 2, the Tmxylyl ligand bridges the two copper(I) atoms in an asymmetric manner with trigonal geometry. The inverted conformation of the ligand Tmxylyl at the boron center, allows the B-H units to be directed towards the copper centers. The greater reactivity of the borohydride groups towards metal centers enhances the reduction of Cu(II) to Cu(I). The obtained kinetic results for the methylation reactions of 1 and 2 indicate that these bound thione complexes are less suitable to electrophilic attack than the thiolate ligand.  相似文献   

18.
The speciation and distribution of Zn(II) and the effect of Gd(III) on Zn(II) speciation in human blood plasma were studied by computer simulation. The results show that, in normal blood plasma, the most predominant species of Zn(II) are [Zn(HSA)] (58.2%), [Zn(IgG)](20.1%), [Zn(Tf)] (10.4%), ternary complexes of [Zn(Cit)(Cys)] (6.6%) and of [Zn(Cys)(His)H] (1.6%), and the binary complex of [Zn(Cys)2H] (1.2%). When zinc is deficient, the distribution of Zn(II) species is similar to that in normal blood plasma. Then, the distribution changes with increasing zinc(II) total concentration. Overloading Zn(II) is initially mainly bound to human serum albumin (HSA). As the available amount of HSA is exceeded, phosphate metal and carbonate metal species are established. Gd(III) entering human blood plasma predominantly competes for phosphate and carbonate to form precipitate species. However, Zn(II) complexes with phosphate and carbonate are negligible in normal blood plasma, so Gd(III) only have a little effect on zinc(II) species in human blood plasma at a concentration above 1.0×10−4 M.  相似文献   

19.
Two new homo- and hetero-dinuclear complexes, [Cu2L(im)](ClO4)34H2O (1) and [CuZnL(im)](ClO4)34H2O (2) (where Im=1H-1midazole and L = 3, 6, 9, 16, 19, 22-hexaaza-6, 19-bis(1H-imidazol-4-ylmethyl)tricycle[22, 2, 2, 211,14]triaconta-1, 11, 13, 24, 27, 29-hexaene) were synthesized and characterized as model compounds for the active site of copper(II)–zinc(II) superoxide dismutase (Cu2Zn2–SOD). X-ray crystal structure analysis revealed that the metal centers in both complexes exhibit distorted trigonal-bipyramid coordination geometry and the CuCu and CuZn distances are both 6.02 Å. Magnetic and ESR spectral measurements of 1 showed antiferromagnetic exchange interactions between the imidazolate-bridged Cu(II) ions. The ESR spectrum of 2 displays typical signals of mononuclear Cu(II) complex, demonstrating the formation of heterodinuclear complex 2 rather than a mixture of homodinuclear Cu(II)/Zn(II) complexes. pH-dependent ESR and UV–visible spectral measurements manifest that the imidazolate exists as a bridging ligand from pH 6 to 11 for both complexes. The IC50 values of 1.96 and 1.57 μM [per Cu(II) ion] for 1 and 2 suggest that they are good models for the Cu2Zn2–SOD.  相似文献   

20.
The variations in the coordination environment of Co(II), Cu(II) and Zn(II) complexes with the neutral, tridentate ligand bis[1-(cyclohexylimino)ethyl]pyridine (BCIP) are reported. Analogous syntheses were carried out utilizing either the M(BF4)2 · xH2O or MCl2 · xH2O metal salts (where M = Co(II), Cu(II) or Zn(II)) with one equivalent of BCIP. When the hydrated metal starting material was used, cationic, octahedral complexes of the type [M(BCIP)2]2+ were isolated as the tetrafluoroborate salt (4, 5). Conversely, when the hydrated chloride metal salt was used as the starting material, only neutral, pentacoordinate [M(BCIP)Cl2] complexes (1-3) formed. All complexes were characterized by X-ray diffraction studies. The three complexes that are five coordinate have distortions due mainly to the pyridine di-imine bite angle. The [Cu(BCIP)Cl2] (2) also exhibits deviations in the Cu(II)-Cl bond distances with values of 2.4242(9) and 2.2505(9) Å, which are not seen in the analogous Zn(II) and Co(II) structures. Similarly, the two six coordinate complexes (5, 6) are also altered by the ligand frame bite angle giving rise to distorted octahedral geometries in each complex. The [Cu(BCIP)2](BF4)2 (6) also exhibits Cu(II)-Nimine bond lengths that are on average 0.14 Å longer than those found in the analogous 5 coordinate complex, [Cu(BCIP)Cl2]. In addition to X-ray analysis, all complexes were also characterized by UV/Vis and IR spectroscopy with 1H NMR spectroscopy being used for the analysis of the Zn(II) analogue (3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号