首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work we report on the synthesis, crystal structure, and physicochemical characterization of the novel dinuclear [FeIIICdII(L)(μ-OAc)2]ClO4·0.5H2O (1) complex containing the unsymmetrical ligand H2L = 2-bis[{(2-pyridyl-methyl)-aminomethyl}-6-{(2-hydroxy-benzyl)-(2-pyridyl-methyl)}-aminomethyl]-4-methylphenol. Also, with this ligand, the tetranuclear [Fe2IIIHg2II(L)2(OH)2](ClO4)2·2CH3OH (2) and [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) complexes were synthesized and fully characterized. It is demonstrated that the precursor [FeIII2HgII2(L)2(OH)2](ClO4)2·2CH3OH (2) can be converted to (3) by the fixation of atmospheric CO2 since the crystal structure of the tetranuclear organometallic complex [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) with an unprecedented {FeIII(μ-Ophenoxo)2(μ-CO3)FeIII} core was obtained through X-ray crystallography. In the reaction 2 → 3 a nucleophilic attack of a FeIII-bound hydroxo group on the CO2 molecule is proposed. In addition, it is also demonstrated that complex (3) can regenerate complex (2) in aqueous/MeOH/NaOH solution. Magnetochemical studies reveal that the FeIII centers in 3 are antiferromagnetically coupled (J = − 7.2 cm− 1) and that the FeIII-OR-FeIII angle has no noticeable influence in the exchange coupling. Phosphatase-like activity studies in the hydrolysis of the model substrate bis(2,4-dinitrophenyl) phosphate (2,4-bdnpp) by 1 and 2 show Michaelis-Menten behavior with 1 being ~ 2.5 times more active than 2. In combination with kH/kD isotope effects, the kinetic studies suggest a mechanism in which a terminal FeIII-bound hydroxide is the hydrolysis-initiating nucleophilic catalyst for 1 and 2. Based on the crystal structures of 1 and 3, it is assumed that the relatively long FeIII…HgII distance could be responsible for the lower catalytic effectiveness of 2.  相似文献   

2.
The decaaqua-di-rhodium(II) cation has been found to be an interesting starting material in the preparation of dioxygen complexes with different N-donor ligands. Treatment of aqueous HClO4 solution of [Rh2(H2O)10]4+ with NH4OH/NH3, py and/or en results in water exchange and the formation of corresponding [Rh2II(H2O)10−m(base)n(OH)m](4−m)+ derivatives. Reaction of the latter with dioxygen afforded superoxo and/or peroxo complexes, depending on reaction conditions: [Rh2III(O2 −)(NH3)8(OH)2](ClO4)3 (1), [Rh2III(O2 −)(NH3)8(OH)(H2O)](ClO4)4 (2), [Rh2III(O2 2−)(NH3)10](ClO4)4 · 6H2O (3), [Rh2III(O2 −)(py)8(H2O)2](ClO4)5 (4), [Rh2III(O2 2−)(en)4(H2O)2](ClO4)4 (5) and [Rh2III(O2 −)(en)4(H2O)2](ClO4)5 (6). All the obtained complexes were characterized by elemental analysis, mass spectrometry, UV-Vis, IR and ESR spectroscopies and magnetic measurements.  相似文献   

3.
The syntheses and comparative studies of the spectral, voltammetry and spectroelectrochemical properties of new manganese phthalocyanine complexes, tetra-substituted with diethylaminoethanethio at the peripheral (complex 3a) and non-peripheral positions (complex 3b) are reported. Solution electrochemistry of complex 3a showed quasi-reversible metal-based (MnIIIPc−2/MnIIPc2, E1/2 = −0.07 V vs. Ag|AgCl) and ring-based (MnIIPc−2/MnIIPc−3, E1/2 = −0.78 V vs. Ag|AgCl) reductions, but no ring-based oxidation. However, complex 3b showed weak irreversible ring-oxidation signal (Ep = +0.86 vs. Ag|AgCl). Reversible metal-based (MnIIIPc−2/MnIIPc−2, E1/2 = −0.04 V vs. Ag|AgCl) and ring-based (MnIIPc−2/MnIIPc−3, E1/2 = −0.68 V vs. Ag|AgCl) reductions were also observed for complex 3b. Spectroelectrochemistry was used to confirm these processes. Reduction process involving the metal (MnIIIPc−2/MnIIPc−2) was associated with the formation of manganese μ-oxo complex in complex 3a.  相似文献   

4.
Three new Cu(II) complexes of formula [Cu(L1)(pyz)(CH3OH)]ClO4 (1), [Cu(L1)(4,4′-bpy)(ClO4)]·0.5H2O (2) and [{Cu(L2)(ClO4)}2(μ-4,4′-bpy)] (3) have been synthesised by using pyrazine (pyz) and 4,4′-bipyridine (4,4′-bpy) and tridentate O,N,O-donor hydrazone ligands, L1H and L2H, obtained by the condensation of 1,1,1-trifluoro-2,4-pentanedione with salicyloylhydrazide and benzhydrazide, respectively. The ligands and their complexes have been characterized by elemental analyses, FT-IR, and UV-Vis spectroscopies. Single crystal X-ray structure analysis evidences the metal ion in a slightly deformed square pyramidal geometry in all the complexes. However complexes 1 and 2 are mononuclear with pyz and 4,4′-bpy, respectively, showing an unusual monodentate behavior, while complex 3 is dinuclear with 4,4′-bpy adopting the typical bridging coordination mode. Self assembly of the complex units by hydrogen bonding interactions produces one-dimensional arrangement in each crystal packing. The magnetic characterization of complex 3 indicates a weak antiferromagnetic exchange interaction between the Cu(II) ions (J = −0.96 cm−1) mediated through the long 4,4′-bpy bridge. Electrochemical behavior of the complexes is also discussed.  相似文献   

5.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   

6.
Four new dinuclear Mn(III) compounds have been synthesised: [{Mn(bpy)(H2O)}2(μ-4-ClC6H4COO)2(μ-O)}](ClO4)2 (1), [{Mn(EtOH)(phen)}2(μ-O)(μ-4-ClC6H4COO)2](ClO4)2 (2), [{Mn(bpy)(EtOH)}(μ-4-BrC6H4COO)2(μ-O){Mn(bpy)(ClO4)](ClO4) (3) and [{Mn(H2O)(phen)}2(μ-4-BrC6H4COO)2(μ-O)](ClO4)2 (4). The crystal structures of 2 and 3 are evidence for the tendency of the ethanol and the perchlorate to act as ligands. Due to the coordination of these groups, the environment of the manganese ions is elongated in the monodentate ligand direction, and this distortion is more important when this ligand is the perchlorate. The magnetic properties of the four compounds have been analysed: compounds 1, 3 and 4 show antiferromagnetic behaviour, with J = −6.33 cm−1 for 1, J = −6.76 cm−1 for 3 and J = −3.08 cm−1 for 4 (H = −JS1·S2), while compound 2 shows a very weak ferromagnetic coupling. For this compound, at low temperature the most important effect on the χMT data is the zero-field splitting of the ion, and the best fit was obtained with |DMn| = 2.38 cm−1 and |EMn| = 0.22 cm−1.  相似文献   

7.
Two new manganese(II) complexes, [Mn(L1)(L1H)(ClO4)(H2O)][ClO4]2·0.5CH3CN·H2O (1) [L1 = trans-(±)2-(2,5-di(pyridin-2-yl)-4,5-dihydro-1H-imidazol-4-yl)pyridine)] and [Mn2(μ-L2)2(H2O)3(CH3CN)3][ClO4]4·2CH3CN (2) [L2 = cis-(±)2-(2,5-di(pyridin-2-yl)-4,5-dihydro-1H-imidazol-4-yl)pyridine)], have been prepared and examined by single-crystal X-ray diffraction analysis, showing that complex 1 is a mononuclear compound, whereas complex 2 is a dinuclear species. The cis/trans isomers L1 and L2 have similar coordination properties, but behave as bidentate and tridentate chelating ligands, respectively, giving distorted octahedral metal coordination geometries. X-ray diffraction studies revealed that the molecular and crystal structures are stabilized by a series of intra- and intermolecular interactions. In both cases extended supramolecular networks are generated, in compound 1 through O-H···O, O-H···N, N-H···O, N-H···N, C-H···O, C-H···N, C-H···π and π···π interactions, and in compound 2 through O-H···O, O-H···N, C-H···O and π···π interactions. The observed structural differences between the two metal complexes might be a consequence of these stabilizing effects.  相似文献   

8.
The three complexes [CoIIIL1Cl] (1), [CoIIIL2]+·ClO4 (2+·ClO4), and [CuIIH2L2]2+·2ClO4 (H232+·2ClO4) [where H2L1 = N,N′-dimethyl-N,N′-bis(2-hydroxy-3,5-di-tert-butylbenzyl)ethylenediamine, H2L2 = N,N′-bis(2-pyridylmethyl)-N,N′-bis(2-hydroxy-3,5-di-tert-butylbenzyl)ethylenediamine] have been prepared. The bis-phenolate and bis-phenol complexes, 2+ and H232+ respectively, have been characterized by X-ray diffraction, showing a metal ion within an elongated octahedral geometry. 1-2 exhibit in their cyclic voltammetry curves two anodic reversible waves attributed to the successive oxidation of the phenolates into phenoxyl radicals. The cobalt radical species (1)+, (2)2+, and (2)3+ have been characterized by combined UV-Vis and EPR spectroscopies. In the presence of one equivalent of base, one phenolic arm of H232+ is deprotonated and coordinates the metal. The resulting complex (H3+) exhibits a single reversible redox wave at ca. 0.3 V. The electrochemically generated oxidized species is EPR silent and exhibits the typical features of a radical compound, with absorption bands at 411 and 650 nm. The fully deprotonated complex 3 is obtained by addition of two equivalents of nBu4N+OH to H232+. It exhibits a new redox wave at a lower potential (−0.16 V), in addition to the wave at ca. 0.3 V. We assigned the former to the one-electron oxidation of the uncoordinated phenolate into an unstable phenoxyl radical.  相似文献   

9.
Four new zinc(II) cyclams of the composition {Zn(L)(tp2−) · H2O}n (1), {Zn(L)(H2bta2−) · 2H2O}n (2), [Zn2(L)2(ox2−)] 2ClO4 · 2DMF (3), and Zn(L)(H2btc)2 · 2DMF (4), where L = cyclam, tp2− = 1,4-benzenedicarboxylate ion, H2bta2− = 1,2,4,5-benzenetetracarboxylate ion, ox2− = oxalate ion, DMF = N,N-dimethylformamide, and H2btc = 1,3,5-benzenetricarboxylate ion, have been synthesized and structurally characterized by a combination of analytical, spectroscopic and crystallographic methods. The carboxylato ligands in the complexes 1-4 show strong coordination tendencies toward zinc(II) cyclams with hydrogen bonding interactions between the pre-organized N-H groups of the macrocycle and oxygen atoms of the carboxylato ligands. The macrocycles in 1, 2, and 4 adopt trans-III configurations with the appropriate R,R,S,S arrangement of the four chiral nitrogen centers, respectively. However, the complex 3 shows an unusual cis V conformation with the R,R,R,R nitrogen configuration. The finding of strong interactions between the carboxylato ligands and the zinc(II) ions may provide additional knowledge for the improved design of receptor-targeted zinc(II) cyclams in anti-HIV agents.  相似文献   

10.
Two oxime-functionalized diazamesocyclic derivates, namely, N,N′-bis(acetophenoneoxime)-1,4-diazacycloheptane (H2L1) and N,N′-bis(acetophenonoxime)-1,5-diazacyclooctane (H2L2), have been prepared and characterized. Both ligands (obtained in the hydrochloride form) can form stable metal complexes with CuII and NiII salts, the crystal structures of which were determined by X-ray diffraction technique. The reactions of H2L1 with Cu(ClO4)2 and Ni(ClO4)2 afford a penta-coordinated mononuclear complex [Cu(H2L1)Cl] · ClO4 (1) and a four-coordinated monomeric [Ni(HL1)] · ClO4 (2), in which the ligand is monodeprotonated. The ligand H2L2 also forms a quite similar mononuclear [Ni(HL2)] · ClO4 complex with Ni(ClO4)2, according to our previous work. However, reactions of different CuII salts [Cu(ClO4)2, CuCl2 and Cu(NO3)2 for 3, and CuSO4 for 4] with H2L2 in the presence of NaClO4 yield two unusual mono-μ-Cl dinuclear CuII complexes [Cu2(HL2)2Cl] · (ClO4) (3), and [Cu2(H2L2)(HL2)Cl] · (ClO4)2 · (H2O)(4). These results indicate that the resultant CuII complexes (1, 3 and 4) are sensitive to the backbones of diazamesocycles and even auxiliary anions.  相似文献   

11.
Manganese(II) complexes, Mn2L13(ClO4)4, MnL1(H2O)2(ClO4)2, MnL2(H2O)2(ClO4)2, and {(μ-Cl)MnL2(PF6)}2 based on N,N′-bis(2-pyridinylmethylene) ethanediamine (L1) and N,N′-bis(2-pyridinylmethylene) propanediamine (L2) ligands have been prepared and characterized. The single crystal X-ray diffraction analysis of Mn2L23(ClO4)4 shows that each of the two Mn(II) ion centers with a Mn-Mn distance of 7.15 Å are coordinated by one ligand while a common third ligand bridges the metal centers. Solid-state magnetic susceptibility measurements as well as DFT calculations confirm that each of the manganese centers is high-spin S = 5/2. The electronic structure obtained shows no orbital overlap between the Mn(II) centers indicating that the observed weak antiferromagentism is a result of through space interactions between the two Mn(II) centers. Under different reaction conditions, L1 and Mn(II) yielded a one-dimensional polymer, MnL1(H2O)2(ClO4)2. Ligand L2 when reacted with manganese(II) perchlorate gives contrarily to L1 mononuclear MnL2(H2O)2(ClO4)2 complex. The analysis of the structural properties of the MnL2(H2O)2(ClO4)2 lead to the design of dinuclear complex {(μ-Cl)MnL2(PF6)} where two chlorine atoms were utilized as bridging moieties. This complex has a rhomboidal Mn2Cl2 core with a Mn-Mn distance of 3.726 Å. At room temperature {(μ-Cl)MnL2(PF6)} is ferromagnetic with observed μeff = 4.04 μB per Mn(II) ion. With cooling, μeff grows reaching 4.81 μB per Mn(II) ion at 8 K, and then undergoes ferromagnetic-to-antiferromagnetic phase transition.  相似文献   

12.
Three new triply bridged dinuclear copper(II) compounds containing carboxylato bridges, [Cu2(μ-CH3COO-κ-O1,O2)2(μ-CH3COO-κ-O1)(dpyam)2](BF4) (1), [Cu2(μ-CH2CH3COO-κ-O1,O2)(μ-OH)(μ-OH2)(bpy)2](ClO4)2 (2) and [Cu2(μ-CH3COO-κ-O1,O2)(μ-OH)(μ-OH2)(phen)2](ClO4)2 (3) (in which dpyam = di-2-pyridylamine, bpy = 2,2-bipyridine, phen = phenanthroline), have been synthesized in order to investigate the magnetic super-exchange pathway between coupled copper(II) centres. All three compounds display a distorted square-pyramidal arrangement around each copper(II) ion with a CuN2O3 chromophore. Compound 1 has three acetato bridges, two of which connect each square pyramid at two equatorial sites in a triatomic bridging mode and the third acetato bridge acts at the apical site in the monoatomic bridging mode. The structures of compounds 2 and 3 are mutually similar. In each dinuclear unit, both copper(II) ions are linked at two equatorial positions through a hydroxo bridge and a triatomic carboxylato bridge and at the axial position through a water molecule.The magnetic susceptibility measurements, measured from 5 to 300 K, revealed an antiferromagnetic interaction between the Cu(II) ions in compound 1 and a ferromagnetic interaction for compounds 2 and 3 with singlet-triplet energy gaps (J) of −56, 149 and 120 cm−1, for compounds 1, 2 and 3, respectively.  相似文献   

13.
A series of mononuclear manganese(III) complexes of formulae [Mn(L)(X)(H2O)] (1-13) and [Mn(L)(X)] (14-17) (X = ClO4, F, Cl, Br, I, NCS, N3), derived from the Schiff bases of 5-bromosalicylaldehyde and different types of diamine (1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane and 1,4-diaminobutane), have been synthesized and characterized by the combination of IR, UV-Vis spectroscopies, cyclic voltammetry and by X-ray crystallography. The redox properties of all the manganese(III) complexes show grossly identical features consisting of a reversible or quasireversible MnIII/MnII reduction. Besides MnIII/MnII reduction, the complexes 4, 5, 10, 13 and 16 also show reversible or quasireversible MnIII/MnIV oxidation. A linear correlation has been found for the complexes 5, 7, 11 and 13 [Mn(L2)(X)(H2O)] (X = F, Cl, Br, I) when E1/2 [MnIII/MnII] is plotted against Mulliken electronegativities (χM). The effect of the flexibility of the ligand on redox potential has been studied. It has been observed that the manganese(II) state is stabilized with increasing flexibility of the ligand environment. The crystal structure of 6 shows an octahedral geometry.  相似文献   

14.
Two Schiff bases, HL1 and HL2 have been prepared by the condensation of N-methyl-1,3-propanediamine (mpn) with salicylaldehyde and 1-benzoylacetone (Hbn) respectively. HL1 on reaction with Cu(ClO4)2·6H2O in methanol produced a trinuclear CuII complex, [(CuL1)3(μ3-OH)](ClO4)2·H2O·0.5CH2Cl2 (1) but HL2 underwent hydrolysis under similar reaction conditions to result in a ternary CuII complex, [Cu(bn)(mpn)ClO4]. Both complexes have been characterised by single-crystal X-ray analyses, IR and UV-Vis spectroscopy and electrochemical studies. The partial cubane core [Cu3O4] of 1 consists of a central μ3-OH and three peripheral phenoxo bridges from the Schiff base. All three copper atoms of the trinuclear unit are five-coordinate with a distorted square-pyramidal geometry. The ternary complex 2 is mononuclear with the square-pyramidal CuII coordinated by a chelating bidentate diamine (mpn) and a benzoylacetonate (bn) moiety in the equatorial plane and one of the oxygen atoms of perchlorate in an axial position. The results show that the Schiff base (HL2) derived from 1-benzoylacetone is more prone to hydrolysis than that from salicylaldehyde (HL1). Magnetic measurements of 1 have been performed in the 1.8-300 K temperature range. The experimental data clearly indicate antiferromagnetism in the complex. The best-fit parameters for complex 1 are g = 2.18(1) and J = −15.4(2) cm−1.  相似文献   

15.
Synthesis of complexes with the formulations [M(CPI)2Cl2] (M = Zn, 1; M = Cd, 4) and [M(CPI)6](X)2 (M = Zn, X = NO3, 2; X = ClO4, 3; M = Cd, X = NO3, 5; X = ClO4, 6) have been achieved from the reactions of MCl2, M(NO3)2·xH2O and M(ClO4)2·xH2O (M = Zn, Cd) with 1-(4-cyanophenyl)-imidazole (CPI). Complexes 1-6 have been characterized by elemental analyses and spectral studies (IR, 1H, 13C NMR, electronic absorption and emission). Molecular structures of 1, 2, 3 and 6 have been determined crystallographically. Weak interaction studies on the complexes revealed presence of various interesting motifs resulting from C-H···N, C-H···Cl and π-π stacking interactions. The complexes under study exhibit strong luminescence at ∼450 nm in DMSO at room temperature.  相似文献   

16.
The heterotrimetallic complex, [{LCuMn(H2O)}{Cr(phen)(C2O4)2}](ClO4) · H2O (1), has been obtained by assembling heterobinuclear cations, [LCuMn]2+, with [Cr(phen)(C2O4)2] ions (H2L is the compartmental Schiff-base resulting from the stepwise condensation of 2,6-diformyl-p-cresol with ethylenediamine and diethylenetriamine). The copper(II) and manganese(II) ions are hosted into the compartments of the macrocyclic ligand. [Cr(phen)(C2O4)2] acts as a ligand, being coordinated through one oxalato oxygen atom to the apical position of the square pyramidal copper(II) ion. The cryomagnetic investigation of 1 reveals an antiferromagnetic interaction between CuII and MnII within the compartmental ligand (J = −39 cm−1). The interaction between CuII and CrIII across the oxalato bridge is negligible. The crystal structure of [LCuPb](ClO4)2 · H2O, a useful precursor in obtaining 3d-3d′ complexes, is also reported.  相似文献   

17.
Three novel cadmium(II) complexes [Cd2(tbpo)(O2CC6H4-p-NO2)2]ClO4·3CH3OH (1) [Cd2(bbap)(O2CC6H4-p-NO2)2]ClO4·4.5CH3OH·0.75H2O (2) and [Cd(ntb)(O2CC6H4-p-NO2)]ClO4·4CH3OH (3) have been synthesized and characterized by IR, elemental analysis, 1H NMR and X-ray crystallography, where tbpo and bbap are anions of N,N,N′,N′-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane and 2,6-bis[bis(2-benzimidazolylmethyl)aminomethyl]-4-methylphenol, respectively; ntb is tris(2-benzimidazolymethyl)amine. Complexes 1 and 2 contain μ-phenolate-bridged and μ-alkoxo-bridged dicadmium(II) cores with the Cd1?Cd2 separation of 3.671 Å for complex 1 and 3.718 Å for 2. One of the 4-nitrobenzoate anions bridged the two cadmium(II) ions in syn-anti mode through its carboxylate group, the other 4-nitrobenzoate is only coordinated with Cd2 in bidentate chelating mode. The two central cadmium(II) atoms are in trigonal bipyramidal and pentagonal bipyramidal geometry. In complex 3, the cadmium(II) atom is coordinated with four nitrogen atoms of ntb and one carboxylate oxygen atom of 4-nitrobenzoate in distorted trigonal bipyramidal geometry. Experiment shows that there is a higher affinity of 4-nitrobenzoate anion as coligand with the dinuclear [Cd2(tbpo)]3+ and [Cd2(bbap)]3+ cores than that with the mononuclear [Cd(ntb)]2+ core.  相似文献   

18.
2-(2′-Hydroxyphenyl) imidazoline ring grafted dinucleating diimine-diamine-tris-phenol ligand (H3aeas) has been obtained from a two-step reaction of 2-hydroxy acetophenone, N,N′-bis-(2-aminoethyl)ethylenediamine and 2-hydroxy benzaldehyde. Reaction of the ligand with Co(ClO4)2·6H2O and NEt3 in MeOH-DCM solvent mixture yielded the monometallic complex [Co(aea)]ClO4·H2O (1) of imidazolidine ring hydrolyzed hexadentate proligand H2aea. Any solvent derived MeO bridged Co2 complex could not be obtained due to facile cobalt coordination assisted hydrolytic cleavage of substituted imidazolidine ring. When the reaction is carried out with Co(NO3)2·4H2O and CoCl2·6H2O in presence of NH4NCS and NaN3 in MeOH-DCM and MeOH under aerobic conditions, preassembly of bimetallic [Co2(μ-OMe)]5+ and [Co2(μ-N3)]5+ cores takes place on the solvent derived methoxido and azido clips through non-hydrolytic pathways in [(SCN)2Co2(μ-OMe)(μ-aeas)]·DMF (2), and cocrystals of [(N3)2Co2(μ-OMe)(μ-aeas)] (3a) and [(N3)2Co2(μ-N3)(μ-aeas)] (3b), respectively.  相似文献   

19.
Reaction of the imidazolidinyl phenolate-based ligand, H3L [(2-(2′-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine)] with Cu(ClO4)2·6H2O produces an aqua-bridged cationic reactant complex [Cu2(μ-H2O)(μ-L)][ClO4]·1.5H2O (1·1.5H2O). Solution phase interaction of 1·1.5H2O with SCN anions in 1:1 molar ratio leads to [Cu2(μ-L)(NCS)]·2H2O (2·2H2O) that does not possess anymore the reactive aqua bridge but instead a terminal SCN anion coordinated only to one CuII ion. Whereas in 1:2 molar ratio, partial extrusion of the CuII ions takes place to generate in situ [Cu(NCS)3(OH2)] anions. These complex anions then quantitatively replace anions in 1·1.5H2O via ‘anion metathesis’ and concurrently remove the aqua bridge by coordination of linear MeCN to one of the CuII ions to give [Cu2(μ-L)(CH3CN)][Cu(NCS)3(OH2)] (3). The literature unknown [Cu(NCS)3(OH2)] anion forms an intimate H-bonded assembly with the cationic part of 3 to yield a novel [Cu3] isosceles triangle. The precursor complex is known as antiferromagnetic whereas in 2·2H2O, the CuII (S = 1/2) ions in a dinuclear entity exhibit ferromagnetic interactions (J/kB = +15.0 K and g = 2.22) to yield an ST = 1 spin ground state in good agreement with the M versus H data below 8 K.  相似文献   

20.
A linear tri-nuclear oxamato bridged copper(II) complex [Cu3(pba)(dpa)2(H2O)(ClO4)](ClO4)·H2O (1) (pbaH4 = 1,3-propanediylbis(oxamic acid), dpa = 2,2′-dipyridylamine) was isolated from the reaction mixture of Na2[Cu(pba)]·3H2O, copper perchlorate hexahydrate and dipyridylamine in methanol. On reaction with dpa or DMF in basic medium (KOH) at ambient temperature complex 1 changed to dinuclear oxalate bridged copper(II) derivatives, [Cu2(μ-C2O4)(dpa)4](ClO4)2 (2) and [Cu2(μ-C2O4)(dpa)2(DMF)2](ClO4)2 (3), respectively. The complexes 1, 2 and 3 have been characterized by physicochemical and spectroscopic tools, and also by the X-ray single crystal analysis. The hydrolysis of 1 in basic medium and thermo-gravimetric analysis has been studied. Absorption and emission spectral studies showed that complex 1 interacts with calf thymus-DNA (CT-DNA) with a binding constant (Kb) of 4.01 × 104 M−1 and linear Stern-Volmer quenching constant (Ksv) of 6.9 × 104. A strong anti-ferromagnetic interaction with a coupling constant JCuCu of 320.0 ± 0.3 cm−1 was observed from the study of magnetic behavior of complex 1 in the temperature range of 2-300 K. Electrochemical equivalency of three copper(II) ions in 1 was identified by getting only one quasi reversible cyclic voltammogram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号