首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The complexes of Cu(I), Cu(II), Ni(II), Zn(II) and Co(II) with a new polypyridyl ligand, 2,3-bis(2-pyridyl)-5,8-dimethoxyquinoxaline (L), have been synthesized and characterized. The crystal structures of these complexes have been elucidated by X-ray diffraction analyses and three types of coordination modes for L were found to exist in them. In the dinuclear complex [Cu(I)L(CH3CN)]2·(ClO4)2 (1), L acts as a tridentate ligand with two Cu(I) centers bridged by two L ligands to form a box-like dimeric structure, in which each Cu(I) ion is penta-coordinated with three nitrogen atoms and a methoxyl oxygen atom of two L ligands, and an acetonitrile. In [Cu(II)L(NO3)2]·CH3CN 2, the Cu(II) center is coordinated to the two nitrogen atoms of the two pyridine rings of L which acts as a bidentate ligand. The structures of [Ni(II)L(NO3)(H2O)2]·2CH3CN·NO3 (3), [Zn(II)L(NO3)2 (H2O)]·2CH3CN (4) and [Co(II)LCl2(H2O)] (5) are similar to each other in which L acts as a tridentate ligand by using its half side, and the metal centers are coordinated to a methoxyl oxygen atom and two bipyridine nitrogen atoms of L in the same side. The formation of infinite quasi-one-dimensional chains (1, 4 and 5) or a quasi-two-dimensional sheet (2) assisted by the intra- or intermolecular face-to-face aryl stacking interactions and hydrogen bonds may have stabilized the crystals of these complexes. Luminescence studies showed that 1 exhibits broad, structureless emissions at 420 nm in the solid state and at 450 nm in frozen alcohol frozen glasses at 77 K. Cyclic voltammetric studies of 1 show the presence of an irreversible metal-centered reduction wave at approximately −0.973 V versus Fc+/0 and a quasi-reversible ligand-centered reduction couple at approximately −1.996 V versus Fc+/0. The solution behaviors of these complexes have been further studied by UV-Vis and ESR techniques.  相似文献   

2.
Four novel nicotinato-copper(II) complexes containing polybenzimidazole and polyamine ligands were synthesized with formula [Cu2(bbma)2(nic)2](ClO4)2·CH3OH·0.5H2O (1), [Cu2(dien)2(nic)2](ClO4)2·2CH3OH (2), [Cu(ntb)(nic)]ClO4·H2O (3) and [Cu(tren)(nic)]BPh4·CH3OH·H2O (4), in which bbma is bis(benzimidazol-2-yl-methyl)amine, dien is diethylenetriamine, ntb is tris(2-benzimidazolylmethyl)amine, tren is tris(2-aminoethyl)amine and nic is nicotinate anion. All of the complexes were characterized by elemental analysis, IR and X-ray diffraction analysis. Complexes 1 and 2 contain centrosymmetric dinuclear entity with the two Cu(II) atoms bridged by two nicotinate anions in an anti-parallel mode. The Cu···Cu separation is 7.109 Å for 1 and 6.979 Å for 2. Complexes 3 and 4 are mononuclear with nicotinate coordinated to Cu(II) ion by the carboxylate O atom in 3 and the pyridine N atom in 4. All of the complexes exhibit abundant hydrogen bonds to form 1D chain for 1, 3, 4 and 2D network for 2. Magnetic susceptibility measurements over the 2-300 K range reveal very weak ferromagnetic interaction between the two Cu(II) ions in 1 and antiferromagnetic interaction in 2 mediated by nicotinate ligand, with J value to be 0.15 and −0.19 cm−1, respectively.  相似文献   

3.
Four new zinc(II) complexes [Zn(dien)(μ-nic)]2(BPh4)2·2CH3OH (1), {[Zn(dien)(isonic)]BPh4}n (2), [Zn(tren)(nic)]BPh4 (3) and [Zn(tren)(isonic)]BPh4 (4) (dien/tren = diethylenetriamine/triethylenetriamine, nic/isonic = nicotinate/isonicotinate anion) were synthesized and structurally characterized by IR, 1H NMR and single crystal X-ray diffraction. In the zinc(II) complexes of dien, both nicotinate and isonicotinate connect the zinc(II) ions via N,O-bis-monodentate mode. Complex 1 contains a centrosymmetric dinuclear unit bridged by two nicotinate anions in anti-parallel way. Complex 2 is characterized by an infinite one-dimensional zigzag chain bridged by isonicotinate anion in an end-to-end mode. The Zn···Zn distance is 6.782 for 1 and 8.805 Å for 2. While in the complexes of tren, both 3 and 4 are mononuclear complexes with nicotinate and isonicotinate coordinated to zinc(II) ion through only one oxygen atom of their carboxylate groups. The zinc(II) ions in all of the four complexes are in a distorted trigonal bipyramidal geometry. Complex 3 forms a dinuclear unit and complex 4 forms an infinite 2D sheet structure through intermolecular H-bonds. In all of the crystal lattices, the counterions act to balance the electronic charge at the same time to construct different 3D structures through noncovalent interactions such as C-H···π, N-H···π and van der Waals interactions.  相似文献   

4.
Two new dinuclear isophthalato-bridged copper(II) complexes [Cu2(ntb)2(μ-ipt)](ClO4)2·4CH3OH·0.33H2O (1), [Cu2(bbma)2(μ-ipt)(NO3)(CH3OH)]NO3·CH3OH (2) and one mononuclear complex [Cu(bbma)(ipt)(CH3OH)0.67(H2O)0.33]·2CH3OH (3) containing tetradentate and tridentate poly-benzimidazole ligands were synthesized, where ntb is tris(2-benzimidazolylmethyl)amine, bbma is bis(benzimidazol-2-yl-methyl)amine and ipt is isophthalate dianion. All of the complexes were characterized by elemental analysis, IR spectra and X-ray crystallography. The structures of complexes 1 and 2 consist of μ-ipt bridging two Cu(II) centers in a bis(monodentate) bonding fashion. The coordination geometry around the Cu(II) ions of both compounds has a distorted square pyramidal geometry. The Cu···Cu distances are 9.142 and 10.435 Å for 1 and 2, respectively. Complex 3 has a distorted square pyramidal geometry achieved by the three N-atoms of the bbma ligand, one isophthalate-oxygen atom and one oxygen atom from a coordinated methanol molecule. The magnetic susceptibility measurements at variable temperature over the 2-300 K range for complexes 1 and 2 are reported, with J values to be −0.013 and −0.32 cm−1, respectively. The results show that the two complexes exhibit very weak antiferromagnetic interactions between the dinuclear copper(II) centers.  相似文献   

5.
The variations in the coordination environment of Co(II), Cu(II) and Zn(II) complexes with the neutral, tridentate ligand bis[1-(cyclohexylimino)ethyl]pyridine (BCIP) are reported. Analogous syntheses were carried out utilizing either the M(BF4)2 · xH2O or MCl2 · xH2O metal salts (where M = Co(II), Cu(II) or Zn(II)) with one equivalent of BCIP. When the hydrated metal starting material was used, cationic, octahedral complexes of the type [M(BCIP)2]2+ were isolated as the tetrafluoroborate salt (4, 5). Conversely, when the hydrated chloride metal salt was used as the starting material, only neutral, pentacoordinate [M(BCIP)Cl2] complexes (1-3) formed. All complexes were characterized by X-ray diffraction studies. The three complexes that are five coordinate have distortions due mainly to the pyridine di-imine bite angle. The [Cu(BCIP)Cl2] (2) also exhibits deviations in the Cu(II)-Cl bond distances with values of 2.4242(9) and 2.2505(9) Å, which are not seen in the analogous Zn(II) and Co(II) structures. Similarly, the two six coordinate complexes (5, 6) are also altered by the ligand frame bite angle giving rise to distorted octahedral geometries in each complex. The [Cu(BCIP)2](BF4)2 (6) also exhibits Cu(II)-Nimine bond lengths that are on average 0.14 Å longer than those found in the analogous 5 coordinate complex, [Cu(BCIP)Cl2]. In addition to X-ray analysis, all complexes were also characterized by UV/Vis and IR spectroscopy with 1H NMR spectroscopy being used for the analysis of the Zn(II) analogue (3).  相似文献   

6.
The Schiff base ligands 2-(2,6-diisopropylphenyliminomethyl)phenol H(L1), 5-diethylamino-2-(2,6-diisopropylphenyliminomethyl)phenol H(L2), 2,4-di-tert-butyl-6-(2,6-diisopropylphenyliminomethyl)phenol H(L3), 3-(2,6-diisopropylphenyliminomethyl)naphthalen-2-ol H(L4) and 4-(2,6-diisopropylphenyliminomethyl)-5-hydroxymethyl-2-methylpyridin-3-ol H(L5) have been synthesized by the condensation, respectively, of salicylaldehyde, 4-(diethylamino)salicylaldehyde, 3,5-di-tert-butylsalicylaldehyde, 2-hydroxy-1-napthaldehyde and pyridoxal with 2,6-diisopropylaniline. The copper(II) bis-ligand complexes [Cu(L1)2] 1, [Cu(L2)2] 2, [Cu(L3)2] 3, [Cu(L4)2] 4 and [Cu(L5)2] · CH3OH 5 of these ligands have been isolated and characterized. The X-ray crystal structures of two of the complexes [Cu(L1)2] 1 and [Cu(L5)2] · CH3OH 5 have been successfully determined, and the centrosymmetric complexes possess a CuN2O2 chromophore with square planar coordination geometry. The frozen solution EPR spectra of the complexes reveal a square-based CuN2O2 chromophore, and the values of g and g/A index reveal enhanced electron delocalization by incorporating the strongly electron-releasing -NEt2 group (2) and fusing a benzene ring on sal-ring (4). The Cu(II)/Cu(I) redox potentials of the Cu(II) complexes reveal that the incorporation of electron-releasing -NEt2 group and fusion of a benzene ring lead to enhanced stabilization of Cu(II) oxidation state supporting the EPR spectral results. The hydrogen bonding interactions between the two molecules present in the unit cell of 5a generate an interesting two-dimensional hydrogen-bonded network topology.  相似文献   

7.
Four palladium(II) and platinum(II) complexes of 2,2′-dipyridylamine (dpya) with saccharinate (sac), cis-[Pd(dpya)(sac)2]·H2O (1), cis-[Pt(dpya)(sac)2]·H2O (2), [Pd(dpya)2](sac)2·2H2O (3) and [Pt(dpya)2](sac)2·2H2O (4), have been synthesized and characterized by elemental analysis, IR, NMR, TG-DTA and X-ray diffraction. In 1 and 2, the metal ions are coordinated by two N-bonded sac ligands, and two nitrogen atoms of dpya, resulting in a neutral square-planar coordination sphere, while in 3 and 4, the metal ions are coordinated by two dpya ligands to generate square-planar cationic species, which are stabilized by two sac counter-ions. The mononuclear species of 1 and 2 interact each other through weak intermolecular N-H?O, C-H?O and π?π interactions to form a three-dimensional network, while the ions of 3 and 4 are connected by N-H?N and OW-H?O hydrogen bonds into one-dimensional chains. On heating at 250 °C, the solid cationic complexes of 3 and 4 convert to corresponding anhydrous neutral complexes of 1 and 2 after elimination of a dpya ligand. In addition, all complexes 1-4 are luminescent at room temperature and their emissions seem to be attributed to the MLCT fluorescence.  相似文献   

8.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

9.
Assemblies of 5-amino-2,4,6-triiodoisophthalic acid (H2ATIBDC) with Cd(II) and Zn(II) in the presence of N-donor auxiliary ligand, 1,4-bis(1,2,4-triazol-1-yl)butane (btb), at ambient conditions yield two new supramolecular complexes, [Cd(ATIBDC)(btb)(H2O)2]·3H2O (1), and [Zn(ATIBDC)(btb)]·2H2O (2). Generally, these two complexes display 1D ATIBDC2−-bridged coordination arrays. Distinct extended 3D network architectures are further constructed with the help of weak secondary interactions especially aromatic stacking, halogen bonding, and hydrogen bonding as supramolecular driving forces. It is worthy to mention that halogen bonds (C-I?π and C-I?N/O) play important roles in the supramolecular assembly. The pentameric cluster (H2O)5 in 1 assembles into highly ordered helical infinite chains. Complex 2 exhibits the fascinating single-walled tube-like chain structure. It loses crystallinity rapidly in the air and leads to the formation of [Zn(ATIBDC)(btb)]·H2O (2A). Thermal stabilities and solid state fluorescent properties of complexes 1 and 2A have been studied.  相似文献   

10.
Synthesis of complexes with the formulations [M(CPI)2Cl2] (M = Zn, 1; M = Cd, 4) and [M(CPI)6](X)2 (M = Zn, X = NO3, 2; X = ClO4, 3; M = Cd, X = NO3, 5; X = ClO4, 6) have been achieved from the reactions of MCl2, M(NO3)2·xH2O and M(ClO4)2·xH2O (M = Zn, Cd) with 1-(4-cyanophenyl)-imidazole (CPI). Complexes 1-6 have been characterized by elemental analyses and spectral studies (IR, 1H, 13C NMR, electronic absorption and emission). Molecular structures of 1, 2, 3 and 6 have been determined crystallographically. Weak interaction studies on the complexes revealed presence of various interesting motifs resulting from C-H···N, C-H···Cl and π-π stacking interactions. The complexes under study exhibit strong luminescence at ∼450 nm in DMSO at room temperature.  相似文献   

11.
Condensation of (S,S)-1,2-cyclohexanediamine with 2 equiv. of 2-pyridine carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives N,N′-bis(pyridin-2-ylmethylene)-(S,S)-1,2-cyclohexanediamine (S,S-1) in 95% yield. Reduction of 1 with an excess of NaBH4 in MeOH at 50 °C gives N,N′-bis(pyridin-2-ylmethyl)-(S,S)-1,2-cyclohexanediamine (S,S-2) in 90% yield. Reaction of 1 or 2 with 1 equiv. of CuCl2 · 2H2O in methanol gives complexes [N-(pyridin-2-ylmethylene)-(S,S)-1,2-cyclohexanediamine]CuCl2 (3) and [Cu(S,S-2)(H2O)]Cl2 · H2O (4), respectively, in good yields. Complex 4 can further react with 1 equiv. of CuCl2 · 2H2O in methanol to give [Cu(S,S-2)][CuCl4] (5) in 75% yield. The rigidity of the ligand coupled with the steric effect of the free anion plays an important role in the formation of the helicates. Treatment of ligand S,S-1 with AgNO3 induces a polymer helicate {[Ag(S,S-1)][NO3]}n (6), while reaction of ligand 2 with AgPF6 or AgNO3 in methanol affords a mononuclear single helicate [Ag(S,S-2)][PF6] (7) or a dinuclear double helicate [Ag2(S,S-2)2][NO3]2 · 2CH3OH (8) in good yields, respectively. All compounds have been characterized by various spectroscopic data and elemental analyses. Compounds 1, 3-5, 7 and 8 have been further subjected to single-crystal X-ray diffraction analyses. The Cu(II) complexes do not show catalytic activity for allylation reaction, in contrast to Ag(I) complexes, but they do show catalytic activity for Henry reaction (nitroaldol reaction) that Ag(I) complexes do not.  相似文献   

12.
A series of new copper(II) complexes of four sterically hindering linear tridentate 3N ligands N′-ethyl-N′-(pyrid-2-ylmethyl)-N,N-dimethylethylenediamine (L1), N′-benzyl-N′-(pyrid-2-ylmethyl)-N,N-dimethylethylenediamine (L2), N′-benzyl-N′-(6-methylpyrid-2-yl-methyl)-N,N-dimethylethylenediamine (L3) and N′-benzyl-N′-(quinol-2-ylmethyl)-N,N-dimethylethylenediamine (L4) have been isolated and examined as catalysts for olefin aziridination. The complexes [Cu(L1)Cl2]·CH3OH 1, [Cu(L2)Cl2]·CH3OH 2, [Cu(L3)Cl2]·0.5 H2O 3 and [Cu(L4)Cl2] 4 have been structurally characterized by X-ray crystallography. In all of them copper(II) adopts a slightly distorted square pyramidal geometry as inferred from the values of trigonality index (τ) for them (τ: 1, 0.02; 2, 0.01; 3, 0.07; 4, 0.01). Electronic and EPR spectral studies reveal that the complexes retain square-based geometry in solution also. The complexes undergo quasireversible Cu(II)/Cu(I) redox behavior (E1/2, −0.272 − −0.454 V) in acetonitrile solution. The ability of the complexes to mediate nitrene transfer from PhINTs and chloramine-T trihydrate to olefins to form N-tosylaziridines has been studied. The complexes 3 and 4 catalyze the aziridination of styrene very slowly yielding above 80% of the desired product. They also catalyze the aziridination of the less reactive olefins like cyclooctene and n-hexene but with lower yields (30-50%). In contrast to these two complexes, 1 and 2 fail to catalyze the aziridination of olefins in the presence of both the nitrene sources. All these observations have been rationalized based on the Cu(II)/Cu(I) redox potentials of the catalysts.  相似文献   

13.
Three new copper(II) complexes of 5,5-diethlybarbiturate (barb), [Cu(barb)2(dmen)]·0.5H2O (dmen = N,N-dimethylethylenediamine) 1, [Cu(barb)2(bapa)] (bapa = bis(3-aminopropyl)amine) 2, and [Cu(barb)(apen)](barb)·2H2O (apen = N,N′-bis(3-aminopropyl)ethylenediamine) 3, have been synthesized and characterized by chemical, spectroscopic and thermal methods. Single crystal X-ray diffraction studies revealed that all complexes are mononuclear. The copper(II) ion exhibits a square-pyramidal coordination geometry in 1 and 3, but a trigonal-bipyramidal geometry in 2. The barb ligand shows different coordination modes. 1 presents the unequal coordination of the barb ligands: one is monodentate (N) and the other one is bidentate (N, O). In 2, both barb ligands are N-coordinated, whereas in 3, one barb ligand is N-coordinated, while the second barb ligand behaves as a counter-ion. The dmen, bapa and apen ligands act as bi-, tri- and tetradentate ligands, respectively. All complexes display a hydrogen-bonded network structure. The IR spectroscopic analysis shows that the ν(CO) stretching frequencies do not correlate predictably with the coordination mode of the barb ligand in 1. Thermal analysis data for 1-3 are in agreement with the crystal structures.  相似文献   

14.
A series of mononuclear organotin(IV) complexes of the types, R3SnL {R = C4H9 (1), C6H11 (2), CH3 (3) and C6H5 (4)}, R2SnClL {R = C4H9 (5), C2H5 (7) and CH3 (9)} and R2SnL2 {R = C4H9 (6), C2H5 (8) and CH3 (10)}, have been synthesized, where L = 4-(4-methoxyphenyl)piperazine-1-carbodithioate. The ligand-salt and the complexes have been characterized by Raman, FT-IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy and elemental microanalysis (CHNS). The spectroscopic data substantiate coordination of the ligands to the organotin moieties. The structures of complexes 4 and 6 have been determined by single-crystal X-ray diffraction and illustrate the asymmetric bidentate bonding of the ligand. The packing diagrams indicate O···H and π···H intermolecular interactions in complex 4 and intermolecular S2C···H interactions in complex 6, resulting in layer structures for both complexes. A subsequent antimicrobial study indicates that the compounds are active biologically and may well be the basis for a new class of fungicides.  相似文献   

15.
Two six-coordinated manganese(II) complexes [Mn(pydien)Cl](ClO4) · C2H5OH (1), [Mn(pydien)NCS](ClO4) (2) and two seven-coordinated manganese(II) complexes [Mn(pydado)Cl](ClO4) (3), [Mn(pydado)NCS](ClO4) (4) have been obtained using linear penta and hexadentate ligands pydien and pydado (pydien: 1,7-bis(2-pyridylmethyl)-1,4,7-triazaheptane and pydado: 1,10-bis(pyridylmethyl)-1,10-diaza-4,7-dioxadecane). The crystal structures for all compounds have been determined. 1 and 3 crystallize in the triclinic space group , 2 crystallizes in the orthorhombic space group Pbca, whereas 4 crystallizes in the monoclinic space group P21/c. The bound anion (chloro or isothiocyanato) in complexes 1 and 2 has no influence on the geometry of six-coordinate manganese(II) complexes, whereas the geometry and the wrapping of the hexadentate ligand (pydado) around Mn2+ cation depend on the nature of the bound anion. The complex 3 has a capped octahedron geometry with the two pyridyl groups in trans position, while the geometry of complex 4 can be described as pentagonal bipyramid with one pyridyl group and a thiocyanate anion in the axial positions.  相似文献   

16.
The [RhCl3(N-N)(DMSO)] complexes, the N-N being 2,2′-bipyridine (1), 1,10-phenanthroline (2), 4,7-diphenyl-1,10-phenanthroline (3), 4,4′-dimethyl-2,2′-bipyridine (4) and 1,10-phenanthroline-5,6-dione (5), have been synthesized and characterized with spectroscopic methods. The compounds 2-5 adopt mer- and complex 1fac-structure. The molecular and electronic structure studies of mer- and fac-complexes with bpy and phen ligands at the DFT B3LYP level with 3-21G∗∗ basis set showed that mer-isomers are more stable. The cytostatic activity of the [RhCl3(N-N)(DMSO)] complexes against Caco-2 and A549 tumor cells have been studied. Their antibacterial activity have also been investigated. It has been found that the very promising biological activity show complexes 2, 3 and 4.  相似文献   

17.
Self-assembly of flexible 1,3-bis(1,2,4-triazol-1-yl)propane (btp), inorganic Cu(II) salt and rigid benzene-based carboxylate coligand generates four complexes, {[Cu(btp)2(CH3OH)(H2O)]·H2O·2ClO4}n (1), {[Cu(btp)(Hbtc)2]·0.5H2O}n (2), [Cu(btp)2(H3btea)2]n (3), and [Cu(btp)(nb)2] (4) (H3btc = 1,3,5-benzenetricarboxylic acid, H4btea = 1,2,4,5-benzenetetracarboxylic acid, Hnb = p-nitrobenzoic acid), which are fully structural characterized by single-crystal X-ray crystallography, elemental analysis, IR, and TG-DTA techniques. Structural determinations reveal that the polymeric two-dimensional (2D) Cu-btp grid-like layer for 1, 1D linear single- and double-stranded chains for 2 and 3, as well as the discrete binuclear structure for 4, are jointly directed by the coordination polyhedrons of the Cu(II) ion and the exo-bidentate bridging btp core ligand with various conformations. The theoretical calculations suggest that the trans-trans btp is the most stable conformation, and the metal binding site is collectively determined by the electron density of N donors and the spatial orientation of the btp ligand. Unexpectedly, the polycarboxylate anions in 1-4 can only act as terminal coligands not popular bridging connectors. The thermal stability of the resulting complexes is also compared.  相似文献   

18.
A series of novel octahedral ruthenium(III) complexes involving 6-benzylaminopurine (L) derivatives as N-donor ligands has been prepared by the reaction of [(DMSO)2H][trans-RuCl4(DMSO)2] with the corresponding L derivative. The complexes 1-12 have the general compositions trans-[RuCl4(DMSO)(n-Cl-LH)] ⋅ xSol (1-3), trans-[RuCl4(DMSO)(n-Br-LH)] · xSol (4-6), trans-[RuCl4(DMSO)(n-OMe-LH)] · xSol (7-9) and trans-[RuCl4(DMSO)(n-OH-LH)] · xSol (10-12); n = 2, 3, and 4, x = 0-1.5; and Sol = H2O, DMSO, EtOH and/or (Me)2CO. The complexes have been thoroughly characterized by elemental analysis, UV-visible, FTIR, Raman, and EPR spectroscopy, ES + (positive ionization electrospray) mass spectrometry, thermal analysis, cyclic voltammetry, magnetic and conductivity measurements. The X-ray molecular structure of trans-[RuCl4(DMSO)(3-Br-LH)] ⋅ (Me)2CO (5) revealed the distorted octahedral coordination in the vicinity of the central atom, and also confirmed that the 3-Br-L ligand is present as the N3-protonated N7-H tautomer and is coordinated to Ru(III) through the N9 atom of the purine moiety. The tested complexes have been found to be in vitro non-cytotoxic against K562, G361, HOS and MCF7 human cancer cell lines with IC50 > 100 μM in contrast to the moderate results regarding the antiradical activity with IC50 ≈ 10− 3 M. On the contrary, in vivo antitumor activity screening showed that the prepared Ru(III) complexes possess higher pro-apoptotic activity than NAMI-A. The reduction of Ru(III) to Ru(II) and Ru(II)-species formation in tumor tissues was confirmed by means of a simple method of detection and visualization of intracellular Ru(II) by fluorescence microscopy. The originality of this method is based on the preparation of a Ru(II)-bipyridine complex in situ.  相似文献   

19.
When the complexes [Cu(L1)(H2O)](ClO4)21, where L1 = 4-methyl-1-(pyrid-2-ylmethyl)-1,4-diazacycloheptane, and [Cu(L2)Cl2] 2, where L2 = 4-methyl-1-(quinol-2-ylmethyl)-1,4-diazacycloheptane are interacted with one/two equivalents of bis(p-nitrophenylphosphate, (p-NO2Ph)2PO2, BNP), no hydrolysis of BNP is observed. From the solution the adducts of copper(II) complexes [Cu2(L1)2((p-NO2Ph)2PO2)2]-(ClO4)23 and [Cu(L2)((p-NO2Ph)2PO2)2]·H2O 4 have been isolated and structurally characterised. The X-ray crystal structure of 3 contains two Cu(L1) units bridged by two BNP molecules. The Cu···Cu distance (5.1 Å) reveals no Cu-Cu interaction. On the other hand, the complex 4 is mononuclear with Cu(II) coordinated to the 3N ligand as well as BNP molecules through phosphate oxygen. The trigonality index (τ, 0.37) observed for 4 is high suggesting the presence of significant trigonal distortion in the coordination geometry around copper(II). The complexes are further characterized by spectral and electrochemical studies.  相似文献   

20.
A series of bifunctional chelates of the type dipicolylamino-alkylcarboxylate (NC5H4CH2)2N(CH2)nCO2H (n = 1-4; HL1-HL4, respectively) has been prepared. Reactions of the ligands in aqueous methanol/N,N-dimethylformamide with the appropriate Cu(II) salts yielded the compounds [CuL1](NO3)·H2O (1·H2O), [CuL2(H2O)]BF4·H2O (2·H2O), [Cu(HL3)(SO4)]2 (3) and [CuL4(NO3)]·MeOH (4·MeOH). While compounds 1, 2 and 4 are one-dimensional, the detailed connectivities within the chains are quite distinct, depending on factors such as alkyl chain length and ligation of aqua ligands or anionic components. In contrast to 1, 2 and 4, the structure of 3 is molecular, a binuclear assembly of edge-sharing Cu(II) ‘4+2’ distorted octahedra. The Cd(II) species, [{CdL2}2(SO4)]·4H2O (5·4H2O), prepared from HL2 and CdSO4·nH2O in aqueous methanol/N,N-dimethylformamide, is two-dimensional, with a network constructed from binuclear units of seven coordinate Cd(II), , linked through bridging SO42− groups to produce an assembly of linked hexagonal rings [{CdL2}2(SO4)]6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号