首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four new Cu(II) complexes [Cu(pzda)(2,2′-bpy)(H2O)] · 2.5H2O (1), [Cu(pzda)(phen)(H2O)] · H2O (2), [Cu(pzda)(4,4′-bpy)] · H2O (3) and [Cu(pzda)(bpe)0.5(H2O)] (4) were synthesized by hydrothermal reactions of copper salt (acetate or sulphate) with pyrazine-2,6-dicarboxylic acid (H2pzda), and 2,2′-bipyridine (2,2′-bpy), 1,10-phenanthroline (phen), 4,4′-bipyridine (4,4′-bpy) or 1,2-bis(4-pyridyl)-ethane (bpe), respectively. For 1 and 2, they are both monomeric entities which are further assembled into 3D supramolecular networks by hydrogen bonds and π-π stacking interactions. Complex 3 has a 2D metal-organic framework which is connected into 3D supramolecular network by hydrogen bonds. However, for 4, the bpe ligand bridges two Cu(II) ions into binuclear unit, and then the binuclear molecules are assembled into 3D supramolecular network by hydrogen bonds between the coordination water molecule and the carboxylate oxygen atoms. The thermal decomposition mechanism of complexes 1 and 2 cooperated with powder XRD at different temperatures is discussed. The results reveal that once liberation of water molecules takes place the supramolecular network of 1 and 2 collapses.  相似文献   

2.
Three Cd(II) and Zn(II) coordination polymers, including {[Cd(3-bpo)(mip)(H2O)](H2O)2}n (1), {[Cd(4-bpo)(hip)(H2O)](H2O)4}n (2), and {[Zn(4-bpo)(tp)](CH3OH)}n (3) were synthesized from the reactions of CdII or ZnII nitrate with mixed organic ligands [3-bpo = 2,5-bis(3-pyridyl)-1,3,4-oxadiazole, H2mip = 5-methylisophthalic acid, 4-bpo = 2,5-bis(4-pyridyl)-1,3,4-oxadiazole, H2hip = 5-hydroxylisophthalic acid, H2tp = terephthalic acid] under the similar layered diffusion condition. The resulting crystalline materials 1-3 were characterized by IR, microanalysis, powder X-ray diffraction (PXRD) techniques. Single-crystal X-ray diffraction indicates a 1-D tubular motif for 1, a 1-D dual-track array for 2, and a 2-D grid-like pattern for 3, constructed via different metal-ligand coordination contacts. Higher-dimensional supramolecular architectures are further assembled in 1-3 via H-bonding and aromatic stacking interactions. In addition, thermal stability and fluorescence of these polymeric complexes were also investigated and discussed.  相似文献   

3.
Four new fluconazole-bridged zinc(II) and cadmium(II) complexes with dicarboxylate co-ligands, namely [Zn(HFlu)(TPA)]n (1), {[Cd(HFlu)2(TPA)]·2CH3OH}n (2), [Zn(HFlu)2(Suc)(H2O)2]·H2O (3), and [Cd(HFlu)2(Suc)(H2O)2]·H2O (4), have been synthesized and characterized by elemental analysis, IR, TG, and single-crystal X-ray diffraction (HFlu = 2-(2,4-difluorophenyl)-1,3-bis(1,2,4-triazol-1-yl)-propan-2-ol, H2TPA = terephthalic acid, and H2Suc = succinic acid). Complex 1 displays a 2-D corrugated network with common (4,4) topology, in which two types of grids constructed by two bridging TPA dianions and two HFlu ligands are found. Complex 2 shows an unusual (3,6) coordination layer consisting of alternative PMPM Cd-HFlu helical chains in which the Cd(II) nodes are also fixed by terephthalate dianions in a cis fashion. The isostructural complexes 3 and 4 have 20-membered dimeric macrocyclic motifs with the Zn···Zn and Cd···Cd distances of 11.258(2) and 11.528(2) Å, respectively. The fluorescence and thermal stability of complexes 1-4 have also been investigated.  相似文献   

4.
A series of new organotin(IV) derivatives with 2,3,4,5-tetrafluorobenzoic acid: {[(2,3,4,5-F4C6HCO2)R2Sn]2O}2 (R = Et 1, n-Bu 2, Ph 3), [R2Sn(O2CC6F4H)2]n (R = n-Bu 4, Et 5, Ph 6), and Sn2R4(O2CC6F4H)3(OH) (R = Et 7, n-Bu 8, Ph 9), were synthesized by the reaction of diorganotin oxide and 2,3,4,5-tetrafluorobenzoic acid. All the complexes 1-9 have been characterized by elemental analysis, IR, 1H, 13C, 119Sn NMR spectra. Among them complexes 2, 4, 8 were also characterized by X-ray crystallography diffraction analyses. The crystal structure of complex 2 exhibited a tetra-nuclear geometry with the Sn2O2 symmetry core. Complex 4 formed a 1D helical double-chain structure through intermolecular O→Sn coordinating and completed a DNA-like assembly. Complex 8 revealed that the both Sn atoms were held together by hydroxide and acetate bridges, forming a chair-like six-membered ring. Moreover, the supramolecular structures of dimer, 1D chain or 2D network have been found in complexes 4 and 8 by intermolecular C-H?F weak hydrogen bond and non-bonded F?F or F?Sn interaction, which were highly effective in the assembly of supramolecular structures and could lead to the formation of complexes with fascinating topologies properties.  相似文献   

5.
Four new coordination complexes [Cd(DPBA-3)2(H2O)2](ClO4)2·2H2O (1), [Cd(DPBA-3)(DMF)(NO3)2]·DMF (2), [Cd3(DPBA-3)2(SCN)6]·2DMF·4H2O (3) and [Zn(DPBA-3)(SCN)2] (4) [DPBA-3 = N,N′-di(pyridin-3-yl)pyridine-3,5-dicarboxamide] have been synthesized and characterized by elemental analysis, IR and single crystal X-ray diffraction. Complexes 1, 3 and 4 exhibit three different types of one-dimensional (1D) chain structures constructed by the metal ions and DPBA-3 ligands, and the Cd(II)-DPBA-3 1D chains in 3 are further linked by bridging SCN ligands to afford a three-dimensional (3D) framework. Complex 2 possesses a (6,3) two-dimensional (2D) layer structure. In 1-4, the hydrogen bonds involving the amide groups play important role to stabilize the resultant frameworks. The photoluminescence properties of the DPBA-3 and the complexes were studied in the solid state at room temperature.  相似文献   

6.
Two new dianion metal-organic complexes {[Cd(pcl)(H2O)2]2[Cd(pcl)2(dca)2]} (1) and [Ni(pcl)(dca)(H2O)]2 (2) (dca = dicyanamide, Hpcl = picolinic acid) have been synthesized and characterized by IR spectra and X-ray diffraction. In complex 1, the pcl ligand both acts as chelate and bridging coordination ligands, while in complex 2, which only acts as a chelate ligand. In both cases, μ-1, 5-dca ligands bridge the metal ions to form square-grid like [M(dca)2]2 dimers. In complex 1, four of the trinuclear second building units {[Cd(pcl)(H2O)2]2[Cd(pcl)2(dca)2]} formed a honeycomb-like cavity, which further bridged by pcl and dca to give a 2D network. While in complex 2, a channel-like supramolecular structure is formed by the connection of numerous hydrogen-bond interactions and weak interactions among the dinuclear motifs. Thermally gravimetric analyses and differential thermal analyses indicate that the two complexes are thermal stable.  相似文献   

7.
Three complexes of the composition {[Cu(μ1,5-dca)2(mppca)2] · H2O}n (1), [Cu(μ1,5-dca)2(nppca)2]n (2) and [Cu(μ-Cl)2(mppca)2]n (3) (dca = dicyanamide, ; mppca = N-(4′-methylphenyl)-4-pyridinecarboxamide; nppca = N-(4′-nitrophenyl)-4-pyridinecarboxamide) have been synthesized and characterized by single crystal X-ray crystallography and magnetic susceptibility studies. Different supramolecular structures of the complexes have been constructed by different non-covalent motifs in the crystalline solids. In complex 1, adjacent copper(II) atoms are connected by double μ1,5-dca(end-to-end) bridges to form a chain-like structure. The chains are linked by π-π interactions and hydrogen bonds between the ligands and water molecules to form a 3D network. In complex 2, copper(II) atom has a coordination environment similar to 1, but water molecules have not been found. Weak C-H?N hydrogen bonding and π-π interaction yield a 3D supramolecular network which is different from that of complex 1. Complex 3 is a 1D polymeric chain in which Cu(II) ions are bridged by Cl, and only CH/π interactions had been found. Magnetic measurements revealed antiferromagnetic properties of 1, 3 and ferromagnetic behavior of 2.  相似文献   

8.
Two new coordination polymers [Cd(dps)2Cl2] (1) and [Co(dps)2(H2O)2]·(abs)2(H2O)2 (2) (dps = 4, 4′-dipyridylsulfide, Habs = 4-amino benzenesulfonic acid) have been synthesized under similar conditions and characterized by elemental analysis, fluorescence spectra and single crystal X-ray diffraction. Compound 1 displays a dps-bridged 2D puckered, grid-like layer, which is further linked by C-H?Cl hydrogen bonds to form a 3D supramolecular architecture. Compound 2 shows a dps-bridged double-stranded chain structure, which is extended by N-H?O and O-H?O hydrogen bonds generating a 3D network. Solid-state fluorescence results reveal that both complexes can emit strong emission bands, at 467 nm and 518 nm for 1 and 344 nm for 2, respectively. Magnetic measurements show that there are weak antiferromagnetic interactions between the adjacent Co(II) ions in 2.  相似文献   

9.
Two novel complexes [Cu(DBA)2(1,10-phen)]n (1) and [Cd(DBA)2(1,10-phen)2] (2) [HDBA = benzilic acid: (C6H5)2C(OH)COOH] have been synthesized and characterized by element analysis and fluorescence spectroscopy. The crystal structures of compounds 1, 2 and HDBA (3) were also determined. Complex 1 is a one-dimensional (1D) helical infinite chain, in which [(1,10)-phen]Cu(II) units were bridged by benzilic acid. Complex 2 is a mononuclear structure, and is self-assembled through π-π stacking interactions to form a 1D helical chain. Compound 3 is self-assembled to form a 1D helical chain through hydrogen bonds interactions. Thermal analyses indicate that complexes 1 and 2 are stable under 200 and 254 °C in solid state, respectively.  相似文献   

10.
Three distinct coordination complexes, viz. {[Cu(μ-L)2] · (H2O)4}n (1), [Ni(L)2(CH3OH)2] (2), and [Zn(L)2(H2O)2] · (H2O)2 (3), have been prepared by the reactions of metal nitrates with isoquinoline-3-carboxylic acid (HL). X-ray single-crystal diffraction suggests that 1 is a 1D chain coordination polymer in which the CuII ions are connected by carboxylates, whereas complexes 2 and 3 represent discrete mononuclear species. In all the cases, the coordination entities are further organized via hydrogen-bonding interactions to generate multifarious supramolecular networks. Remarkably, a well-resolved 1D water morphology is observed for the first time in the crystalline lattice of 1 along [1 0 0], which consists of edge-sharing tetrameric subunits and stabilized by the metal-organic host surroundings.  相似文献   

11.
Four novel coordination polymers, [Cd(Hdtbb)(dtbb)0.5(DMF)]n (1), {[Cd(dtbb)(2,2′-bpy)(H2O)]·2DMA}n (2), {[Cd2(dtbb)2(1,4-bix)2]·3DMF}n (3) and [Cd(dtbb)(1,4-btx)]n (4) [H2dtbb = 2,2-dithiobisbenzoic acid, 2,2′-bpy = 2,2′-bipyridine, 1,4-bix = 1,4-bis(imidazol-1-ylmethyl)benzene, 1,4-btx = 1,4-bis(triazol-1-ylmethyl)benzene] have been synthesized and structurally characterized. Complexes 1 and 2 possess one-dimensional (1D) infinite structures. The structures of complexes 3 and 4 exhibit two dimensional (2D) frameworks, which mainly due to the differences in the bridging modes of dtbb2− ligand and the effect of the N-donor auxiliary ligands. The infrared spectra, thermogravimetric and luminescent properties were also investigated for these compounds.  相似文献   

12.
The reaction of Cd(OAc)2 · 4H2O and 1-alkyl-2-(arylazo)imidazole [RaaiR′ where R = H (a), Me (b); R′ = Me (1/3/5), Et (2/4/6)] and NH4NCS/NaNCO in methanol in 1:2:2 mole ratio has afforded [Cd(RaaiR′)2(NCS)2] (34) and [Cd(RaaiR′)2(NCO)2] (56) complexes. The complexes are characterized by different physicochemical methods and in one case, the structure was confirmed by single crystal X-ray diffraction study for title compounds.  相似文献   

13.
Jing Xu 《Inorganica chimica acta》2009,362(11):4002-4008
Three new coordination polymers {[Cu(HL)(H2O)]·H2O}n (1), [Ag(H2L)]n (2), and {[Co(HL)(phen)(H2O)]·8H2O}n (3) [H3L = 5-(1H-imidazol-4-ylmethyl)aminoisophthalic acid, phen = 1,10-phenanthroline] have been synthesized under hydrothermal conditions. The results of X-ray diffraction analysis revealed that complex 1 displays (3, 3)-connected 2D network with (4, 82) topology, while complexes 2 and 3 have infinite 1D chain structure, in which one of the two carboxylic groups of H2L/HL2− is uncoordinated. The 2D layers of 1 or the 1D chains of 2 and 3 are further linked together by hydrogen bonds and π-π interactions to form 3D supramolecular frameworks. Moreover, the electrochemical properties of complexes 1 and 2 have been studied by modified glassy carbon electrodes of 1 (Cu-GCE) and 2 (Ag-GCE), and the results indicate that the Cu-GCE and Ag-GCE show one-electron redox peaks. In addition, both Cu-GCE and Ag-GCE have good electrocatalytic activities toward the reduction of H2O2 in phosphate buffer (pH 5.5) solution.  相似文献   

14.
A series of new binuclear copper (II) and nickel (II) complexes of the macrocyclic ligands bis(1,4,7-triazacyclononan-1-yl)butane (Lbut) and bis(1,4,7-triazacyclononan-1-yl)-m-xylene (Lmx) have been synthesized: [Cu2LbutBr4] (1), [Cu2Lbut(imidazole)2Br2](ClO4)2 (2), [Cu2Lmx(μ-OH)(imidazole)2](ClO4)3 (3), [Cu2Lbut(imidazole)4](ClO4)4 · H2O (4), [Cu2Lmx(imidazole)4](ClO4)4 (5), [Ni2 Lbut(H2O)6](ClO4)4 · 2H2O (6), [Ni2Lbut(imidazole)6](ClO4)4 · 2H2O (7) and [Ni2Lmx (imidazole)4(H2O)2](ClO4)4 · 3H2O (8). Complexes 1, 2, 7 and 8 have been characterized by single crystal X-ray studies. In each of the complexes, the two tridentate 1,4,7-triazacyclononane rings of the ligand facially coordinate to separate metal centres. The distorted square-pyramidal coordination sphere of the copper (II) centres is completed by bromide anions in the case of 1 and/or monodentate imidazole ligands in complexes 2, 4 and 5. Complex 3 has been formulated as a monohydroxo-bridged complex featuring two terminal imidazole ligands. Complexes 6-8 feature distorted octahedral nickel (II) centres with water and/or monodentate imidazole ligands occupying the remaining coordination sites. Within the crystal structures, the ligands adopt trans conformations, with the two metal binding compartments widely separated, perhaps as a consequence of electrostatic repulsion between the cationic metal centres. The imidazole-bearing complexes may be viewed as simple models for the coordinative interaction of the binuclear complexes of bis (tacn) ligands with protein molecules bearing multiple surface-exposed histidine residues.  相似文献   

15.
Three palladium(II) complexes have been synthesized, using 3,4-bis(cyanamido) cyclobutane-1,2-dione dianion (3,4-bis(cyanamido)squarate or 3,4-NCNsq2−): [Pd(en)(3,4-NCNsq)] · 1.5H2O (1) (en=1,2-diaminoethane), [Pd(en)(3,4-(NC(O)NH2)sq)] · 0.5H2O (2) and K3Na[Pd2(3,4-(NCN)2sq)4] · 5H2O (3). Complex 1 has been characterized by elemental analysis, IR and 13C NMR spectroscopies. Complexes 2 and 3 have been characterized by single-crystal X-ray diffraction. In complex 2, the unusual hydration of the cyanamido ligand was observed, it proceeds in the coordination sphere of the palladium and leads to a chelating urea squarate ligand. Complex 3 is an anionic dinuclear complex containing four bridging cyanamido squarate ligands. In complexes 2 and 3, the 3,4-NCNsq2− ligand (hydrated or not) is, for the first time, coordinated to the metal atom by the two amido nitrogen atoms, either in a chelating mode (complex 2) or in a bridging mode giving a short Pd ? Pd distance of 2.8866(15) Å (complex 3). Electrochemical studies in acetonitrile and dmf solutions have been performed on complexes 1 and 3.  相似文献   

16.
Ternary Cu(II) complexes [Cu(II)(saltrp)(B)] (1,2), (saltrp = salicylidene tryptophan, B = 1,10 phenathroline (1) or 2,2′ bipyridine (2)) were synthesized and characterized. Complex 2 was structurally characterized by single crystal X-ray crystallography. The molecular structure shows a distorted square pyramidal coordination geometry (CuN3O2) in which the ONO donor Schiff base is bonded to the Cu(II) in the basal plane. The N,N donor heterocyclic base displays an axial-equatorial binding mode. CT-DNA binding studies revealed that the complexes show good binding propensity (Intrinsic binding constant, Kb = 3.32 × 105 M−1 for 1 and Kb = 3.10 × 105 M−1 for 2). The catalytic role of these complexes in the oxidative and hydrolytic cleavage of DNA was studied in detail. Complex 1 binds and cleaves DNA more efficiently as compared to 2. From the kinetic experiments, rate constants for the hydrolysis of phosphodiester bond of DNA backbone were determined as 1.94 h−1 and 1.05 h−1 for 1 and 2 respectively. It amounts to (2.93-5.41) × 107 fold rate enhancement compared to uncatalyzed double stranded DNA, which is impressive as compared to related Cu(II) Schiff base complexes.  相似文献   

17.
Assemblies of 5-amino-2,4,6-triiodoisophthalic acid (H2ATIBDC) with Cd(II) and Zn(II) in the presence of N-donor auxiliary ligand, 1,4-bis(1,2,4-triazol-1-yl)butane (btb), at ambient conditions yield two new supramolecular complexes, [Cd(ATIBDC)(btb)(H2O)2]·3H2O (1), and [Zn(ATIBDC)(btb)]·2H2O (2). Generally, these two complexes display 1D ATIBDC2−-bridged coordination arrays. Distinct extended 3D network architectures are further constructed with the help of weak secondary interactions especially aromatic stacking, halogen bonding, and hydrogen bonding as supramolecular driving forces. It is worthy to mention that halogen bonds (C-I?π and C-I?N/O) play important roles in the supramolecular assembly. The pentameric cluster (H2O)5 in 1 assembles into highly ordered helical infinite chains. Complex 2 exhibits the fascinating single-walled tube-like chain structure. It loses crystallinity rapidly in the air and leads to the formation of [Zn(ATIBDC)(btb)]·H2O (2A). Thermal stabilities and solid state fluorescent properties of complexes 1 and 2A have been studied.  相似文献   

18.
Three mixed ligands coordination polymers (CPs) [Ag1.5(apym)(nta)0.5]n (1), [(NH4)Ag2(mapym)(nta)·(H2O)3]n (2), [Ag2(dmapym)3(Hnta)]n (3) (apym = 2-aminopyrimidine, mapym = 4-methyl-2-aminopyrimidine, dmapym = 4, 6-dimethyl-2-aminopyrimidine, H3nta = nitrilotriacetate) were synthesized and characterized. For 1-3, as the substituents change from H to one methyl and two methyl groups, the dimensionalities of 1-3 decrease from three-dimension (3D) to one-dimension (1D) due to the steric effect of methyl groups. For 1, the μ2-apym ligands link the Ag(I) ions to form a 1D double-chain incorporating ligand unsupported Ag···Ag interaction. The nta3− ligands extend the 1D double-chain into a 3D framework. In 2, one heptadentate nta3− ligand binds four Ag(I) ions and incorporates μ2-mapym ligand to link metal centers to form a 2D sheet which can be simplified to be a 103 net. Complex 3 features a 1D chain structure incorporating Hnta2− and monodentate dmapym ligands. The substituents on the pyrimidyl ring intensively influence the coordination environments of metal ion and the coordination modes of the carboxyl group, and thus determine the structures of the CPs. The photoluminescent properties of 1-3 were also investigated.  相似文献   

19.
Four cadmium(II) complexes of the semirigid tridentate ligand 8-[(pyridin-4-yl)methylthio] quinoline (TQMP4, L), namely, [CdL2](ClO4)2 (1), [Cd(L)Br2] (2), [Cd2(L)2(NO3)4] (3), and [Cd2(L)2I4] (4), have been prepared by the methods of layering and the diffusing of diethyl ether. The structures of the complexes have been identified by elemental analysis (EA), infrared spectra (IR) and single-crystal diffraction. The different coordination modes of the ligands and counter anions result in a 2D (4, 4) net structure in complex 1, a 1D polymer chain in complex 2, and 0D binuclear rings in complexes 3 and 4. Their antibacterial and antifungal activities were also tested.  相似文献   

20.
Six antimony adducts with N-donor neutral ligands (1,10-phenanthroline, 4,4′-bipyridine) have been obtained following the reaction of antimony halides with phenanthroline and 4,4′-bipyridine. By changing the solvent and stoichiometry, we obtained six different complexes, Sb(phen)Cl3 (1), Sb(phen)Br3 (2), Sb2(phen)4Br8 (3) and Sb(bpy)Cl3 (4), Sb(bpy)2Cl3 (5), Sb(bpyH · bpyH2)Br6 (6) (where phen = 1,10-phenanthroline, bpy = 4,4′-bipyridine). All the complexes have been characterized via elemental analysis, FT-IR and NMR (1H, 13C) spectroscopy. The crystal structures of complexes 2, 3 and 6 have been determined by X-ray single crystal diffraction.The structural analysis show that the coordination sphere around antimony atom in complex 2 is a distorted square pyramid, coordinated by three bromine atoms and two nitrogen atoms from phen. In complex 3, the central antimony atom is six-coordinated through four bromine atoms and two nitrogen atoms forming a distorted octahedral geometry. Besides that, there are also uncoordinated 1,10-phenanthroline bonded by hydrogen bonds and π-π stacking interactions, which is rarely observed in previous reports. The crystal structure of complex 6 consists of bpyH · bpyH2 trications and hexabromoantimonate trianions. The antimony atom in the anion has a distorted octahedral environment. Additionally, all complexes present a 3D framework built up by N-H?Br, C-H?Br and C-H?Cl weak hydrogen bonds interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号