首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new tri-cyanometalate building block for heterometallic complexes, [PPh4]2[FeII(Tpms)(CN)3] (2) (PPh4 = tetraphenylphosphonium; Tpms = tris(pyrazolyl) methanesulfonate), has been prepared. Using it as a building block, a one-dimensional chain compound, {[FeII(Tpms)(CN)3][MnII(H2O)2( DMF)2]} · DMF (3), has been synthesized and structurally characterized. The magnetic properties of 3 correspond to a ferromagnetic chain with weak long-range superexchanged magnetic interaction between the high-spin manganese(II) ions.  相似文献   

2.
The octanuclear cyano-bridged cluster [(Tp)8Fe4Ni4(CN)12] · H2O · 24CH3CN (1) (Tp = hydrotris(1-pyrazolyl)borate) showing magnetic properties of single-molecule magnet has been synthesized by reaction of [fac-Fe(Tp)(CN)3] with {(Tp)Ni(NO3)} species formed from an equimolar reaction mixture of Ni(NO3)2 · 6H2O and KTp in MeCN. The X-ray analysis of 1 shows molecular cube structure in which FeIII and NiII ions reside in alternate corners. The average intramolecular Fe?Ni distance is 5.124 Å. Out-of-phase ac susceptibility and reduce magnetization measurements show that 1 is a single molecule magnet with ground spin state S = 6 and spin reversal energy barrier U = 14 K. Magnetic hysteresis loops were also observed by applying fast sweeping field.  相似文献   

3.
The pentagonal bipyramidal high-spin iron(II) complex, [(TPA2C(O)NHtBu)Fe(CF3SO3)]+, is shown to exhibit a high-anisotropy ground state, with fits to dc magnetization data providing an axial zero-field splitting parameter of D = − 7.9 cm−1. The utility of this compound as a building unit is demonstrated, as its reaction with [ReCl4(CN)2]2− affords the cyano-bridged dinuclear cluster (TPA2C(O)NHtBu)FeReCl4(CN)2. dc magnetic susceptibility measurements reveal intracluster ferromagnetic exchange interactions between FeII and ReIV centers, with J = +3.0 cm−1, giving rise to a spin ground state of S = 7/2. Moreover, fits to dc magnetization data obtained for the FeRe cluster show the presence of strong axial anisotropy, with D = −2.3 cm−1. Finally, variable-frequency ac susceptibility measurements reveal the onset of slow magnetic relaxation at low temperature, suggesting that the FeRe cluster is a single-molecule magnet.  相似文献   

4.
The synthesis and characterisation of cis- and trans-[Co(tmen)2(NCCH3)2](ClO4)3 are described. Solvolysis rates have been measured by both 1H NMR spectroscopy and UV-Vis spectrophotometry in dimethyl sulfoxide at 298.2 K. The cis isomer undergoes solvolysis by consecutive first-order reactions, k1=5.61 × 10−4 and k2=5.35 × 10−4 s−1, each with steric retention. The measured solvolysis rate (single step reaction) for the trans isomer is k=1.54 × 10−5 s−1. The solvent exchange rates have been measured by 1H NMR spectroscopy in CD3CN at 298.2 K: kex(cis)=kct + kcc=2.0 × 10−5 and kex(trans)=ktc + ktt=4.56 × 10−6 s−1. From these data, the measured cis-trans isomerisation rate (1.71 × 10−6 s−1) and equilibrium position in CH3CN (17% trans), the steric course for substitution in the exchange processes has been determined: trans reactant - 69% trans product; cis reactant - 99% cis product. Aquation rates for cis- and trans-[Co(tmen)2(NCCH3)2](ClO4)3 have also been determined spectrophotometrically and by NMR; kcis=1.3 × 10−4 and ktrans=2.7 × 10−5 s−1. In both cases the steric course for the primary aquation step is indeterminate because the subsequent steps are faster. Where data are available, the [Co(tmen)2X2]n+ complexes are found to be consistently much more reactive than their [Co(en)2X2]n+ analogues.  相似文献   

5.
The binuclear mixed valence copper(I/II) compound [CuI(CN)3CuII(tn)2] (1) (tn = propane-1,3-diamine) and its acetonitrile adduct [CuI(CN)3CuII(tn)2] · 2MeCN (2) have been synthesized. Complex 1 crystallizes triclinic, space group , a = 8.117(2) Å, b = 8.389(2) Å, c = 11.920(2) Å, α = 108.728(3)°, β = 100.024(3)°, γ = 104.888(4)°, Z = 2, and compound 2 monoclinic, space group P21/m, a = 8.752(2) Å, b = 13.243(3) Å, c = 9.549(2) Å, β = 114.678(4)°, Z = 2. In both crystal structures, the binuclear [CuI(CN)3CuII(tn)2] complex with slightly different bonding geometries is formed. One of the three nitrogen atoms of a CuI(CN)3 moiety is coordinated to Cu(II) at the apex of a square-pyramid with two chelating ligands tn on its base. The shortest intramolecular CuII?CuII distance in 1 is 5.640(7) Å. The EPR behaviour of 1 has been investigated at room temperature and at 77 K. The magnetic properties were measured in the temperature range 1.8-300 K.  相似文献   

6.
Reaction of HSi(OEt)3 with IrCl(CO)(PPh3)2 (5:1 molar ratio) at room temperature for 1 h gives IrCl(H){Si(OEt)3}(CO)(PPh3)2 (1), which is observed by the 1H and 31P{1H} NMR spectra of the reaction mixture. The same reaction, but in 20:1 molar ratio at 50 °C for 24 h produces IrCl(H)2(CO)(PPh3)2 (2) rather than the expected product Ir(H)2{Si(OEt)3}(CO)(PPh3)2 (3) that was previously reported to be formed by this reaction. Accompanying formation of Si(OEt)4, (EtO)3SiOSi(OEt)3, and (EtO)2HSiOSi(OEt)3 is observed. On the other hand, trialkylhydrosilane HSiEt3 reacts with IrCl(CO)(PPh3)2 (10:1 molar ratio) at 80 °C for 84 h to give Ir(H)2(SiEt3)(CO)(PPh3)2 (4) in a high yield, accompanying with a release of ClSiEt3.  相似文献   

7.
One-pot reaction between MnCl2·4H2O, K2tcpd (tcpd2− = [C10N6]2− = (C[C(CN)2]3)2− = 2-dicyanomethylene-1,1,3,3-tetracyanopropanediide anion) and 2,2′-bipyrimidine (bpym = C8H6N4) in aqueous solution yields the new compound [Mn2(bpym)3(tcpd)2(H2O)2] (1). The molecular structure of 1 consists of a centrosymmetrical binuclear complex which includes unprecedented unidentate tcpd ligands with two bidentate and a bis-chelate bpym units. Examination of the intermolecular distances reveals that the dinuclear units are held together by hydrogen bonds involving coordinated water molecules and two nitrile groups of the tcpd ligand, giving rise to a 2D structure overall. Variable-temperature magnetic susceptibility data show the occurrence of slight antiferromagnetic coupling (J = −0.58 cm−1) between the Mn(II) ions through bridging bpym (the exchange Hamiltonian being defined as ).  相似文献   

8.
Mo(CO)4(LL) complexes, where LL = polypyridyl ligands such as 2,2′-bipyridine and 1,10-phenanthroline, undergo quasi-reversible, one-electron oxidations in methylene chloride yielding the corresponding radical cations, [Mo(CO)4(LL)]+. These electrogenerated species undergo rapid ligand substitution in the presence of acetonitrile, yielding [Mo(CO)3(LL)(CH3CN)]+; rate constants for these substitutions were measured using chronocoulometry and were found to be influenced by the steric and electronic properties of the polypyridyl ligands. [Mo(CO)3(LL)(CH3CN)]+ radical cations, which could also be generated by reversible oxidation of Mo(CO)3(LL)(CH3CN) in acetonitrile, can be irreversibly oxidized yielding [Mo(CO)3(LL)(CH3CN)2]2+ after coordination by an additional acetonitrile. Infrared spectroelectrochemical experiments indicate the radical cations undergo ligand-induced net disproportionations that follow first-order kinetics in acetonitrile, ultimately yielding the corresponding Mo(CO)4(LL) and [Mo(CO)2(LL)(CH3CN)3]2+ species. Rate constants for the net disproportionation of [Mo(CO)3(LL)(CH3CN)]+ and the carbonyl substitution reaction of [Mo(CO)3(LL)(CH3CN)2]2+ were measured. Thin-layer bulk oxidation studies also provided infrared characterization data of [Mo(CO)4(ncp)]+ (ncp = neocuproine), [Mo(CO)3(LL)(CH3CN)]+, [Mo(CO)3(LL)(CH3CN)2]2+ and [Mo(CO)2(LL)(CH3CN)3]2+ complexes.  相似文献   

9.
Structural changes between [OsIIL3]2+ and [OsIIIL3]3+ (L: 2,2′-bipyridine; 1,10-phenanthroline) and molecular and electronic structures of the OsIII complexes [OsIII(bpy)3]3+ and [OsIII(phen)3]3+ are discussed in this paper. Mid-infrared spectra in the ν(bpy) and ν(phen) ring stretching region for [OsII(bpy)3](PF6)2, [OsIII(bpy)3](PF6)3, [OsII(phen)3](PF6)2, and [OsIII(phen)3](PF6)3 are compared, as are X-ray crystal structures. Absorption spectra in the UV region for [OsIII(bpy)3](PF6)3 and [OsIII(phen)3](PF6)3 are dominated by very intense absorptions (ε = 40 000-50 000 M−1 cm−1) due to bpy and phen intra-ligand π → π transitions. In the visible region, relatively narrow bands with vibronic progressions of ∼1500 cm−1 appear, and have been assigned to bpy or phen-based, spin-orbit coupling enhanced, 1π → 3π electronic transitions. Also present in the visible region are ligand-to-metal charge transfer bands (LMCT) arising from π(bpy) → t2g(OsIII) or π(phen) → t2g(OsIII) transitions. In the near infrared, two broad absorption features appear for oxidized forms [OsIII(bpy)3](PF6)3 and [OsIII(phen)3](PF6)3 arising from dπ-dπ interconfigurational bands characteristic of dπ5OsIII. They are observed at 4580 and 5090 cm−1 for [OsIII(bpy)3](PF6)3 and at 4400 and 4990 cm−1 for [OsIII(phen)3](PF6)3. The bpy and phen infrared vibrational bands shift to higher energy upon oxidation of Os(II) to Os(III). In the cation structure in [OsIII(bpy)3](PF6)3, the OsIII atom resides at a distorted octahedral site, as judged by ∠N-Os-N, which varies from 78.78(22)° to 96.61(22)°. Os-N bond lengths are also in general longer for [OsIII(bpy)3](PF6)3 compared to [OsII(bpy)3](PF6)2 (0.010 Å), and for [OsIII(phen)3](PF6)3 compared to [OsII(phen)3](PF6)2 (0.014 Å). Structural changes in the ligands between oxidation states are discussed as originating from a combination of dπ(OsII) → π (bpy or phen) backbonding and charge redistribution on the ligands as calculated by natural population analysis.  相似文献   

10.
A hexarhenium cyanohydroxo anionic cluster complex [Re6Se8(CN)4(OH)2]4− was synthesized for the first time starting from [Re6Se8(OH)6]4−, which was crystallized as a salt of the composition Cs2.75K1.25[Re6Se8(CN)4(OH)2]·H2O (1). The reaction of the complex with Cu2+ in an aqueous ammonia or methylamine solutions afforded [Cu(NH3)5]2[Re6Se8(CN)4(OH)2]·8H2O (2) or [{Cu(CH3NH2)4}2Re6Se8(CN)4(OH)2] (3), respectively. All of these three compounds were characterized by a single-crystal X-ray diffraction method. Compound 1 is crystallized in the tetragonal space group I4/m with eight formula units per cell (a = b = 17.4823(14) Å, c = 19.430(2) Å, V = 5938.3(10) Å3); compound 2 is crystallized in the monoclinic space group P21/n with two formula units per cell (a = 12.1845(13) Å, b = 8.6554(9) Å, c = 19.2568(19) Å, β = 91.081(2)°, V = 2030.5(4) Å3); compound 3 is crystallized in the orthorhombic space group Cmcm with four formula units per cell (a = 19.816(4) Å, b = 14.611(3) Å, c = 13.751(3) Å, V = 3981.2(13) Å3). The luminescence properties of 1 were studied in both aqueous solution and solid state. In addition, the electronic structure of [Re6Se8(CN)4(OH)2]4− was elucidated by DFT calculations.  相似文献   

11.
The kinetics of the reduction of by Co(dmgBF2)2(H2O)2 in 0.041 M HNO3/NaNO3 was found to be first-order in both the oxidizing and reducing agents and the second-order rate constant is given by kobs = k1 + k2K[Cl], with k1=1.59 × 106 M−1 s−1and k2K = 1.83 × 108 M−2 s−1, at 25 °C. The term that is first-order in [Cl] is attributed to the formation of an ion-pair between and Cl. For k1, the activation parameters ΔH* and ΔS* are 2.22 ± 0.02 kcal mol−1 and −22.7 ± 0.8 cal mol−1 K−1, respectively. The self-exchange rate constant of k22 ≈ 8.7 × 10−3 M−1 s−1 for was estimated using Marcus theory and the known self-exchange rate constant for .  相似文献   

12.
The reaction between [Mn(CO)5Br] and di-2-pyridylketone-p-nitrophenylhydrazone (dpknph) in diethyl ether under ultrasonic conditions gave fac-[Mn(CO)3(dpknph)Br] in good yield. Optical and thermodynamic measurements on fac-[Mn(CO)3(dpknph)Br] in non-aqueous polar solvents revealed reversible interconversion between two intense charge transfer absorption bands due to π-π* (dpk), followed by dpk → nitro intraligand charge transfer transition (ILCT), mixed with metal ligand charge transfer transition (MLCT) due to . In non-polar solvents, a single absorption band appeared. Extinction coefficients of 46 200 ± 2000 and 28 400 ± 2000 M−1 cm−1 were calculated in DMSO for the low- and high-energy electronic states of fac-[Mn(CO)3(dpknph)Br] using excess NaBF4. Changes in enthalpy (ΔHø) of +14.0 and −12.1 kJ mol−1, entropy (ΔSø) of +28.65 and −64.30 J mol−1 K−1, and free energy (ΔGø) of +5.48 and +7.08 kJ mol−1 at 298 K were calculated for the interconversion between the high and low energy electronic states of fac-[Mn(CO)3(dpknph)Br]. These results allow for the use of these systems (fac-[Mn(CO)3(dpknph)Br] and surrounding solvent or solute molecules) as optical sensors for a variety of physical and chemical stimuli that include metal ions. Group 12 metal ions in concentrations as low as 1.00 × 10−9 M can be detected and determined using fac-[Mn(CO)3(dpknph)Br] in dmso in the presence and absence of NaBH4.  相似文献   

13.
The reactivity of the metalloligand [Pt2(μ-S)2(PPh3)4] towards a variety of indium(III) substrates has been explored. Reaction with excess In(NO3)3 and halide (KBr or NaI) gave the four-coordinate adducts [Pt2(μ-S)2(PPh3)4InX2]+[InX4] (X = Br, I). An X-ray structure determination on the iodo complex revealed a slightly distorted tetrahedral coordination geometry at indium. In contrast, reaction of [Pt2(μ-S)2(PPh3)4] with indium(III) chloride was more complex; the ion [Pt2(μ-S)2(PPh3)4InCl2]+ was initially observed in solution (using ESI mass spectrometry), and isolated as its BPh4 salt. Analysis of [Pt2(μ-S)2(PPh3)4InCl2]+[BPh4] by ESI MS showed the parent cation when analysed in MeCN solution. However in solutions containing methanol, partial solvolysis occurred to give the di-indium species [{Pt2(μ-S)2(PPh3)4InCl(OMe)}2]2+ (proposed to contain an In2(μ-OMe)2 unit with five-coordinate indium) and its fragment ion [Pt2(μ-S)2(PPh3)4InCl(OMe)]+. Reaction of [Pt2(μ-S)2(PPh3)4] with InCl3·3H2O, 8-hydroxyquinoline (HQ) and trimethylamine in methanol gave the adduct [Pt2(μ-S)2(PPh3)4InQ2]+, isolated as its PF6 salt. The same cationic complex is formed when [Pt2(μ-S)2(PPh3)4] is reacted with InQ3 in methanol, but in this case the product is contaminated with the mononuclear complex [(Ph3P)2PtQ]+ formed by disintegration of the trinuclear complex [Pt2(μ-S)2(PPh3)4InQ2]+ with byproduct Q. [(Ph3P)2PtQ]+BPh4 was independently prepared from cis-[PtCl2(PPh3)2] and HQ/Me3N, and is the first example of a platinum 8-hydroxyquinolinate complex containing phosphine ligands.  相似文献   

14.
A seven-coordinate FeIII complex, [Fe(oda)(H2O)2(NO3)], was obtained after dissolving Fe(NO3)3 · 9H2O in an aqueous solution of oxydiacetic acid (H2oda) at room temperature. In the solid state, the FeIII center adopts a pentagonal bipyramid geometry with an {FeO7} core formed by a tridentate oda2− and a bidentate in the equatorial plane, and two axial water molecules. Magnetic measurements and EPR spectra revealed the presence of S = 5/2 FeIII centers with rhombic zero field splitting parameters (D = 0.81 cm−1, E/D = 0.33 ). Weak antiferromagnetic interactions with J ≈ −0.06 cm−1 operating between neighboring Fe ions connected through Fe-O-C-O?H-O-Fe paths are estimated using the molecular field approximation.  相似文献   

15.
Reaction of [Ru2(O2CMe)4]Cl with K3[Cr(CN)5NO] in water forms Hx[RuII/III2(O2CMe)4]3−x-[Cr(CN)5NO]·zH2O (x = 0.2) that magnetically orders at 4.0 K and possesses an interpenetrating body centered cubic [a = 13.2509(2) Å] structure with random locations of the bridging nitrosyl ligands, and x/3 vacant cation sites. Similarly, the aqueous reaction of [Ru2(O2CMe)4]Cl with Na2[Fe(CN)5NO] forms paramagnetic [Ru2(O2CMe)4]2[Fe(CN)5NO]·H2O, which has a similar tetragonal interpenetrating structure [a = 13.0186(1) Å, c = 13.0699(2) Å] where the NO ligands are presumably nonbridging and 1/3 of the expected cation sites are unoccupied. The presence of uncoordinated NO sites in addition to missing neighboring [Ru2(O2CMe)4]+ units, results in significant vacancies (or holes) in the lattice.  相似文献   

16.
Flash photolysis with time-resolved infrared (TRIR) spectroscopy was used to elucidate the photochemical reactivity of the hydroformylation catalyst precursor Co2(CO)6(PMePh2)2. Depending on reaction conditions, the net products of photolysis varied significantly. A model is presented that accounts for the net reactivity with two initial photoproducts, the 17-electron species Co(CO)3(PMePh2) and the coordinatively unsaturated dimer Co2(CO)5(PMePh2)2. No evidence was found for photochemical formation of Co2(CO)6(PMePh2). Time-resolved spectroscopic studies allowed for the direct observation of transient species and for kinetics studies of certain reactions; for example, the reactions of Co(CO)3PMePh2 with CO and with PMePh2 gave the respective rate constants 1.5 × 105 and 1.2 × 107 M−1 s−1, while the analogous reactions with Co2(CO)5(PMePh2)2 gave the rate constants of 2.6 × 106 M−1 s−1 and 3.9 × 107 M−1 s−1.  相似文献   

17.
A new complex of composition [Cu(2-NO2bz)2(nia)2(H2O)2] (1) (nia = nicotinamide, 2-NO2bz = 2-nitrobenzoate) has been prepared and its composition and stereochemistry as well as coordination mode have been determined by elemental analysis, electronic, infrared and EPR spectroscopy, magnetization measurements over the temperature range 1.8-300 K, and its structure has been solved, as well. The complex structure consists of the centrosymmetric molecules with Cu(II) atom monodentately coordinated by the pair of 2-nitrobenzoato anions and by the pair of nicotinamide molecules, forming nearly tetragonal basal plane, and by a pair of water molecules that complete tetragonal-bipyramidal coordination polyhedron about the copper atom. The complex 1 exhibits magnetic moment μeff = 1.86 B.M. at 300 K which decreases to μeff = 1.83 B.M. at 1.8 K. The magnetic susceptibility temperature dependence obeys Curie-Weiss law with Curie constant of 0.442 cm3 K mol−1 and with Weiss constant of −1.0 K. EPR spectra at room temperature as well as at 77 K are of axial type with g = 2.065 and g = 2.280 and exhibit clearly, but partially resolved parallel hyperfine splitting with AII = 160 G, that is consistent with the determined molecular structure of 1. In order to analyze the factors influencing the degree of tetragonal distortion of coordination polyhedron, the dataset of 72 structures similar to that of 1 was extracted from CCD and analyzed. A significant correlation between the average Cu-Oax bond length and tetragonality parameter τ which was found as a consequence of the Jahn-Teller effect.  相似文献   

18.
An oxalato-bridged binuclear iron(III) compound, Fe2(C2O4)Cl4(DMF)4 (DMF = dimethylformamide), was obtained by electrocrystallization for three weeks at 3.4 V and it displays a strong antiferromagnetic interaction of J = −6.74(4) cm−1.  相似文献   

19.
Thiocarbonate ruthenium complexes of the form CpRu(L)(L′)SCO2R (L = L′ = PPh3 (1), 1/2 dppe (2), L = PPh3, L′ = CO (3); R = Et (a), Bun (b), C6H5 (c), 4-C6H4NO2 (d)) have been synthesized by the reaction of the corresponding sulfhydryl complexes, CpRu(L)(L′)SH, with chloroformates, ROCOCl, at low temperature. The bis(triphenylphosphine) complexes 1 can be converted to 3 under CO atmosphere. The crystal structures of CpRu(PPh3)2SCO2Bun (1b), CpRu(dppe)SCO2Bun (2b), and CpRu(PPh3)(CO)SCO2Bun (3b) are reported.  相似文献   

20.
The syntheses of (PPh4)2[M(CN)3O(pic)] · nH2O (M = Mo, W; n = 2.5, 4; pic = picolinate anion) as well as (PPh4)2[Mo(CN)4O(apic)] · 3H2O (apic = 2-pyridinecarboxaldehyde) are presented. The salts have been characterised by elemental analysis, IR and UV-Vis spectroscopy, cyclic voltammetry and X-ray crystal structure determination of (PPh4)2[Mo(CN)3O(pic)] · 2.5H2O. The anion in the latter salt is approximately octahedral with O and N donor atoms of pic situated in the trans and cis position to the MoO bond, respectively. The picolinate complexes have the characteristic MLCT bands in the visible spectra with the absorption maxima linearly dependent on the Reichardt’s ET solvent parameter. These complexes are shown to exhibit the strongest solvatochromic effect of all studied tricyanooxo and hexacyano complexes of Mo(IV) and W(IV). The obtained values of E1/2 in these salts [0.333 V (Mo) and 0.018 V (W) in 1,2-C2H4Cl2] were found to be the highest of all [M(CN)3O(LL)]2− type complexes making these salts show reversibility in a remarkable variety of solvents. The oxidation of coordinated apic to pic has been demonstrated by means of electronic spectroscopy. The isolated salts were used to monitor the reaction of [M(CN)4O(H2O)]2− with 2,2′-pyridil in water-ethanol solution. It was found that 2,2′-pyridil disproportionate to Hpic and apic in the first step and the other decomposition products of 2,2′-pyridil postulated in the literature were not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号