首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The synthesis and crystal structure of four new copper(I) and copper(II) supramolecular amine, and amine phosphonate, complexes is reported. Reaction of copper(I) with 2-,9-dimethyl-1-10-phenanthroline (dmp) produced a stable 4-coordinate Cu(I) species, [Cu(I)(dmp)2]Cl · MeOH · 5H2O (2), i.e., the increased steric hindrance in the ‘bite’ area of dmp did not prevent interaction with the metal and provided protection against oxidation which was not possible for the phen analogue [R. Clarke, K. Latham, C. Rix, M. Hobday, J. White, CrystEngCommun. 7(3) (2005), 28-36]. Subsequent addition of phenylphosphonic acid to (2) produced two structures from alternative synthetic routes. An ‘in situ’ process yielded red block Cu(I) crystals, [Cu(I)(dmp)2] · [C6H5PO3H2 · C6H5PO3H] (4), whilst recrystallisation of (2) prior to addition of the acid (‘stepwise’ process) produced a green, needle-like Cu(II) complex, [Cu(II)(dmp) · (H2O)2 · C6H5PO2(OH)] [C6H5PO2(OH)] (3). However, addition of excess dmp during the ‘stepwise’ process forced the equilibrium towards product (4) and resulted in an optimum yield (99%). The structure of (4) was similar to the phen analogue, [Cu(II)Cl(phen)2] · [C6H5PO2(OH) · C6H5PO(OH)2] (1) [R. Clarke, K. Latham, C. Rix, M. Hobday, J. White, CrystEngCommun. 7(3) (2005), 28-36], but the presence of dmp exerted some influence on global packing, whilst (3) exists as a polymeric layered material. In contrast, reaction of copper(I) with di-2-pyridyl ketone (dpk), followed by phenylphosphonic acid produced purple/blue Cu(II) species, [Cu(II)(dpk · H2O)2] Cl2 · 4H2O (5), and [Cu(II)(dpk · H2O)2] · [C6H5PO2(OH)2 · C6H5PO(OH)2] (6), respectively, i.e., in both cases oxidation of copper occurred. Solid-state luminescence was observed in (2) and (4). The latter showing a 5-fold enhancement in intensity.  相似文献   

2.
《Inorganica chimica acta》1988,154(2):215-219
By reacting 2,2′-biimidazole and copper(II) chloride in aqueous HCl we obtained the complex CuCl2(H2bim) as the main product and a compound with stoichiometry Cu1.5Cl3(H2bim)2 as a byproduct. The structure of the latter compound has been determined by X-ray analysis: monoclinic, a= 794.0(3), b=3146.8(6), c=722.9(4) pm, β= 114.2(1)°, space group P21/c. The compound actually contains two species, namely [Cu(H2bim)2]Cl2 and [CuCl2(H2bim)] in a 1:2 molar ratio.  相似文献   

3.
A new bidentate chelating pyrazolylpyrimidine ligand bearing a strong electron-donating substituent, i.e. 4-(3,5-diphenyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl)pyrimidine (L) (Scheme 1), has been synthesized and used to obtain the copper(II) complexes by reaction with CuCl2. The molar ratio Cu:L = 1:2 leads to isolation of a complex having CuL2Cl2 empirical formula, while the molar ratio Cu:L = 1:1 gives a complex with CuLCl2 empirical formula. The crystal structure of L as well as the structures of both complexes were studied by single crystal X-ray diffraction. The crystal structure of CuL2Cl2 compound is formed by trans-[CuL2Cl2] mononuclear molecules. Surprisingly, in contrast to the previous compound having molecular structure, the crystal structure of CuLCl2 consists of mononuclear [CuL2Cl]+ complex cations and dinuclear [Cu2Cl6]2− anions. Thus, formula of CuLCl2 complex can be represented as [CuL2Cl]2[Cu2Cl6]. In both complexes molecules of L adopt bidentate chelating coordination mode through N2 atom of pyrazole and N3 atom of pyrimidine rings forming five-membered CuN3C metallocycles. Owing to C-H···N interactions and π-π-stacking L molecules form 2D network. In the structure of trans-[CuL2Cl2] there exist double lone pair(N(piperidine))-π(pyrimidine) interactions and C-H···Cl contacts resulting in the formation of 1D chains. Layered 2D structure of [CuL2Cl]2[Cu2Cl6] results from C-H···Cl, C-H···π and double lone pair(Cl([CuL2Cl]+ complex cation)-π(pyrimidine) interactions.  相似文献   

4.
Syntheses, spectroscopic characterization and single crystal X-ray studies are reported for a number of complexes of copper(II) salts with simple monodentate nitrogen bases. The 1:4 adduct of copper(II) sulfate with 3,5-dimethylpyridine (m2py) CuSO4·4m2py, takes the form [(O3SO)Cu(m2py)4], the Cu-O vector of the square-pyramidal coordination environment being disposed on the 4-axis in tetragonal space group P4/n. The complex CuCO3·Cu(NCS)2·4py is a linear polymer, taking the form ?O·Cu(py)2·O·C{O·Cu(py)2(NCS)2}·O·Cu(py)2? (etc.), all atoms lying in the mirror plane of space group Pnma, excepting the pair of ‘py’ (pyridine) ligands disposed to either side. In Cu(OH)I·3/4I2·2py·1/2MeCN ≡ [{(py)2Cu(OH)}4](I3)3I·2MeCN a novel cubanoid tetranuclear cation is found (2-symmetry). The EPR spectra of the above compounds show a trend in the anisotropy of the g-values that correlates well with the crystal structures. Obtained only in small quantities but supported by single crystal X-ray studies are the adduct of Cu(OH)Cl with pyrrolidine (pyrr), Cu(OH)Cl:pyrr (1:3), which takes the centrosymmetric binuclear form [(pyrr)3Cu(μ-OH)2Cu(pyrr)3]Cl2, the copper atom being disposed in a distorted trigonal bipyramidal array, and the adduct 3CuCl2·CuO·4quin, [Cu4Cl6O(quin)4]Cl2, which contains the familiar Cu4Cl6O core with monodentate quinuclidine (quin) attached to the copper atoms; this compound crystallizes in the cubic space group .  相似文献   

5.
The hydrothermal reaction of [H2W12O42]10− precursors and CuCl2 in a CH3COOK/CH3COOH solution (pH 3.5) led to the isolation of a new compound, KNa3[Cu(H2O)2{Cu(H2O)3}2(H2W12O42)] · 16H2O (1). Compound 1 possesses a new anionic three-dimensional (3-D) open-framework based on the [H2W12O42]10− building blocks and CuII linkers. This anionic 3-D framework represents the first example of a (8,3)-connected structural topology in POM-based solid materials. The magnetic behavior of 1 exhibits weak antiferromagnetic interaction.  相似文献   

6.
Violet prismatic crystals of {[Cu(tn)2]3[Pt(CN)4]2}[Pt(CN)4] (tn = 1,3-diaminopropane) were crystallized from the water-methanol solution containing CuCl2·2H2O, tn and K2[Pt(CN)4]·3H2O. Prepared complex was characterized using elemental analysis, infrared and UV-Vis spectroscopy, magnetic measurement and thermal analysis. X-ray analysis revealed an ionic character of the complex containing mononuclear square planar [Pt(CN)4]2− complex anions and penta-nuclear [Cu(tn)2-Pt(CN)4-Cu(tn)2-Pt(CN)4-Cu(tn)2]2+ complex cations. The inner Cu(II) atom of the complex cation is hexa-coordinated, whereas two crystallographically equivalent peripheral Cu(II) atoms are penta-coordinated in the shape of a deformed square pyramid. Four v(CN) absorption bands observed in the IR spectrum are in agreement with the higher number of crystallographically different cyano groups and a broad highly asymmetric band observed in the reflectance UV-Vis spectrum is consistent with the presence of both hexa- and penta-coordinated Cu(II) atoms in the structure. The temperature dependence of the inverse susceptibility suggests the presence of a weak antiferromagnetic exchange coupling between Cu(II) ions. The complex is stable up to 210 °C when its two-stage thermal decomposition starts.  相似文献   

7.
Three new organic-inorganic hybrid materials with 4,4′-bipy ligands and copper cations as linkers, [CuII(H2O)(4,4′-bipy)2][CuII(H2O)(4,4′-bpy)2]2H[CuIIP8Mo12O62H12] · 5H2O (1), [CuI(4,4′-bipy)][CuII(4,4′-bipy)]2 (BW12O40) · (4,4′-bipy) · 2H2O (2) and [CuI (4,4′-bipy)]3 (PMo12O40) · (pip) · 2H2O (3) (pip = piperazine; 4,4′-bipy = 4,4′-bipyridine), have been hydrothermally synthesized. The single X-ray structural analysis reveals that the structure of 1 is constructed from [Cu(H2O)(4,4′-bipy)2] complexes into a novel, three-dimensional supermolecular network with 1-D channels in which Cu[P4Mo6]2 dimer clusters reside. To the best of our knowledge, compound 1 is the first complex in which the [P4Mo6] clusters have been used as a non-coordinating anionic template for the construction of a novel, three-dimensional supermolecular network. Compound 2 is constructed from the six-supported [BW12O40]5− polyoxoanions and [CuI(4,4′-bipy)] and [CuII(4,4′-bipy)] groups into a novel, 3-D network. Compound 3 exhibits unusual 3-D supramolecular frameworks, which are constructed from tetrasupporting [PMo12O40]3− clusters and [CuI (4,4′-bipy)n] coordination polymer chains. The electrochemical properties of 2 and 3 have been investigated in detail.  相似文献   

8.
Four copper(II) complexes containing the reduced Schiff base ligands, namely, N-(2-hydroxybenzyl)-glycinamide (Hsglym) and N-(2-hydroxybenzyl)-l-alaninamide (Hsalam) have been synthesized and characterized. The crystal structures of [Cu2(sglym)2Cl2] (1), [Cu2(salam)2(NO3)2] · H2O (3), [Cu2(salam)2(NO3)(H2O)](NO3) · 1.5H2O (4), [Cu2(salam)2](ClO4)2 · 2H2O (5) show that the Cu(II) atoms are bridged by two phenolato oxygen atoms in the dimers. The sglym ligand bonded to Cu(II) in facial manner while salam ligand prefers to bind to Cu(II) in meridonal geometry. Variable temperature magnetic studies of 3 showed it is antiferromagnetic. These Cu(II) complexes and [Cu2(sglym)2(NO3)2] (2), exhibit very small catecholase activity as compared to the corresponding complexes containing acid functional groups.  相似文献   

9.
Under hydrothermal condition, two novel organic-inorganic hybrid compounds, [Cu(bpp)][Cu2.5(bpp)3(Hbpp)]H0.5[BW12O40]·1.5H2O (1) and [Cu(en)2(H2O)]{[Cu(bpp)]3[AlW12O40]}·H2O (2) (bpp = 1,3-bis(4-pyridyl)propane; en = ethylenediamine), have been synthesized based on B/Al atom-centered Keggin-type polyoxometalates combined with Cu ions and bpp ligands. The two compounds are characterized through single-crystal X-ray diffraction analysis, elemental analyse, IR, UV and TG. For compound 1, as the nodes, the [BW12O40]5− polyanions link to the [Cu2.5(bpp)3(Hbpp)]3.5+ oligomers, leading to the formation of 1D helical chains which further attach to the macrocycles [Cu2(bpp)2]2+ via the Cu-O weak interaction to construct the 2D “wave-like” layers. For compound 2, the {[Cu(bpp)]4[AlW12O40]2} unit is obtained by the interaction between two Keggin-type [AlW12O40]5− polyanions and one tetranuclear macrocycle composed by four [Cu(bpp)]+ complex cations. Furthermore, the units are sandwiched by two 1D “wave-like” polymeric chains resulting in a new 1D structure. In addition, the electrochemical properties and electrocatalytic activities of these two compounds have been studied in this paper.  相似文献   

10.
Five novel bpca-based Cu(II) polynuclear coordination compounds [Hbpca = bis(2-pyridylcarbonyl)amine] were prepared using the [Cu(bpca)(H2O)2](NO3)·2H2O (1) building block and characterized by single crystal X-ray diffraction. We have also isolated and characterized two new crystal forms of the starting species, with lower water contents. Three of the new products are dinuclear complexes obtained by reacting 1 with different rigid or flexible spacer ligands: [Cu2(bpca)2(H2O)2(bipy)](NO3)2·6H2O (2) (bipy = 4,4′-bipyridine) and [Cu2(bpca)2(H2O)2(bpete)](NO3)2·xH2O (3) [bpete = (E)-1,2-di(pyridin-4-yl)ethane] are linear dumbbell-like species with Cu?Cu separations of 11.075 and 13.275 Å, respectively. The third dinuclear compound, [Cu2(bpca)2(H2O)2(bpx)](NO3)2·8H2O (4) [bpx = 1,4-bis((1H-pyrazol-1-yl)methyl)benzene], with the flexible bpx ligand, assumes an unusual S-shaped conformation and shows a quite shorter Cu?Cu contact of 6.869 Å only. We have also obtained a chiral 1D neutral polymeric complex, [Cu3(bpca)2(bipy)3(NO3)4]·6H2O (5), that shows a central linear -Cu-bipy-Cu- chain, with all these Cu atoms connected to two lateral [Cu(bpca)(NO3)2] groups on two opposite sides by means of bipy spacers. An unprecedented type of Cu(II) neutral trinuclear complex, [Cu3(bpca)2(H2O)2(NO3)2] (6), was obtained which has a centrosymmetric structure with two external [Cu(bpca)(NO3)2] units chelating on a central copper atom via the two pairs of carbonyl groups of the bpca ligands. The central metal is octahedral with two axial water molecules, while the two lateral Cu atoms are in square pyramidal geometry; the Cu?Cu separation is 5.205 Å. The magnetic properties of 6 have been rationalized through a ferromagnetic coupling between the central metal ion and the peripheral ones which are coupled by a smaller antiferromagnetic interaction. DFT calculations have been also performed in order to give a better insight into magnetic interactions.  相似文献   

11.
Two new tetrahedral tungsten cyanide cluster compounds, [Cu(dien)]3[W4Te4(CN)12] · 9H2O (1) (dien=diethylenetriamine) and [Ni(en)(NH3)]3[W4Se4(CN)12] · 7.5H2O (2) (en=ethylenediamine), were synthesized by treating aqueous solutions of the saltlike cluster compound K6[W4Te4(CN)12] · 5H2O/K6[W4Se4(CN)12] · 6H2O with copper(II)/nickel(II) chloride in aqueous ammonia containing dien/en. The cyano-bridged layered coordination polymeric compounds were characterized by single-crystal X-ray diffraction analysis: monoclinic, space group P21 for 1; trigonal, space group for 2. Structures of 1 and 2 consist of infinite neutral layers of cluster components {W4Te4(CN)12}/{W4Se4(CN)12} connected, one another by {Cu(dien)} or {Ni(en)(NH3)} fragments, respectively.  相似文献   

12.
The reaction of Zn(ClO4)2 · 6H2O and Cu(ClO4)2 · 6H2O with H3Sas (H3Sas = N-(2-hydroxybenzyl)-L-aspartic acid in water afforded the complexes [Zn6(Sas)4(H2O)8]·5H2O (1) and [Cu(HSas)(H2O)] (2), respectively, which were characterized by infrared spectroscopy, elemental analysis, thermogravimetry and single-crystal X-ray crystallography. In 1, the pentanuclear clusters formed by four H3Sas ligands and five Zn(II) metal ions are bridged by the “[Zn(H2O)4]2+” cations to form 1D polymeric chains. While in 2, the mononuclear [Cu(HSas)(H2O)] repeating units form a 1D zigzag chain and further extended by strong intermolecular hydrogen bonds to form a 2D sheet. The different coordination geometries of Cu(II) and Zn(II) show significant influence on the polymeric structures.  相似文献   

13.
Room temperature reaction of Cu(NO3)2 · 6H2O and pyrazine-2,3,5,6-tetracarboxylic acid (ptecH4) in the presence of pyridine (py) in water-methanol (1:1) mixture results in the formation of {[Cu2(ptec) · (py)2 · (H2O)3] · 4H2O}n (1). With pyridine-2,4,6-tricarboxylic acid (pytcH3) and Cu(NO3)2 · 6H2O, crystals of {[Cu(pytc)] · 1/2[Cu(H2O)6] · H2O}n (2) could be obtained hydrothermally at 180 °C. The structure of 1 consists of 2D polymeric sheets. These sheets are stacked on top of one another due to strong C-H?π interactions forming an overall 3D structure. The structure of 2, on the other hand, consists of twin-chain coordination polymers. The void spaces between two polymeric chains are occupied by [Cu(H2O)6]2+ ions which are H-bonded to the polymeric chains. The variable temperature magnetic measurements for 1 and 2 show weak antiferromagnetic interaction between Cu(II) centers. The EPR spectra of the compounds are consistent with their structures.  相似文献   

14.
The influence of terminal ligands on the structure and nuclearity of copper(II)-pyrazolates has been investigated. Exchange of the chloride ligands of [Cu33-X)(μ-pz)3Cl3]n (X=O, OH; n=2, 1) or [Cu33-Cl)2(μ-pz)3Cl3]2− complexes for cyanate, acetate or bromide ligands maintains the integrity of the triangular species: PPN[Cu33-OH)(μ-pz)3(NCO)3], PPN[Cu33-OH)(μ-pz)3(O2CCH3)3(H2O)] · H2O, Bu4N[Cu33-OH)(μ-pz)3(O2CCH3)3] · 3H2O and (Bu4N)2[Cu33-Br)2(μ-pz)3Br3] have been prepared and characterized by spectroscopic and X-ray diffraction techniques, respectively. In contrast, tetranuclear complexes (Bu4N)2[Cu43-OH)2(μ-4-X-pz)2(μ-O2CPh)2(O2CPh)4] (X=H, Cl, Br, NO2) and the hexanuclear complex (Bu4N)2[Cu63-O)(μ3-OH)(μ-4-NO2-pz)6(μ-O2CPh)3(O2CPh)2(H2O)] · (CH2Cl2)0.5 have been obtained on substitution for benzoate ligands. An attempt to partially substitute the chlorides for tert-butoxide ligands, also provided a tetranuclear complex, (Bu4N)2[Cu4(μ-OH)2(μ-pz)4Cl4], without incorporation of the incoming ligand. Similarly, removal of all chloride ions in the absence of an appropriate substituting ligand leads to higher nuclearity metallacycles [Cu(μ-OH)(μ-pz)]n (n=6, 8, 9, 12, 14).  相似文献   

15.
A series of inorganic-organic hybrid compounds built from bis(undecatungstophosphate) lanthanates and copper-complexes, namely, H8[Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][La(PW11O39)2]}2·18H2O (1), H6[Na2(en)2(H2O)5][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Ce(PW11O39)2]}2·16H2O (2), H6[Na2(en)2(H2O)5][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Pr(PW11O39)2]}2·18H2O (3), H6[Na2(en)2(H2O)4][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Nd(PW11O39)2]}2·14H2O (4), H6[Na2(en)2(H2O)5][Cu(en)2H2O]4[Cu(en)2]{[Cu(en)2][Sm(PW11O39)2]}2·20H2O (5), and H7[Cu(en)2]2[Sm(PW11O39)2]·10H2O (6) (where en = 1,2-ethylenediamine), have been prepared. In these compounds, two lacunary [PW11O39]7− anions sandwich an eight-coordinated Ln(III) cation to yield [Ln(PW11O39)2]11− anion in a twisted square anti-prismatic geometry, which is further bridged by [Cu(en)2]2+ fragments to generate a 1D zigzag-like chain. In 1-6, the coordination bond interactions and weak interactions between adjacent 1D chains play an important role in the zigzagging distances and angles of different 1D chains. The magnetic studies indicate that antiferromagnetic interactions exist in compounds 1, 2 and 4.  相似文献   

16.
Four new three-dimensional materials built from reduced molybdenum(V) phosphates as building blocks and transitional metal (Co, Zn and Cd) complexes as linkers, (Hbpy)2[Co(bpy)(H2O)]2[Co(H2PO4)2 (HPO4)6(MoO2)12(OH)6] (1), [Co(H2O)4]2[Co(Hbpy)(H2O)]2[Co(bpy)][Co(HPO4)4(PO4)4(MoO2)12(OH)6] · 6H2O (2), Na2[Zn(Hbpy)(H2O)2]2[Zn(Hbpy)]2[Zn(HPO4)2(PO4)6(MoO2)12(OH)6] · 4H2O (3), (H2bpy)2[Cd(bpy)(H2O)]2[Cd(bpy)(H2O)2]2[Cd(HPO4)4(PO4)4(MoO2)12(OH)6] · 2H2O (4) (bpy = 4,4′-bipyridine), have been synthesized and characterized by elemental analyses, IR, TG, and single crystal X-ray diffraction. The 3-D framework of 1 is constructed from Co[P4Mo6]2 dimers bonded together with [Co(bpy)]n coordination polymer chains. In compound 2, the Co[P4Mo6]2 dimers are linked by both [Co(bpy)] complex chains and the cobalt dimers to form a 3-D framework. Compounds 1 and 2 represent the first examples of reduced molybdenum(V) phosphates decorated with transition metal complexes chains. The 3-D framework of 3 is constructed from Zn[P4Mo6]2 dimers bonded together with [Zn(bpy)] coordination complexes and [Zn(bpy)(H2O)2] complexes. In compound 4, the Cd[P4Mo6]2 dimers are coordinated with [Cd(bpy)(H2O)] and [Cd(bpy)(H2O)2] complexes to construct a 3-D structure. To our best knowledge, it is the first time that linear ligand 4,4′-bpy molecules have been grafted into the backbone of reduced molybdenum phosphates. Furthermore, the magnetic properties of compounds 1 and 2 are reported.  相似文献   

17.
[Me4P]4[Cu4(mnt)4]·2CH3CN (1), [Me4P]4[Cu4(mnt)4]·2CH3NO2 (2), [Me4P]4[Cu4(mnt)4]·2DMF (3) and [Me4P]4[Cu4(mnt)4]·2C3H3N (4) (mnt = maleonitriledithiolate, [S2C2(CN)2]2−) clusters are readily synthesized in several solvents like acetonitrile, nitromethane, N,N-dimethylformamide and acrylonitrile to provide respective solvent as guest within the non-covalent cavity of the cluster ion. The guest species is accommodated within non-covalent cavity that is generated by two adjacent {Cu4(mnt)4} cores bridging with tetramethylphosphonium cation through hydrogen bonding. These hydrogen bonds are not strong and when mixed solvents were used selective DMF binding takes place to yield only complex 3 over other complexes.  相似文献   

18.
Two coordination polymers, [Y(H2O)4(H3chhc)]·6H2O (1) and [Cu5(H2O)10(Hchhc)2]·4H2O (2) with H6chhc = cyclohexane-1,2,3,4,5,6-hexacarboxylic acid) represent rare examples of metal complexes with partially protonated cyclohexane-1,2,3,4,5,6-hexacarboxylato ligands. The [Y(H2O)4]3+ units in 1 are interlinked by the triprotonated (H3chhc)3− anions in a η5μ4 bridging mode to form 2D (43)2(46·66·83) topological networks, which are stacked along [0 1 0] direction in ···ABAB··· fashion with the lattice H2O molecules sandwiched between layers. The pentameric [Cu5(H2O)10]10+ units in 2 are bridged by monoprotonated (Hchhc)5− anions in a η8μ6 fashion to generate a 3D MOF of an unprecendented (43)(45·67·83) topology with the lattice H2O molecules in channels. The temperature-dependent magnetic susceptibility data of 2 could be modeled to a combination of a linear chain of equally-spaced Cu(II) ions (J1 = 1.86 cm−1) with an isosceles triangular Cu3 unit (J2 = 5.86 cm−1).  相似文献   

19.
Two oxime-functionalized diazamesocyclic derivates, namely, N,N′-bis(acetophenoneoxime)-1,4-diazacycloheptane (H2L1) and N,N′-bis(acetophenonoxime)-1,5-diazacyclooctane (H2L2), have been prepared and characterized. Both ligands (obtained in the hydrochloride form) can form stable metal complexes with CuII and NiII salts, the crystal structures of which were determined by X-ray diffraction technique. The reactions of H2L1 with Cu(ClO4)2 and Ni(ClO4)2 afford a penta-coordinated mononuclear complex [Cu(H2L1)Cl] · ClO4 (1) and a four-coordinated monomeric [Ni(HL1)] · ClO4 (2), in which the ligand is monodeprotonated. The ligand H2L2 also forms a quite similar mononuclear [Ni(HL2)] · ClO4 complex with Ni(ClO4)2, according to our previous work. However, reactions of different CuII salts [Cu(ClO4)2, CuCl2 and Cu(NO3)2 for 3, and CuSO4 for 4] with H2L2 in the presence of NaClO4 yield two unusual mono-μ-Cl dinuclear CuII complexes [Cu2(HL2)2Cl] · (ClO4) (3), and [Cu2(H2L2)(HL2)Cl] · (ClO4)2 · (H2O)(4). These results indicate that the resultant CuII complexes (1, 3 and 4) are sensitive to the backbones of diazamesocycles and even auxiliary anions.  相似文献   

20.
A series of copper(II) complexes, i.e. Cu2LCl4, CuLCl2·H2O and [Cu2L2Cl4]·2MeCN (8), based on a new potentially polytopic ligand, 3,5-bis(4,6-dimethylpyrimidin-2-yl)-4H-1,2,4-triazol-4-amine (3b, L), have been synthesized. The crystal structures of L and [Cu2L2Cl4]·2MeCN were studied by X-ray single crystal analysis. The dinuclear compound [Cu2L2Cl4]·2MeCN represents the first example of structurally characterized metal complexes with 3,5-di(pyrimidin-2-yl)-4H-1,2,4-triazol-4-amines. Both copper atoms have distorted tetragonal-pyramidal 3N + 2Cl environment. Surprisingly, in contrast to the complexes based on 3,5-di(pyridin-2-yl)-4H-1,2,4-triazol-4-amine (pyridinyl analog of L), the compound [Cu2L2Cl4]·2MeCN adopts a dinuclear trans-(N′,N1,N2)2 double bridging binding mode which is due to tridentate coordination of two L molecules linking two copper atoms through N1,N2-triazole and N′-pyrimidine atoms. It seems to be reasonable that it is methyl groups in pyrimidinyl moiety that obstruct the expected dinuclear (N′,N1,N2,N″)2 double bridging coordination being one of the most common for 4-substituted 3,5-di(pyridin-2-yl)-4H-1,2,4-triazoles and 3,5-di(pyridin-2-yl)-1,2,4-triazolates. Due to π-π stacking interactions, molecules of Cu2L2Cl4 in the structure of [Cu2L2Cl4]·2MeCN form 1D chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号