首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Complexes of three Cd(II)-containing macrocyclic Schiff base complexes containing a phenanthroline ligand (L) of the type [CdLn(Cl)]+ (n=2,3,4), have been prepared via [1+1] cyclocondensation of 2,9-dicarboxaldehyde-1,10-phenanthroline and a number of linear triamines via a metal-templated reaction and coordination features have been examined. The ligands, L, are 16-, 17-, and 18-membered pentaaza macrocycles and all the complexes incorporate a 1,10-phenanthroline unit as an integral part of their cyclic structure. The complexes have been characterized by a variety of methods including IR, 1H, 13C, DEPT, COSY(H,H) and HMQC(H,C) NMR studies and MALDI mass spectrometry. The polymeric structure of was determined by X-ray crystallography, which showed that the complex cation consisted of a pentagonal bipyramidally coordinated Cd(II) ion. The seven-coordinated Cd(II) ion is ligated by the five nitrogen atoms of the macrocycle in the equatorial plane and has two bridging chloride ligands in the axial positions resulting in a ribbon of such complex ions. Supporting ab initio HF-MO calculations have been undertaken using the standard 3-21G and 6-31G basis sets.  相似文献   

2.
Two cobalt (II) complexes containing a dipyrido[3,2-a:2',3'-c]phenazine (dppz) base with the general formulation [Co(dppz)(dmp)(2)]Cl(2), where dmp is 4,7-dimethyl-1,10-phenanthroline ligand (4,7-dmp) (1) and 2,9-dimethyl-1,10-phenanthroline ligand (2,9-dmp) (2) were synthesized and characterized. Binding interactions of these complexes with calf thymus DNA were investigated by emission, absorption, circular dichroism, and viscosity studies, and the effects of the positions of methyl substitutions in phenanthroline coligands were investigated. The DNA binding constants obtained from the absorption spectral titrations decrease in the order of 1?>?2, which is consistent with the trend in apparent emission enhancement of the complexes on binding to calf thymus DNA. These observations were supported by circular dichroism spectroscopy and viscosity measurements and reveal that DNA binding affinity of the complexes depends on the position of methyl groups on the phenanthroline ligands.  相似文献   

3.
A novel binuclear complex [(bpy)2Ru(mu-bipp)Ru(bpy)2](ClO4)4, where bpy=2,2'-bipyridine and bipp=2,9-bis(2-imidazo[4,5-f][1,10]phenanthroline)-1,10-phenanthroline has been synthesized. Photophysical results reveal that this complex interacts with calf-thymus DNA with intrinsic binding constant 2.6 x 10(5) M(-1) in the buffer containing 5 mM Tris and 50 mM NaCl. The fact that the intraligand transition of bipp around 370 nm decreased by up to 50% in the presence of DNA, much more pronounced than the metal to ligand charge transfer band around 445 nm indicates the bridging ligand bipp is also the intercalating ligand into DNA base pairs. The emission band around at 601 nm increased by 1.4-fold, and red shifted 14 nm when DNA was added to saturation. The emission quenching of this complex by K4[Fe(CN)6] was depressed greatly when DNA was present. Viscometric measurements also proved the intercalative binding mode.  相似文献   

4.
Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100 μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen)2]Cl2, (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen)3]Cl3, (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl2·2H2O) or cobalt(II) chloride hexahydrate (CoCl2·6H2O) alone had no effects as “free” cations. Taken together, these findings suggest that use of Cu(II) or Co(III) conjugation to organic compounds, in insect repellents and/or food additives could enhance DENV2/ZIKV loads in human cells and perhaps induce pathogenesis in infected individuals or individuals pre-exposed to such conjugated complexes.

Importance

Mosquito-borne diseases are of great concern to the mankind. Use of chemicals/repellents against mosquito bites and transmission of microbes has been the topic of interest for many years. Here, we show that thiosemicarbazone ligand(s) derived from 2-acetylethiazole or citral or 1,10-phenanthroline upon conjugation with copper(II) or cobalt(III) metal centers enhances dengue virus (serotype 2; DENV2) and/or Zika virus (ZIKV) infections in mosquito, mouse and human cells. Enhanced ZIKV/DENV2 capsid mRNA or envelope protein loads were evident in mosquito cells and human keratinocytes, when treated with compounds before/after infections. Also, treatment with copper(II) or cobalt(III) conjugated compounds increased viral titers and number of plaque formations. These studies suggest that conjugation of compounds in repellents/essential oils/natural products/food additives with copper(II) or cobalt(III) metal centers may not be safe, especially in tropical and subtropical places, where several dengue infection cases and deaths are reported annually or in places with increased ZIKV caused microcephaly.  相似文献   

5.
A new potentially tetradentate (N4) Schiff base ligand (L), 1,9,12,20-tetraazatetracyclo[18.2.2.02,7.014,19]tetracosa-2(7),3,5,8,12,14(19),15,17-octaene containing a piperazine moiety is described. Macrocyclic Schiff base complexes, [NiL](ClO4)2 (1) and [CuL](ClO4)2 (2) have been obtained from equimolar amounts of ligand (L) with nickel(II) and copper(II) metal ions. While the equilibrium reaction in the presence of cobalt(II) and zinc(II) metal ions with ligand L in a 1:1 molar ratio yielded the open-chain Schiff base complexes, [CoL′](ClO4)2 (3) and [ZnL′](ClO4)2 (4) containing two terminal primary amino groups. The ligand L′ is 1,4-bis(2-(2-aminoethyliminomethyl)phenyl)piperazine. The crystal structures of (1) and (4) have been also determined by X-ray diffraction. It was shown that the Ni(II) is coordinated to the ligand L by two nitrogen atoms of piperazine group and two nitrogen atoms of the imine groups, in a slightly distorted square-planar geometry. Also single crystal X-ray analysis of (4) confirmed a distorted octahedral arrangement in the vicinity of Zn atom with N6 donor set. The spectroscopic characterization of all complexes is consistent with their crystal structures.  相似文献   

6.
Ternary copper(II) complexes [CuLL'](ClO(4)), where HL is NSO-donor Schiff base (2-(methylthio)phenyl)salicylaldimine and L' is NN-donor phenanthroline bases like 1,10-phenanthroline (phen), dipyridoquinoxaline (dpq) and 2,9-dimethyl-1,10-phenanthroline (dmp), are prepared and structurally characterized by X-ray crystallography. The complexes have a distorted square-pyramidal (4+1) CuN(3)OS coordination geometry. While [CuL(phen)](ClO(4)) and [CuL(dpq)](ClO(4)) show axial sulfur ligation, [CuL(dmp)](ClO(4)) has the sulfur bonded at the equatorial site. The one-electron paramagnetic complexes exhibit axial electron paramagnetic resonance (EPR) spectra in dimethylformamide glass at 77 K. The complexes are redox active and a quasireversible electron transfer process near 0.0 V vs saturated calomel electrode (SCE) in DMF-Tris buffer (1:4 v/v at pH 7.2) involving Cu(II)/Cu(I) couple is observed for the phen and dpq complexes. The dmp complex exhibits an irreversible reduction process forming bis(dmp)copper(I) species. A profound effect of the substituents of the phenanthroline bases is observed on the binding of the complexes to the calf thymus (CT) and in the cleavage of supercoiled (SC) pUC19 DNA. The phen and dpq complexes show DNA cleavage activity in presence of mercaptopropionic acid (MPA). The dmp complex is cleavage inactive in presence of MPA. All the complexes show photocleavage activity when irradiated with a monochromatic UV light of 312 nm. The dpq complex also cleaves SC DNA on visible light irradiation at 436, 532 and 632.8 nm but with a longer exposure time and higher complex concentration. The cleavage reactions in presence of MPA are found to involve hydroxyl radical. The photocleavage reactions are found to occur under aerobic conditions showing an enhancement of cleavage in D(2)O and inhibition with azide addition suggesting formation of singlet oxygen as a reactive species. The roles of sulfur of the Schiff base as photosensitizer and the phenanthroline bases as minor groove binder, and their influence on the photocleavage activity are discussed. The quinoxaline ligand exhibits significant photosensitizing effect assisted by the copper(II) center.  相似文献   

7.
The new ligand 2-(4-phenoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (ppip) and its Ru(II) complexes [Ru(2,9-dmp)2(ppip)]2+ (1) and [Ru(4,7-dmp)2(ppip)]2+ (2; 2,9- and 4,7-dmp = 2,9- and 4,7-dimethyl-1,10-phenanthroline, resp.) were synthesized and characterized. The binding properties of the two complexes towards calf-thymus DNA (CT-DNA) in buffered H2O (pH 7.2) were investigated by different spectrophotometric methods and viscosity measurements. Both 1 and 2 strongly bind to CT-DNA by means of intercalation, but with different binding strengths. In contrast to the more tightly bound complex 2, the sterically more-demanding complex 1 showed no fluorescence emission, neither alone nor in the presence of CT-DNA. Our results demonstrate that the position of Me groups on phenanthroline (phen) ancillary ligands significantly affects the overall DNA-recognition propensities of Ru(II)-polypyridyl complexes. Further, the partly resolved complex 2 was shown by circular dichroism (CD) to stereoselectively recognize CT-DNA, in contrast to 1.  相似文献   

8.
Three new heteroleptic Cu(I) complexes containing one phenanthroline and one diphosphine type ligand ([Cu(N-N)(P-P)]+) have been prepared. In particular, one ligand is constituted by 1,10-phenanthroline (1), 2,9-dimethyl-1,10-phenanthroline (2) and 2,9-diphenethyl-1,10-phenanthroline (3) and the other ligand is in all cases 1,1′-bis(diphenylphosphino)ferrocene (dppf). Therefore, copper and iron metal centres are quite close one another, as evidenced by X-ray crystal diffraction. The structure together with the electrochemical and photophysical properties of these complexes have been compared to that of the corresponding complexes where dppf has been replaced by bis[2-(diphenylphosphino)-phenyl]ether (POP). Cyclic voltammetric experiments evidenced that the first oxidation process is located on the ferrocene moiety and that oxidation of Cu(I) is moved to more positive potential values and a chemical reaction is coupled to the electron transfer process. The absorption spectra show a metal-to-ligand charge transfer (MLCT) band, typical of Cu(I) phenanthroline complexes, at a higher energy compared to the homoleptic [Cu(N-N)2]+ species. No emission at either room temperature or 77 K has been observed for compounds 2 and 3, contrary to the high luminescence observed for the corresponding POP complexes. This result is consistent with a photoinduced energy transfer from the Cu(I) complex to the ferrocene moiety.  相似文献   

9.
Described are further studies directed towards elucidating the mechanism of the nitric oxide reduction of the copper(II) model system, Cu(dmp)2(2+) (I, dmp=2,9-dimethyl-1,10-phenanthroline). The reaction of I with NO in methanol results in the formation of Cu(dmp)2+ (II) and methyl nitrite (CH3ONO), with a second order rate constant kNO=38.1 M-1 s-1 (298K). The activation parameters for this reaction in buffered aqueous medium were measured to be DeltaH(double dagger)=41.6 kJ/mol and DeltaS(double dagger)=-82.7 kJ/mol deg. The addition of azide ion (N3-) as a competing nucleophile results in a marked acceleration in the rate of the copper(II) reduction. Analysis of the kinetics for the NO reduction of the bulkier Cu(dpp)(2)2+ (IV, dpp=2,9-diphenyl-1,10-phenanthroline) and the stronger oxidant, Cu(NO2-dmp)2(2+) (V, NO2-dmp=5-nitro-2,9-dimethyl-1,10-phenanthroline), gave the second order rate constants kNO=21.2 and 29.3 M-1 s-1, respectively. These results argue against an outer sphere electron transfer pathway and support a mechanism where the first step involves the formation of a copper-nitrosyl (Cu(II)-NO or Cu(I)-NO+) adduct. This would be followed by the nucleophilic attack on the bound NO and the labilization of RONO to form the nitrite products and the cuprous complex.  相似文献   

10.
A series of cobalt(II) complexes of Schiff base with some peripheral substituents was employed for the measurements of redox potentials of the cobalt(II) complexes and stability constants for those pyridine and oxygen adducts. The electron-withdrawing substituents favor the reduction of a cobalt(II) ion, but make its oxidation difficult. While a Hammett reaction constants for log Kpy is positive, that for log KO2 is negative, indicating that pyridine nucleophilically attacks the cobalt(II) ion, but molecular oxygen attacks the ion electrophilically.  相似文献   

11.
The oxidative addition of phenylselenium bromide to three-coordinate Pt(0) complex [Pt(2,9-dimethyl-1,10-phenanthroline)(dimethylmaleate)] affords the corresponding five-coordinate Pt(II) complex having trigonal-bipyramidal coordination geometry. The product of the reaction exists as two geometrical isomers (rotamers): in the kinetically favoured compound the olefin substituents are on the same side of the bromide ligand, while the most thermodynamically stable isomer holds the same substituents pointing at the phenylselenenide ligand. The crystal structure of the two isomers is reported and discussed with respect to the reaction mechanism and thermodynamic stability.  相似文献   

12.
We have studied the binding of 1,10-phenanthroline to specifically active-site cobalt(II)-substituted horse-liver alcohol dehydrogenase [Co(II)-LADH]. The dissociation constant is a factor of 6500 smaller than in the native enzyme. Spectral evidence is given which shows that 1,10-phenanthroline does not remove the catalytic Co(II) ion and that binding of 1,10-phenanthroline renders the catalytic metal ion pentacoordinate. The maximum limiting rate constant for the association of 1,10-phenanthroline to Co(II)-LADH is about 60 s-1. This is about a third of the value (169 s-1) determined for native horse-liver alcohol dehydrogenase, Zn(II)LADH [Frolich et al. (1978) Arch. Biochem. Biophys. 189, 471-480]. For cadmium(II)-substituted horse-liver alcohol dehydrogenase, [Cd(II)LADH] the maximum limiting rate constant for association of 1,10-phenanthroline increased to 590 s-1. These findings demonstrate that the rate-limiting step is strongly dependent on the chemical nature of the catalytic metal ion and its immediate environment. 1,10-Phenanthroline is shown to bind to the Co(II)-LADH.NAD+ complex in the open conformation. The maximum limiting rate constant remains unchanged in the presence of NAD+. The data have been used to derive a kinetic scheme for the formation of ternary complexes including NAD+ that involves a slow intermediary step.  相似文献   

13.
The removal of cobalt from cobalt(II) bovine carbonic anhydrase by pyridine-2-carboxylate, pyridine-2,6-dicarboxylate and 5-methyl-1,10-phenanthroline occurs via formation of an intermediate. This is presumed to be a ternary adduct of cobalt(II) enzyme with the ligand. In this, metal-protein bonds are loosened, probably via distortion of the normal geometry, resulting in accelerated breakdown of the adduct to apoprotein, compared with the behavior of the cobalt(II) enzyme alone. With 2-carboxy-1,10-phenanthroline, removal of metal is very rapid but no adduct is observed. Values of stability constants of the adducts and rate constants for their decomposition to apoprotein and their formation from apoprotein and cobalt(II) complex were measured at pH 5.5 and 25°C. Formation and dissociation rate constants for the adduct of cobalt carbonic anhydrase with pyridine-2,6-dicarboxylate could be measured from pH 5 to 7 and 10° to 25°C by stopped flow. Values of thermodynamic parameters for the various reactions agreed well with those estimated from the kinetic data.  相似文献   

14.
A heterodinuclear (Ru(II), Co(III)) metal polypyridyl complex [(phen)2Ru(bpibH2)Co(phen)2]5+ {phen = 1,10-phenanthroline, bpibH2 = 1,4-bis([1,10]phebanthroline-[5,6-d]imidazol-2-yl)-benzene} has been designed and synthesized. The comparative study on the interactions of the Ru(II)-Co(III) complex with calf thymus DNA (CT-DNA) and yeast tRNA has been investigated by UV-visible spectroscopy, fluorescence spectroscopy, viscosity, as well as equilibrium dialysis and circular dichroism (CD). The antitumor activities of the complex have been evaluated by MTT {3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide} method and Giemsa staining experiment. These results indicate that the structures of nucleic acids have significant effects on the binding behaviors of metal complexes. Furthermore, the complex demonstrates different antitumor activity against selected tumor cell lines in vitro, and can make the cell apoptosis.  相似文献   

15.
One-dimensional organic/inorganic composite coordination polymer has been synthesised by the reaction of manganese(II) chloride with the chelating bidentate ligand, 1,10-phenanthroline (1,10-phen). X-ray single crystal analysis shows a doubly chloride bridged 1-D polymer, [Mn(μ-Cl)2(phen)]n (1), where manganese(II) ions possess octahedral environment. The complex is characterised by elemental analysis, different spectroscopic, electrochemical and low temperature magnetic susceptibility measurements. 1 exhibits strong fluorescence emission band at 410 nm and can serve as potential photoactive material as indicated from the characteristic fluorescence properties. Magnetic susceptibility measurements reveal a weak ferromagnetic interaction between the two high-spin Mn(II) ions of J = 0.017 cm−1.  相似文献   

16.
The interaction of a series of mixed ligand complexes of the type [Ru(NH3)4(diimine)]Cl2, where diimine=2,2-bipyridine (bipy), 1,10-phenanthroline (phen), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp), 4,7-dimethyl-1,10-phenanthroline (4,7-dmp), 2,9-dimethyl-1,10-phenanthroline (2,9-dmp), 3,4,7,8-tetra-methyl-1,10-phenanthroline (Me4phen), with calf thymus DNA has been studied using absorption, emission and circular dichroic spectral measurements and viscometry and electrochemical techniques. On interaction with DNA the complexes show hypochromism and red-shift in their MLCT band suggesting that the complexes bind to DNA. The magnitude of the binding constant (Kb) obtained from absorption spectral titration varies depending upon the nature of the diimine ligand: Me4phen > 5,6-dmp > 4,7-dmp > phen suggesting the use of diimine ‘face’ of the octahedral complexes in binding to DNA. The interaction of phen complex possibly involves phen ring partially inserted into the DNA base pairs. In contrast, the methyl-substituted phen complexes would involve hydrophobic interaction of the phen ring in the grooves of DNA, which is supported by hydrogen bonding interactions of the ammonia ligands with the intrastrand nucleobases. Also the shape and size of the phen ligand as modified by the methyl substituents determine the DNA binding site sizes (0.12-0.45 base pairs). The relative emission intensities (I/I0) of the DNA-bound complexes parallel the variation in Kb values. Almost all the metal complexes exhibit induced CD bands on binding to B DNA, with the 4,7-dmp and Me4phen complexes inducing certain structural modifications on the biopolymer. DNA melting curves obtained in the presence of metal complexes reveal a monophasic melting of the DNA strands, the Me4phen complex exhibiting a slightly enhanced tendency to stabilize the double-stranded DNA. There were slight to appreciable changes in the relative viscosities of DNA, which are consistent with enhanced hydrophobic interaction of the methyl-substituted phen rings. Upon interaction with CT DNA, the Me4phen, 4,7-dmp and 5,6-dmp complexes, in contrast to bipy, phen and 2,9-dmp complexes, show a decrease in anodic peak current in their cyclic voltammograms suggesting that they exhibit enhanced DNA binding. DNA cleavage experiments show that all the complexes induce cleavage of pBR322 plasmid DNA, the Me4phen and 5,6-dmp complexes being remarkably more efficient than other complexes.  相似文献   

17.
A new two-dimensional (2D) thiocyanato-bridged cobalt(II) network formulated as [LCo2(NCS)2]n (1), has been synthesized with the Schiff base ligand N,N′-bis(3-methoxysalicylidenimino)-1,3-diaminopropane (H2L) and thiocyanate anions. This novel layered compound has been completely characterized by elemental analysis, FT-IR, UV-Vis spectroscopy and the structure has been established by single crystal X-ray diffraction studies. The structure of 1 consists of a doubly phenoxo-bridged dimer comprising two different cobalt(II) centers with different coordination geometries (octahedral and tetrahedral). The 2D network is accomplished by bridging thiocyanate ligands, connecting the dimeric motifs in an end-to-end fashion. Variable-temperature magnetic susceptibility and EPR measurements reveal predominant antiferromagnetic exchange interaction in the complex.  相似文献   

18.
Using iron(III)porphyrins in combination with (diacetoxyiodo)benzene allows for the conversion of 2,9-bis(bromomethyl)-4,7-diphenyl-1,10-phenanthroline into 4,7-diphenyl-1,10-phenanthroline-2,9-dicarboxylic acid. This method provides a cost-effective and environmentally-friendly oxidation procedure using less toxic PhI(OAc)2 and biologically relevant iron(III)porphyrins. The catalytic activity of five kinds of iron-metallated functional porphyrins were investigated using different oxidants, including air, H2O2, PhI(OAc)2, PhIO and NaClO. Our results showed that the use of T(p-NO2)PPFeCl with PhI(OAc)2 as the oxidant in the presence of water displays remarkable activity for the desired oxidation reaction. The generality of this method was examined by synthesizing the carboxylic acids of pyridines and quinolines.  相似文献   

19.
A binuclear complex [(phen)Cu(mu-bipp)Cu(phen)](ClO(4))(4), where phen=1,10-phenanthroline and bipp=2,9-bis(2-imidazo[4,5-f][1,10]phenanthroline)-1,10-phenanthroline, has been synthesized and its interaction with calf-thymus DNA in the buffer containing 5mM Tris and 50mM NaCl has been studied by means of electronic absorption titration, luminescence titration and viscometric measurements. The absorbance of the complex in the range of 320-400 nm, which is mainly based on bipp showed no obvious change upon addition of DNA, while the peak at 270 nm, which is determined by both phen and bipp decreased by up to 18%. The emission band of the complex around 360 nm decreased remarkably in presence of DNA. The emission quenching of this complex by [Fe(CN)(6)](4-) was depressed greatly when bound to DNA. The relative viscosity of DNA was increased by this complex more significantly than a bipp directed intercalating reagent. These results suggest that this complex binds to calf thymus DNA by intercalation of the two phenanthrolinecopper terminals. The apparent intrinsic binding constant of the complexes with DNA was 1.6 x 10(4)M(-1) as determined by UV-visible titration.  相似文献   

20.
The synthesis of four guanidine-pyridine hybridligands and their spectroscopic features in MeCN are described. In order to demonstrate their coordinating properties, the corresponding cobalt(II)chloride complexes have been prepared and completely characterised by means of X-ray structure analysis, UV/Vis spectroscopy and mass spectrometry. The neutral complexes {1,1,3,3-tetramethyl-2-(quinolin-8-yl)guanidine}cobalt(II)-dichloride [Co(TMGqu)Cl2] and {N-(1,3-dimethylimidazolidin-2-yliden)pyridin-8-amine}cobalt(II)-dichloride [Co(DMEGpy)Cl2] exhibit a tetrahedral coordination of the cobalt atom, whereas in bis[chlorobis{N-(1,3-dimethylimidazolidin-2-yliden)quinolin-8-amine}cobalt(II)]tetrachlorocobaltate [Co(DMEGqu)2Cl]2[CoCl4] and chlorobis{1,1,3,3-tetramethyl-2-((pyridin-2-yl)methyl)guanidine}cobalt(II)chloride [Co(TMGpy)2Cl]Cl, the cobalt atom is coordinated in a trigonal pyramidal environment. These trigonal pyramidal complex cations represent the first bis(chelated) guanidine cobalt complexes in which the pyridine donor resides on the apical position and the guanidine donor forms with the chlorine atom the base of the pyramid. Besides the structural characterisation, the quenching effect of the cobalt(II) ion (d7) on the ligand fluorescence has been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号