首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of Cu(ClO4)2·6H2O, SRaaiNR′ (1-alkyl-2-[(o-thioalkyl)phenylazo]imidazole) and NH4SCN (1:1:2 mol ratio) affords distorted square pyramidal, [CuII(SRaaiNR′)(SCN)2] (3) compound while identical reaction with [Cu(MeCN)4](ClO4) yields -SCN- bridged coordination polymer, [CuI(SRaaiNR′)(SCN)]n (4). These two redox states [CuII and CuI] are interconvertible; reduction of [CuII(SRaaiNR′)(SCN)2] by ascorbic acid yields [CuI(SRaaiNR′)(SCN)]n while the oxidation of [CuI(SRaaiNR′)(SCN)]n by H2O2 in presence of excess NH4SCN affords [CuII(SRaaiNR′)(SCN)2]. They are structurally confirmed by single crystal X-ray diffraction study. Cyclic voltammogram of the complexes show Cu(II)/Cu(I) redox couple at ∼0.4 V and azo reductions at negative to SCE. UV light irradiation in MeCN solution of [CuI(SRaaiNR′)(SCN)]n (4) show trans-to-cis isomerisation of coordinated azoimidazole. The reverse transformation, cis-to-trans, is very slow with visible light irradiation while the process is thermally accessible. Quantum yields (?t→c) of trans-to-cis isomerisation are calculated and free ligands show higher ? than their Cu(I) complexes. The activation energy (Ea) of cis-to-trans isomerisation is calculated by controlled temperature experiment. Copper(II) complexes, 3, do not show photochromism. DFT and TDDFT calculation of representative complexes have been used to determine the composition and energy of molecular levels and results have been used to explain the solution spectra, photochromism and redox properties of the complexes.  相似文献   

2.
Two oxime-functionalized diazamesocyclic derivates, namely, N,N′-bis(acetophenoneoxime)-1,4-diazacycloheptane (H2L1) and N,N′-bis(acetophenonoxime)-1,5-diazacyclooctane (H2L2), have been prepared and characterized. Both ligands (obtained in the hydrochloride form) can form stable metal complexes with CuII and NiII salts, the crystal structures of which were determined by X-ray diffraction technique. The reactions of H2L1 with Cu(ClO4)2 and Ni(ClO4)2 afford a penta-coordinated mononuclear complex [Cu(H2L1)Cl] · ClO4 (1) and a four-coordinated monomeric [Ni(HL1)] · ClO4 (2), in which the ligand is monodeprotonated. The ligand H2L2 also forms a quite similar mononuclear [Ni(HL2)] · ClO4 complex with Ni(ClO4)2, according to our previous work. However, reactions of different CuII salts [Cu(ClO4)2, CuCl2 and Cu(NO3)2 for 3, and CuSO4 for 4] with H2L2 in the presence of NaClO4 yield two unusual mono-μ-Cl dinuclear CuII complexes [Cu2(HL2)2Cl] · (ClO4) (3), and [Cu2(H2L2)(HL2)Cl] · (ClO4)2 · (H2O)(4). These results indicate that the resultant CuII complexes (1, 3 and 4) are sensitive to the backbones of diazamesocycles and even auxiliary anions.  相似文献   

3.
Three kinds of copper(II) azide complexes have been synthesised in excellent yields by reacting Cu(ClO4)2 · 6H2O with N,N-bis(2-pyridylmethyl)amine (L1); N-(2-pyridylmethyl)-N′,N′-dimethylethylenediamine (L2); and N-(2-pyridylmethyl)-N′,N′-diethylethylenediamine (L3), respectively, in the presence of slight excess of sodium azide. They are the monomeric Cu(L1)(N3)(ClO4) (1), the end-to-end diazido-bridged Cu2(L2)2(μ-1,3-N3)2(ClO4)2 (2) and the single azido-bridged (μ-1,3-) 1D chain [Cu(L3)(μ-1,3-N3)]n(ClO4)n (3). The crystal and molecular structures of these complexes have been solved. The variable temperature magnetic moments of type 2 and type 3 complexes were studied. Temperature dependent susceptibility for 2 was fitted using the Bleaney-Bowers expression which led to the parameters J = −3.43 cm−1 and R = 1 × 10−5. The magnetic data for 3 were fitted to Baker’s expression for S = 1/2 and the parameters obtained were J = 1.6 cm−1 and R = 3.2 × 10−4. Crystal data are as follows. Cu(L1)(N3)(ClO4): Chemical formula, C12H13ClN6O4Cu; crystal system, monoclinic; space group, P21/c; a = 8.788(12), b = 13.045(15), c = 14.213(15) Å; β = 102.960(10)°; Z = 4. Cu(L2)(μ-N3)(ClO4): Chemical formula, C10H17ClN6O4Cu: crystal system, monoclinic; space group, P21/c; a = 10.790(12), b = 8.568(9), c = 16.651(17) Å; β = 102.360(10)°; Z = 4. [Cu(L3)(μ-N3)](ClO4): Chemical formula, C12H21ClN6O4Cu; crystal system, monoclinic; space group, P21/c; a = 12.331(14), b = 7.804(9), c = 18.64(2) Å; β = 103.405(10)°; Z = 4.  相似文献   

4.
Four new mononuclear iron(III) complexes with the substituted-salicylaldimine ligands, [Fe(L1)(TCC)] (1), [Fe(L2)(TBC)] (2), [Fe(L3)(TBC)] (3) and [Fe(L4)(TCC)](CH3CN) (4) (HL1 = N′-(5-OH-salicylaldimine)-diethylenetriamine, HL2 = (N′-(5-Cl-salicylaldimine)-diethylenetriamine, HL3 N′-(5-Br-salicyl-aldimine)-dipropylenetriamine, HL4 = (N′-3,5-Br-salicylaldimine)-dipropylenetriamine, H2TCC = tetrachlorocatechol, and H2TBC = tetrabromocatechol), were prepared and characterized by XRD, EPR, and Mössbauer spectroscopy. The coordination sphere of the Fe(III) in complexes 1-4 is a distorted octahedral with N3O3 donors set which constructed by the Schiff-base ligands and the catecholate substrates of TBC or TCC. The in situ prepared Fe(III) complexes [Fe(L1)Cl2], [Fe(L2)Cl2], [Fe(L3)(Cl2)], and [Fe(L4)Cl2] in absence of TBC or TCC show a high catecholase-like activity for the oxidation of 3,5-DTBC to the corresponding quinone 3,5-DTBQ.  相似文献   

5.
Three new trinuclear copper(II) complexes, [(CuL1)33-OH)](ClO4)2·3.75H2O (1), [(CuL2)33-OH)](ClO4)2(2) and [(CuL3)33-OH)](BF4)2·0.5CH3CN (3) have been synthesized from three tridentate Schiff bases HL1, HL2, and HL3 (HL1 = 2-[(2-amino-ethylimino)-methyl]-phenol, HL2 = 2-[(2-methylamino-ethylimino)-methyl]-phenol and HL3 = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol). The complexes are characterized by single-crystal X-ray diffraction analyses, IR, UV-vis and EPR spectroscopy, and variable-temperature magnetic measurements. All the compounds contain a partial cubane [Cu3O4] core consisting of the trinuclear unit [(CuL)33-OH)]2+ together with perchlorate or fluoroborate anions. In each of the complexes, the three copper atoms are five-coordinated with a distorted square-pyramidal geometry except in complex 1, in which one of the CuII ions of the trinuclear unit is six-coordinate being in addition weakly coordinated to one of the perchlorate anions. Variable-temperature magnetic measurements and EPR spectra indicate an antiferromagnetic exchange coupling between the CuII ions of complexes 1 and 2, while this turned out to be ferromagnetic for complex 3. Experimental values have been fitted according to an isotropic exchange Hamiltonian. Calculations based on Density Functional Theory have also been performed in order to estimate the exchange coupling constants in these three complexes. Both sets of values indicate similar trends and specially calculated J values establish a magneto-structural correlation between them and the Cu-O-Cu bond angle, in that the coupling is more ferromagnetic for smaller bond angle values.  相似文献   

6.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

7.
Imidazole-2-thiol derivatives H2L1-3 (H2L1 = 1H-benzoimidazole-2-thiol, H2L2 = 5-methyl-1H-benzoimidazole-2-thiol, and H2L3 = 1H-imidazole-2-thiol) act as neutral monodentate ligands in a number of technetium and rhenium complexes. Disubstituted M(V) (M = Tc, Re) complexes of the type [AsPh4]{[MOCl2(H2Ln)2(H2O)]Cl2} are formed when [MOCl4] react with H2L1-3 in 1:2 stoichiometric ratio. Single crystal X-ray structure determinations were carried out on [AsPh4]{[TcOCl2(H2L1)2(H2O)]Cl2}. The coordination sphere is pseudo-octahedral in which the sulfur atoms of two ligands sit in the equatorial plane and a water molecule is in trans to the TcO multiple bond. All the complexes react with an excess of the corresponding ligand to form tetrasubstituted cationic species {[MO(H2Ln)4]Cl3}. These complexes can be also isolated by reaction of [MOCl4] with an excess of ligand. No complex is obtained with benzothiazole-2-thiol (HL4) and benzoxazole-2-thiol (HL5). Ligand exchange reactions of [ReOCl3(PPh3)2] with HL4,5 have also been investigated. Treating the oxo-precursor with HL4 no product is isolated, while with HL5 the chelate oxo-compound [ReOCl2(L5)(PPh3)] is formed as two isomers. An interesting organometallic complex of Re(IV) [ReCl3(L5∗)(PPh3)2] is obtained when a slight excess of HL5 reacts with [ReOCl3(PPh3)2] in refluxing benzene solution and in air. Geometry about the Re atom is approximately octahedral in which the equatorial plane contains three Cl atoms and the carbon atom of the benzoxazole ligand anion, the apical positions are occupied by two PPh3. The reaction with O-ethyl S-hydrogen p-tolyl carbonothioimidate HL6 which contains the same heteroatoms of HL5 does not form an organometallic species, but forms the chelate oxo-Re(V) complex [ReOCl2(L6)(PPh3)]. The solid-state structure has been authenticated by X-ray crystallography.  相似文献   

8.
Two Schiff bases, HL1 and HL2 have been prepared by the condensation of N-methyl-1,3-propanediamine (mpn) with salicylaldehyde and 1-benzoylacetone (Hbn) respectively. HL1 on reaction with Cu(ClO4)2·6H2O in methanol produced a trinuclear CuII complex, [(CuL1)3(μ3-OH)](ClO4)2·H2O·0.5CH2Cl2 (1) but HL2 underwent hydrolysis under similar reaction conditions to result in a ternary CuII complex, [Cu(bn)(mpn)ClO4]. Both complexes have been characterised by single-crystal X-ray analyses, IR and UV-Vis spectroscopy and electrochemical studies. The partial cubane core [Cu3O4] of 1 consists of a central μ3-OH and three peripheral phenoxo bridges from the Schiff base. All three copper atoms of the trinuclear unit are five-coordinate with a distorted square-pyramidal geometry. The ternary complex 2 is mononuclear with the square-pyramidal CuII coordinated by a chelating bidentate diamine (mpn) and a benzoylacetonate (bn) moiety in the equatorial plane and one of the oxygen atoms of perchlorate in an axial position. The results show that the Schiff base (HL2) derived from 1-benzoylacetone is more prone to hydrolysis than that from salicylaldehyde (HL1). Magnetic measurements of 1 have been performed in the 1.8-300 K temperature range. The experimental data clearly indicate antiferromagnetism in the complex. The best-fit parameters for complex 1 are g = 2.18(1) and J = −15.4(2) cm−1.  相似文献   

9.
Mononuclear zinc complexes of a family of pyridylmethylamide ligands abbreviated as HL, HLPh, HLMe3, HLPh3, and MeLSMe [HL = N-(2-pyridylmethyl)acetamide; HLPh = 2-phenyl-N-(2-pyridylmethyl)acetamide; HLMe3 = 2,2-dimethyl-N-(2-pyridylmethyl)propionamide; HLPh3 = 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide; MeLSMe = N-methyl-2-methylsulfanyl-N-pyridin-2-ylmethyl-acetamide] were synthesized and characterized spectroscopically and by single crystal X-ray structural analysis. The reaction of zinc(II) salts with the HL ligands yielded complexes [Zn(HL)2(OTf)2] (1), [Zn(HL)2(H2O)](ClO4)2 (2), [Zn(HLPh3)2(H2O)](ClO4)2 (3), [Zn(HLPh)Cl2] (4), [Zn(HLMe3)Cl2] (5), and [Zn(MeLSMe)Cl2] (6). The complexes are either four-, five- or six-coordinate, encompassing a variety of geometries including tetrahedral, square-pyramidal, trigonal-bipyramidal, and octahedral.  相似文献   

10.
New complexes of formulae [Cu(HL2)(H2O)(NO3)](NO3) (1), [{Cu(L1)(tfa)}2] (2), [{Cu(L1)}2(pz)](ClO4)2 (3) and {[{Cu(L1)}2(dca)](ClO4)}n (4), where HL1 = pyridine-2-carbaldehyde thiosemicarbazone, HL2 = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone, Htfa = trifluoroacetic acid (CF3COOH), pz = pyrazine (C4H4N2) and dca = dicyanamide [N(CN)2], have been synthesized and characterized. The crystal structures of these compounds are built up of monomers (1), dinuclear entities with the metal centers bridged through the non-thiosemicarbazone coligand (2 and 3) and 1D chains of dimers (4). In all the cases, square-pyramidal copper(II) ions are present, except for the square-planar ones in 3. Magnetic measurements show antiferromagnetic couplings in 2, 3 and 4. The susceptibility data were fitted by the Bleaney-Bowers’ equation for copper(II) dimers derived from H = -2JS1S2 being the obtained J/k values −4.8, −4.3 and −5.1 K for compounds 2-4, respectively. The magnetic susceptibility of the already known [{Cu(HL1)(tfa)}2](tfa)2 compound has been also measured for the first time. The J/k value is -0.3 K, lower than that in 2. The nuclease activity of 3 and 4 has been analyzed.  相似文献   

11.
Two new mononuclear spin-crossover iron(II) complexes, [FeL2(NCS)2] · H2O (1) and [FeL2(NCSe)2] (2), have been synthesized from the reaction of the versatile ligand 4,5-bis(2-cyanoethylthio)-2-bis(2-pyridyl)methylene-1,3-dithiole (L), Fe(ClO4)2, and KNCX (X = S/Se). Reactions of L with CuII or CoII salts afford one mononuclear complex [CuL(hfac)2] · CH3OH (hfac = hexafluoroacetylacetonate) (3), one dinuclear complex [(CuLCl)2(μ-Cl)2] · CH3OH (4), and two 1D chain species, [CuL2]n(BF4)2n (5) and [CoL2]n(ClO4)2n · 2nCH2Cl2 (6). The crystal structures of complexes 1 and 3-6 have been determined by X-ray crystallography. Short intermolecular S?S contacts between neighboring 1D arrays are observed in 5 and 6, which lead to the formation of the 2D structure. The magnetic properties are studied, and antiferromagnetic couplings between the CuII centers across the chloride bridges have been found in 4 (J = 2.04 cm-1). Spin-crossover behaviors between high and low spin states are observed at T1/2 = 80 K for 1 and T1/2 = 300 K for 2, respectively.  相似文献   

12.
Reaction of the potentially tetradentate N-donor ligand 6,6′-bis(4-methylthiazol-2-yl)-2,2′-bipyridine (L1) with the transition metal dications CoII, NiII, CuII, CdII and HgII results in the formation of mononuclear [M(L1)]2+ complexes, in which a planar ligand coordinates to the metals via all four N-donors. In contrast, reaction of L1 with CuI and AgI monocations, affords dinuclear double stranded helicate species [M2(L1)2]2+ (where M = CuI or AgI), in which partitioning of the ligand into two bis-bidentate pyridyl-thiazole chelating units allows each ligand to bridge both metal centres. X-Ray crystallography, electrospray mass spectroscopy and NMR spectroscopy reveal that the complexes [Mn(L1)m]z+ (where n = 1, m = 1 and z = 2, when M = CoII, NiII, CuII, CdII and HgII; n = 2, m = 2 and z = 2, when M = CuI), retain their solid-state structures in solution. Conversely, whilst 1H NMR studies suggest that combination of equimolar amounts of Ag(X)(where ) and L1 (in either nitromethane or acetonitrile) results in the formation of a helicate in solution, in the solid-state, an anion-templating effect gives rise to either mononuclear or dinuclear helicate structures [Agn(L1)n][X]n (where n = 2 when X = OTf; n = 1 when ).  相似文献   

13.
Reactions of 2-(arylazo)aniline, HL [H represents the dissociable protons upon orthometallation and HL is p-RC6H4N = NC6H4-NH2; R = H for HL1; CH3 for HL2 and Cl for HL3] with Ru(R1-tpy)Cl3 (where R1-tpy is 4′-(R1)-2,2′,6′′,2′′-terpyridine and R1 = H or 4-N,N-dimethylaminophenyl or 4-methylphenyl) afford a group of complexes of type [Ru(L)(R1-tpy)]·ClO4 each of which contains C,N,N coordinated L as a tridentate ligand along with a terpyridine. Structure of one such complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, display characteristic 1H NMR signals and intense dπ(RuII) → π∗(tpy) MLCT transitions in the visible region. Cyclic voltammetric studies on [Ru(L)(R1-tpy)]·ClO4 complexes show Ru(II)-Ru(III) oxidation within 0.63-0.67 V versus SCE.  相似文献   

14.
Five complexes [Mn2O(L1)4]n (1), [Co(L2)(H2O)2]n (2), [Co(L3)2(H2O)2]n (3) and [Co(L4)2(4,4′-bpy)(H2O)]n (4) were obtained by using flexible organic ligands HL1, HL2, HL3, and HL4 in hydrothermal systems with cobalt, copper and manganese salts respectively (HL1 = 2-(4-pyridylmethylthio)benzoic acid, HL2 = 4-(4-pyridylmethylthio)benzoic acid, HL3 = 2-(3-pyridylmethylthio)benzoic acid, HL4 = 4-(2-pyridylmethylthio)benzoic acid). The five complexes have been characterized by X-ray single crystal diffraction, FT-IR spectrum and elemental analysis. Complex 1 is assembled to a 3D porous framework with Mn2O units as nodes. Complex 2 shows 2D layer networks comprised of six-coordinated Co2+ centers and L2 anionic ions. Complexes 3 and 4 have different 1D double or single chain structures. Various non-covalent bonds such as hydrogen bonds, π?π interactions, H-bond grids and S?S weak interactions lead to interesting supramolecular frameworks. DC (direct current) temperature dependent magnetic susceptibilities suggest weak antiferromagnetic behaviors exist in 1, and single ion paramagnetic along with spin-orbit coupling behavior dominate in 3 and 4.  相似文献   

15.
Two mixed-ligand copper(II) complexes [{Cu(L1)(μ1,3-N3)}{Cu(L)(μ1,3-N3)(μ1,1-N3)}]n (1) [HL1 = 1-(N-ortho-hydroxyacetophenimino)-2,2-dimethyl-aminoethane; L = 2-(dimethylamino)-ethylamine] and [{Cu(L2)(μ1,3-N3)}{Cu(L)(μ1,3-N3)(μ1,1-N3)}]n (2) [HL2 = 1-(N-5-methoxy-ortho-hydroxyacetophenimino)-2,2-dimethyl-aminoethane] have been formed upon addition of aqueous solution of sodium azide to a methanolic solution of copper nitrate trihydrate and corresponding Schiff-base ligands. The ligands, HL1 and HL2 undergo partial hydrolysis of their imine bond during the course of reaction. Both the complexes contain single end-to-end (μ1,3) azido bridged 1D infinite chains (rail) which propagate parallel to the crystallographic b-axis; neighboring chains are interconnected by pairs through double asymmetric end-on (μ1,1) azido bridges (rung) to yield a ladder-like structure. In both complexes, rungs (end-on azido bridges) do not connect copper centers of the chains like in a regular ladder; instead they connect only the alternating copper sites of the 1D chain. In a chain the coordination environment around copper(II) ions are not the same: while the {Cu(L1)(μ1,3-N3)} and {Cu(L2)(μ1,3-N3)} moieties have a penta-coordinated copper(II) center, the copper(II) ion of the neighboring {Cu(L1)(μ1,3-N3)(μ1,1-N3)} or {Cu(L2)(μ1,3-N3)(μ1,1-N3)} moiety has an octahedral coordination environment. The variable temperature (2-300 K) magnetic susceptibility measurements showed that the magnetic interaction between the metal centers in complexes 1 and 2 is dominantly antiferromagnetic. The results of magnetic model are in good agreement with the experimental data.  相似文献   

16.
A chiral spin crossover iron(II) complex, fac-Λ-[FeII(HLR)3](ClO4)2·EtOH was synthesized and its crystal structures in both the high-spin (HS) and low-spin (LS) states were determined, where HLR denotes 2-methylimidazol-4-yl-methylideneamino-R-(+)-1-methylphenyl. The complex assumes octahedral coordination geometry of N6 donor atoms by three bidentate ligands HLR. The complex exists as the facial-Λ-isomer of fac-Λ-[FeII(HLR)3]2+ of the possible geometrical fac- and mer-isomers and the Δ- and Λ-enantiomorphs. The X-ray structural analyses revealed that the R-form of the ligand (HLR) induces the fac-Λ-isomer of fac-Λ-[FeII(HLR)3]2+ and the S-form of the ligand (HLS) induces the fac-Δ-isomer of fac-Δ-[Fe(HLS)3]2+. The complex fac-Λ-[FeII(HLR)3](ClO4)2·EtOH shows a complete steep spin crossover between the HS and the LS states at T1/2 = 195 K.  相似文献   

17.
Two NNS tridentate Schiff base ligands of 2-benzoylpyridine S-methyldithiocarbazate (HL1) and 2-benzoylpyridine S-phenyldithiocarbazate (HL2) and their transition metal complexes [Cu2(L1)2(CH3COO)](ClO4) (1), [Zn2(L1)2(ClO4)2] (2), [Zn(L2)2](3) have been prepared and characterized by elemental analysis, IR, MS, NMR and single-crystal X-ray diffraction studies. In the solid state, each of two Schiff bases remains in its thione tautomeric form with the thione sulfur atom trans to the azomethine nitrogen atom. Under similar prepared conditions, three new complexes showed distinctly different coordination modes depending on their coordinating preferences. Each copper atom in S-bridged dinuclear complex [Cu2(L1)2(CH3COO)](ClO4) (1) is surrounded by five donor atoms in a square-pyramidal fashion (4 + 1). [Zn2(L1)2(ClO4)2] (2) is a dimer in which each zinc atom adopts a seven-coordinate distorted pentagonal bipyramidal geometry, while mononuclear [Zn(L2)2] (3) has octahedral coordination geometry. Biological studies, carried out in vitro against selected bacteria, fungi, and K562 leukaemia cell line, respectively, have shown that different substituted groups attached at the dithiocarbazate moieties and metals showed distinctive differences in the biological property. Zinc(II) complexes 2 and 3 could distinguish K562 leukaemia cell line from normal hepatocyte QSG7701 cell line. Effect of the title compounds on Mitochondria membrane potential (MMP) and PI-associated fluorescence intensity in K562 leukaemia cell line are also studied. The title compounds may exert their cytotoxicity activity via induced loss of MMP.  相似文献   

18.
A series of mononuclear iron(III) complexes with containing phenolate donor of substituted-salicylaldimine based ligands [Fe(L1)(TCC)] · CH3OH (1), [Fe(L2)(TCC)] · CH3OH (2), [Fe(L3)(TCC)] (3), and [Fe(L4)(TCC)] (4) have been prepared and studied as functional models for catechol dioxygenases (H2TCC = tetrachlorocatechol, or HL1 = N′-(salicylaldimine)-N,N-diethyldiethylenetriamine, HL2 = N′-(5-Br-salicylaldimine)-N,N-diethyldiethylenetriamine, HL3 = N′-(4,6-dimethoxy-salycyl-aldimine)-N,N-diethyl-diethylenetriamine, HL4 = N′-(4-methoxy-salicylaldimine)-N,N-diethyl-diethylenetriamine). They are structural models for inhibitors of enzyme-substrate adducts from the reactions of catechol 1,2-dioxygenases. Complexes 1-4 were characterized by spectroscopic methods and X-ray crystal structural analysis. The coordination sphere of Fe(III) atom of 1-4 is distorted octahedral with N3O3 donor set from the ligand and the substrate TCC occupying cis position, and Fe(III) is in high-spin (S = 5/2) electronic ground state. The in situ prepared iron(III) complexes without TCC, [Fe(L1)Cl2], [Fe(L2)Cl2], [Fe(L3)Cl2], and [Fe(L4)Cl2] are reactive towards intradiol cleavage of the 3,5-di-tert-butylcatechol (H2DBC) in the presence of O2 or air. The reaction rate of catechol 1,2-dioxygenase depends on the redox potential and acidity of iron(III) ions in complexes as well as the substituent effect of the ligands. We have identified the reaction products and proposed the mechanism of the reactions of these iron(III) complexes with H2DBC with O2.  相似文献   

19.
Preliminary pharmacological studies of various nitric oxide (NO) photo-releasing agents are reported based on the flash-photolysis studies of the nitro ruthenium complexes cis-[RuII(NO2)L(bpy)2]+ (bpy = 2,2′-bipyridine and L = pyridine, 4-picoline and pyrazine) and [RuII(NO2)(bpy)(terpy)]+ (terpy = terpyridine) in physiological medium. The net photoreactions under these conditions are two primary photoproducts, in (I) there is RuII-NO2 photoaquation, where the photoproducts are RuII-H2O plus and (II) homolytic dissociation of NO from a coordinated nitrito to derive the RuII-OH2 specie and NO. Based on photochemical processes, the nitro ruthenium complexes were incorporated in water in oil (W/O) microemulsion and used in the vasorelaxation induced experiment. Denuded rat aortas were contracted with KCl and nitro ruthenium complexes in microemulsion were added. Perfusion pressures were recorded while arteries were irradiated at 355 nm The time to reach maximum relaxation was longer for [RuII(NO2)(bpy)(terpy)]+ complex (ca. 50 min, n = 6) than for cis-[Ru(NO2)L(bpy)2]+ with L = py and 4-pic complex (ca. 28 min, n = 6) and cis-[Ru(NO2)(bpy)2 (pz)]2+ complex (ca. 24 min, n = 5).  相似文献   

20.
A new synthetic route to the known tripodal tetradentate N3O ligand L1 (HL1 = [N-(3,5-di-tert-butyl-2-hydroxybenzyl)-N,N-di-(2-pyridylmethyl)]amine) is reported. The related compounds HLn (n = 2, 3) were prepared by a similar procedure. Treatment of HLn (n = 1-3) with FeCl3·6H2O in hot methanol led to the mononuclear iron(III) complexes [Fe(Ln)Cl2] (1: n = 1, 2: n = 2, 3: n = 3). The solid-state structures of complexes 1 and 2 were determined by X-ray crystallography. [Fe(L1)Cl2] (1) showed effective nuclease activity in the presence of hydrogen peroxide, converting supercoiled plasmid DNA to its linear form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号