首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three Cu(II)-azido complexes of formula [Cu2L2(N3)2] (1), [Cu2L2(N3)2]·H2O (2) and [CuL(N3)]n (3) have been synthesized using the same tridentate Schiff base ligand HL (2-[(3-methylaminopropylimino)-methyl]-phenol), the condensation product of N-methyl-1,3-propanediamine and salicyldehyde). Compounds 1 and 2 are basal-apical μ-1,1 double azido bridged dimers. The dimeric structure of 1 is centrosymmetric but that of 2 is non-centrommetric. Compound 3 is a μ-1,1 single azido bridged 1D chain. The three complexes interconvert in solution and can be obtained in pure form by carefully controlling the synthetic conditions. Compound 2 undergoes an irreversible transformation to 1 upon dehydration in the solid state. The magnetic properties of compounds 1 and 2 show the presence of weak antiferromagnetic exchange interactions mediated by the double 1,1-N3 azido bridges (J = −2.59(4) and −0.10(1) cm−1, respectively). The single 1,1-N3 bridge in compound 3 mediates a negligible exchange interaction.  相似文献   

2.
By slightly changing the synthetic conditions, we have prepared two closely related linear tetranuclear CuII complexes with the symmetrical ONNO donor tetradentate Schiff-base ligand [H2L = (OH)C6H4(CH3)CN(CH2)3NC(CH3)C6H4(OH)] and with azide ions. These two distinctly coloured crystalline products were characterized by elemental analysis, IR and UV-Vis spectroscopy, CV, EPR spectra and variable temperature magnetic measurements. Single crystal X-ray diffraction studies of the green [Cu4(μ-L)21,1-N3)2(N3)2] (1) and the red [Cu4(μ-L)21,1-N3)2(N3)2(H2O)2] (2) crystals show that the coordination environment of the two μ-phenoxo and μ1,1-azido bridged isomorphous tetranuclear CuII complexes are slightly different. Thus, both complexes are formed by very similar building units, although with a significant variation in the bridging Cu-O(phenoxo)-Cu and Cu-N(azido)-Cu bond angles. The consequences of these structural variations on the magnetic properties have been investigated from both the experimental and theoretical points of view by variable temperature magnetic measurements and DFT calculations.  相似文献   

3.
In our continuing efforts to explore the effects of substituent groups of ligands in the formation of supramolecular coordination structures, seven new CuII complexes formulated as [Cu2(L1)4(DMF)2] (1), {[Cu2(L1)4(Hmta)](H2O)0.75} (2), [Cu2(L2)4(2,2′-bipy)2] (3), [Cu2(L3)4(H2O)2] (4), [Cu2(L3)4(Hmta)] (5), [Cu2(L3)4(Dabco)] (6) and [Cu2(L3)4(Pz)] (7) with three monocarboxylate ligands bearing different substituent groups HL1-HL3 (HL1 = phenanthrene-9-carboxylic acid, HL2 = 2-phenylquinoline-4-carboxylic acid, HL3 = adamantane-1-carboxylic acid, Hmta = hexamethylenetetramine, 2,2′-bipy = 2,2′-bipyridine, Dabco = 1,4-diazabicyclo[2.2.2] octane and Pz = pyrazine), have been prepared and characterized by X-ray diffraction. In 1, 2 and 4-7, each CuII ion is octahedrally coordinated, and carboxylate acid acts as a syn-syn bridging bidentate ligand. While each CuII ion in 3 is penta-coordinated in a distorted square-pyramidal geometry. 1 and 4 both show a dinuclear paddle-wheel block, while 2, 5, 6 and 7 all exhibit an alternated 1D chain structure between dinuclear paddle-wheel units of the tetracarboxylate type Cu2-(RCO2)4 and the bridging auxiliary ligands Hmta, Dabco and Pz. Furthermore, 3 has a carboxylic unidentate and μ1,1-oxo bridging dinuclear structure with the chelating auxiliary ligand 2,2′-bipy. Moreover, complexes 1-6 were characterized by electron paramagnetic resonance (EPR) spectroscopy.  相似文献   

4.
By using the hindered tris(pyrazolyl)borate ligand TpiPr2 (hydrotris(3,5-diisopropyl-1-pyrazolyl))borate, both mono- and binuclear complexes of cobalt [TpiPr2Co](X) (X = NO3 and OBz) and [TpiPr2Co]2(μ-X)(μ-OBz) (X = OH, N3) were synthesized. The nitrato complex, [TpiPr2Co](NO3) (1), which could be converted to (2), was prepared by reaction of KTpiPr2 with hydrated Co(NO3)2 and its molecular structure was determined by X-ray crystallography. The dinuclear di(μ-hydroxo) complex, [TpiPr2Co]2(μ-OH)2 (2), which was obtained by treatment of 1 with aqueous NaOH, reacted with one equivalent of benzoic acid to give the (μ-benzoato)(μ-hydroxo) complex, [TpiPr2Co]2(μ-OH)(μ-OBz) (3). X-ray crystallography shows the presence of both hydroxy and carboxylate group as bridging ligands and both cobalt metals are in five coordination environment in 3. The μ-azido complex, [TpiPr2Co]2(μ-N3)(μ-OBz) (5), was prepared by reaction of 3 with one equivalent of aqueous sodium azide. The spectroscopic studies suggested μ-1,1-bridging nature of group in this complex. The reaction of 2 with excess amount of benzoic acid resulted in the destruction of the bimetallic core to give the mononuclear carboxylato complex, [TpiPr2 Co](OBz) (4), which was characterized by X-ray crystallography.  相似文献   

5.
An asymmetric single EO azido bridged dinuclear copper(II) complex, [Cu2(dmterpy)2(μ-1,1-N3)(N3)2] · NO3 · (H2O)21 [dmterpy = 5,5″-dimethyl-2,2′:6′,2″-terpyridine], and a double EO azido bridged dinuclear nickel(II) complex, [Ni2(pbdiim)4(μ-1,1-N3)2] · 2(N3) · 6(H2O) 2 [pbdiim = 2-(2′-pyridyl)benzo[1,2-d:4,5-d′]diimidazole], have been synthesized and characterized structurally and magnetically. Compound 1 consists of a single EO azido bridged CuII dimer in which each CuII ion is five-coordinated in the form of a distorted square-based pyramid. The N(μ−1,1) atom holds on the apical position of one CuII pyramid with an elongated bond length of 2.305 Å and on the basal plane of another distorted CuII pyramid with a bond length of 1.991 Å. The Cu-N(μ−1,1)-Cu angle is 117.4 (2)°. The copper(II) dimer forms a 1 D zig-zag chain via hydrogen bondings between azide ions, water molecules and the nitrate anion. Compound 2 consists of a double EO azido bridged NiII dimer with the Ni-N(μ−1,1)-Ni bond angle of 102.96 (13)°. The coordination geometry of NiII is octahedral. Their magnetic properties have been measured in the range from 300 to 2 K and correlated with the molecular structures. Compound 1 shows weak ferromagnetic interactions within the copper(II) dimer (J = 2.88 cm−1), despite the large EO azide bridge angle (117.4 (2)°). The intramolecular coupling between the NiII (S = 1) ions in compound 2 was found to be ferromagnetic (J = 27.87 cm−1).  相似文献   

6.
Dinuclear copper(I) complexes with bridging bis(dicyclohexylphosphino)methane (dcpm) or bis(diphenylphosphino)methane (dppm) and 2,2′-bipyridine or 2-[N-(2-pyridyl)methyl]amino-5,7-dimethyl-1,8-naphthyridine (L), [Cu2(bpy)2(dppm)2](BF4)2 (1), [Cu2(bpy)2(dcpm)](BF4)2 (2), [Cu2(L)(dppm)](BF4)2 (3) and [Cu2(L)(dcpm)](BF4)2 (4) were prepared, and their structures were determined by X-ray crystal analysis. Two-, three-, and four-coordinate copper(I) centers are found in these complexes. Compounds 3 and 4 show close CuI?CuI separations of 2.664(3) and 2.674(1) Å, respectively, whereas an intramolecular copper-copper distance of 3.038 Å is found in 2 having only dcpm as an additional bridge. Powdered samples of 1, 3, and 4 display intense and long-lived phosphorescence with λmax at 533, 575, and 585 nm at room temperature, respectively. In the solid state, 2 exhibits only a weak emission at 555 nm. The time-resolved absorption and emission spectra of these complexes were investigated. The difference in the emission properties among complexes 1-4 suggests that both CuI?CuI distances and coordination environment of the copper(I) centers affect the excited-state properties.  相似文献   

7.
The dihydroxo-bridged dinuclear copper(II) compound [Cu2(dpyam)2(μ-OH)2]I2 (1) and the triply bridged dinuclear copper(II) compounds with a formato bridge [Cu2(dpyam)2(μ-O2CH)(μ-OH)(μ-OMe)](ClO4) (2) and [Cu2(dpyam)2(μ-O2CH)(μ-OH)(μ-Cl)](ClO4) · 0.5H2O (3) (in which dpyam=di-2-pyridylamine) have been synthesized and their crystal structures determined by X-ray crystallographic methods. All three compounds are either centrosymmetric, or have a symmetry plane in the molecule. Compound 1 contains the [Cu2(dpyam)2(μ-OH)2]+ unit and iodide anions. Each copper(II) ion is in a slightly tetrahedrally distorted square planar coordination with the square plane consisting of two nitrogen atoms of the dpyam ligand and two bridging hydroxo groups. The Cu-I distances of 3.321 Å are quite long and only involve a weak semi-coordination. Compound 2 contains a triply bridged dinuclear copper(II) species, the coordination environment around each copper(II) ion involves a distorted trigonal-bipyramidal CuN2O3 chromophore. In the dinuclear unit of compound 3, the triply bridged copper(II) ions show a distorted trigonal-bipyramidal coordination of the CuN2O2Cl chromophore. The Cu-Cu distances are 2.933(2), 3.023(1) and 3.036(1) Å for compounds 1, 2 and 3, respectively.The magnetic susceptibility measurements, measured from 5 to 280 K, revealed a weak antiferromagnetic interaction between the Cu(II) atoms for compound 1 with a singlet-triplet energy gap (J) of −15.3 cm−1, whereas compounds 2 and 3 are ferromagnetic with J=62.5 and 79.1 cm−1, respectively.  相似文献   

8.
Bidentate ligands 2,2′-biquinoline (biq) and 6,6′-dimethyl-2,2′-bipyridine (dmbpy) with steric hindrance substituents cis to the nitrogen atoms have been used in the synthesis of transition metal complexes. Six new doubly end-on azido-bridged binuclear complexes [M2(biq)21,1-N3)2(N3)2] (M = Ni (1), M = Co (2)), [M2(biq)21,1-N3)2Cl2] (M = Ni (3), M = Co (4)), [M2(dmbpy)21,1-N3)2(N3)2] (M = Ni (5), M = Co (6)) and one end-to-end thiocyanato-bridged polymeric [Ni(dmbpy)(μ1,3-SCN)(NCS)]n (7) have been synthesized and characterized by single crystal X-ray diffraction analysis and magnetic studies. Complexes 1-6 comprise five-coordinate M(II) ions bridged by two end-on azide ligands. The bridging M-N-M bond angles are in the small range 104.1-105.2°. Complex 7 consists of a singly thiocyanate-bridged Ni(II) chain in which Ni(II) ions are five-coordinate. This research suggests that the bulky ligands play a key role in the formation of five-coordinate coordination structure. All complexes display intramolecular intermetallic ferromagnetic coupling with JNiNi and JCoCo of ca. 23 or 13 cm−1 based on the Hamiltonian (S1 = S2 = 1 for Ni2, or 3/2 for Co2). The singly SCN-bridged chainlike complex 7 shows intrachain ferromagnetic interaction with J = 3.96(2) cm−1 and D = −4.55(8) cm−1 (. Magneto-structural correlationship has been investigated.  相似文献   

9.
Three new triply-bridged dinuclear copper(II) compounds with carboxylato bridges, [Cu2(μ-O2CH)(μ-OH)(μ-Cl)(dpyam)2](PF6) (1), [Cu2(μ-O2CH)2(μ-OH)(dpyam)2](PF6) (2) and [Cu2(μ-O2CCH2CH3)2(μ-OH)(dpyam)2](ClO4) (3) (dpyam = di-2-pyridylamine) have been synthesized and characterized crystallographically and spectroscopically. Compound 1 consists of a dinuclear unit in which both copper(II) ions are bridged by three different ligands, i.e., formate, chloride and hydroxide anions, providing a distorted trigonal bipyramidal geometry with a CuN2O2Cl chromophore. Compounds 2 and 3 have two bridging formato ligands and two bridging propionato ligands, respectively, together with a hydroxo bridge. The carboxylato ligands in both compounds 2 and 3 exhibit different coordination modes. One is in a syn, syn η112 bridging mode and the other is in a monoatomic bridging mode. The structure of compound 2 involves a dinuclear unit, with a distorted trigonal bipyramidal geometry around each Cu(II) ion with a CuN2O3 chromophore. Compound 3 contains a non-centrosymmetric unit; the coordination environment around Cu(1) is a distorted square-pyramidal geometry and an intermediate geometry of sp and tbp around the Cu(II) ion. The Cu?Cu separations are 3.061, 3.113 and 3.006 Å for compounds 1, 2 and 3, respectively. The EPR spectra of all three compounds show a broad isotropic signal with a g value around 2.10.The magnetic susceptibility measurements, measured from 5 to 280 K, revealed a moderate ferromagnetic interaction between the Cu(II) ions with a singlet-triplet energy gap (J) of 79.7, 47.8 and 24.1 cm−1, for compounds 1, 2 and 3, respectively. Also a very weak intermolecular antiferromagnetic interaction was observed between the dinuclear units.  相似文献   

10.
Reaction between the dinuclear model hydrolases [M2(μ-OAc)2(OAc)2(μ-H2O)(tmen)2]; M = Ni (1); M = Co (2) and trimethylsilyltrifluoromethanesulphonate (TMS-OTf) under identical reaction conditions gives the mononuclear complex [Ni(OAc)(H2O)2(tmen)][OTf] · H2O (3) in the case of nickel and the dinuclear complex [Co2(μ-OAc)2(μ-H2O)2(tmen)2][OTf]2 (4) in the case of cobalt.Reaction of (3) with urea gives the previously reported [Ni(OAc)(urea)2(tmen)][OTf] (5), whereas (4) gives [Co2(OAc)3(urea)(tmen)2][OTf] (6) previously obtained by direct reaction of (2) with urea. Both (3) and (4) react with monohydroxamic acids (RHA) to give the dihydroxamate bridged dinuclear complexes [M2(μ-OAc)(μ-RA)2(tmen)2][OTf]; M = Ni (7); M = Co (8) previously obtained by the reaction of (1) and (2) with RHA, illustrating the greater ability of hydroxamic acids to stabilize dinuclear complexes over that of urea by means of their bridging mode, and offering a possible explanation for the inhibiting effect of hydroxamic acids by means of their displacing bridging urea in a possible intermediate invoked in the action of urease.  相似文献   

11.
Three new homopolynuclear complexes with azido bridges have been obtained by using [Cu(AA)(BB)]+ building-blocks (AA = acetylacetonate; BB = 1,10-phenanthroline or 2,2′-bipyridine). The reaction between [Cu(acac)(phen)(H2O)](ClO4) and NaN3 leads to a mixture of two compounds: a binuclear complex, [{Cu(acac)(phen)}21,3-N3)](ClO4) · 2H2O (1), and a linear tetranuclear one, [{Cu(acac)(phen)(ClO4)}2{Cu(phen)(μ1,1-N3)2}2] (2). The reaction between [Cu(acac)(bipy)(H2O)](ClO4) and NaN3 affords also a mixture of two compounds: [{Cu(acac)(bipy)}21,3-N3)]3(ClO4)3 · 3.75H2O (3) and [Cu(acac)(bipy)(N3)][Cu(acac)(bipy)(H2O)](ClO4) (4). The X-ray crystal structures of compounds 1-4 have been solved (for compound 4 the crystal structure was previously reported). In compounds 1 and 3, two {Cu(AA)(BB)} fragments are bridged by the azido anion in an end-to-end fashion. Two isomers, cis and trans with respect to azido bridge, were found in crystal 3. The structure of compound 2 consists of two Cu(II) central cations bridged by two μ1,1-azido ligands, each of them being also connected to a {Cu(acac)(phen)} fragment through another μ1,1-azido ligand. The cryomagnetic properties of the compounds 1 and 2 have been investigated and discussed. The magnetic behaviour of compound 1 shows the absence of any interactions between the metallic ions. In the tetranuclear complex 2, the magnetic interactions between the external and central copper(II) ions(J1), and between the central metallic ions (J2) were found ferromagnetic (J1 = 0.36 cm−1, J2 = 7.20 cm−1).  相似文献   

12.
Three new triply bridged dinuclear copper(II) compounds containing carboxylato bridges, [Cu2(μ-CH3COO-κ-O1,O2)2(μ-CH3COO-κ-O1)(dpyam)2](BF4) (1), [Cu2(μ-CH2CH3COO-κ-O1,O2)(μ-OH)(μ-OH2)(bpy)2](ClO4)2 (2) and [Cu2(μ-CH3COO-κ-O1,O2)(μ-OH)(μ-OH2)(phen)2](ClO4)2 (3) (in which dpyam = di-2-pyridylamine, bpy = 2,2-bipyridine, phen = phenanthroline), have been synthesized in order to investigate the magnetic super-exchange pathway between coupled copper(II) centres. All three compounds display a distorted square-pyramidal arrangement around each copper(II) ion with a CuN2O3 chromophore. Compound 1 has three acetato bridges, two of which connect each square pyramid at two equatorial sites in a triatomic bridging mode and the third acetato bridge acts at the apical site in the monoatomic bridging mode. The structures of compounds 2 and 3 are mutually similar. In each dinuclear unit, both copper(II) ions are linked at two equatorial positions through a hydroxo bridge and a triatomic carboxylato bridge and at the axial position through a water molecule.The magnetic susceptibility measurements, measured from 5 to 300 K, revealed an antiferromagnetic interaction between the Cu(II) ions in compound 1 and a ferromagnetic interaction for compounds 2 and 3 with singlet-triplet energy gaps (J) of −56, 149 and 120 cm−1, for compounds 1, 2 and 3, respectively.  相似文献   

13.
In this work we report on the synthesis, crystal structure, and physicochemical characterization of the novel dinuclear [FeIIICdII(L)(μ-OAc)2]ClO4·0.5H2O (1) complex containing the unsymmetrical ligand H2L = 2-bis[{(2-pyridyl-methyl)-aminomethyl}-6-{(2-hydroxy-benzyl)-(2-pyridyl-methyl)}-aminomethyl]-4-methylphenol. Also, with this ligand, the tetranuclear [Fe2IIIHg2II(L)2(OH)2](ClO4)2·2CH3OH (2) and [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) complexes were synthesized and fully characterized. It is demonstrated that the precursor [FeIII2HgII2(L)2(OH)2](ClO4)2·2CH3OH (2) can be converted to (3) by the fixation of atmospheric CO2 since the crystal structure of the tetranuclear organometallic complex [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) with an unprecedented {FeIII(μ-Ophenoxo)2(μ-CO3)FeIII} core was obtained through X-ray crystallography. In the reaction 2 → 3 a nucleophilic attack of a FeIII-bound hydroxo group on the CO2 molecule is proposed. In addition, it is also demonstrated that complex (3) can regenerate complex (2) in aqueous/MeOH/NaOH solution. Magnetochemical studies reveal that the FeIII centers in 3 are antiferromagnetically coupled (J = − 7.2 cm− 1) and that the FeIII-OR-FeIII angle has no noticeable influence in the exchange coupling. Phosphatase-like activity studies in the hydrolysis of the model substrate bis(2,4-dinitrophenyl) phosphate (2,4-bdnpp) by 1 and 2 show Michaelis-Menten behavior with 1 being ~ 2.5 times more active than 2. In combination with kH/kD isotope effects, the kinetic studies suggest a mechanism in which a terminal FeIII-bound hydroxide is the hydrolysis-initiating nucleophilic catalyst for 1 and 2. Based on the crystal structures of 1 and 3, it is assumed that the relatively long FeIII…HgII distance could be responsible for the lower catalytic effectiveness of 2.  相似文献   

14.
The alkoxo-bridged dinuclear copper(II) complexes [Cu2(ap)2(NO2)2] (1), [Cu2(ap)2(C6H5COO)2] (2) and [Cu2(ap)2μ-1,3-C6H4(COO)2(dmso)2]·dmso (3) (ap = 3-aminopropanolato and dmso = dimethyl sulfoxide) have been synthesized via self-assembly from copper(II) perchlorate, 3-aminopropanol as main chelating ligand and nitrite and isophthalate anions as spacers and benzoate anion as auxiliary ligand. Complexes 1 and 3 crystallize as 2D and 1D coordination polymers, respectively, and their structures consist of dinuclear [Cu2(ap)2]2+ units connected with nitrite and isophthalate ligands. The adjacent dinuclear units of 2 and 1D polymers of 3 are further connected by hydrogen bonds resulting in the formation of 2D layers. The variable temperature crystallographic measurements of 1 at 100, 173 and 293 K indicate the static Jahn-Teller distortion with librational disorder in the nitrite group. Experimental magnetic studies showed that complexes 1-3 exhibit strong antiferromagnetic couplings. The values of the magnetic exchange coupling constant for 1-3 are well reproduced by the theoretical calculations.  相似文献   

15.
Herein, we report the synthesis and characterization of two new dinuclear bridged azido and bridged thiocyanato complexes: [Cu2(Et2dien)21,3-N3)2](ClO4)2 (1) and [Cu2(Et2dien)2N,S-NCS)2]-(ClO4)2 (2) where Et2dien = N,N-diethyldiethylenetriamine. In both complexes, the two copper centers are linked by two azide or two thiocyanate groups in end-to-end bonding fashion. The copper ions are penta-coordinated by three N-atoms of the Et2dien ligand, one N atom from the bridging azido in 1 or from the thiocyanato group in 2. The fifth coordination site is occupied by N or S atom from the second bridging azide or thiocyanate ligand, respectively. The coordination geometry around the Cu(II) ions in the two complexes may be described as close to square pyramidal (SP) stereochemistry with severe distortion to trigonal bipyramidal (TBP) stereochemistry. The intradimer Cu?Cu distances are 5.264(1) and 5.571(1) Å for the azido and thiocyanato complex, respectively. The IR stretching frequencies of the azido, and the thiocyanato, ν(NCS) groups in the 2030-2120 cm−1 region are discussed in relation to other related species. The visible spectra of the complexes studied in different solvents reveal the assigned predominant SP stereochemistry in solution with the presence of a pronounced amount of TBP geometry in the thiocyanato complex. Moreover, the complexes undergo solvolysis through bond rupture and displacement of one of the bridged azido or thiocyanato ligands.  相似文献   

16.
The reaction of 2-(2-aminophenyl)benzothiazole (Habt) with [Re(CO)5Br] led to the isolation of the rhenium(I) complex fac-[Re(Habt)(CO)3Br] (1). With trans-[ReOCl3(PPh3)2], the ligand Habt decomposed to form the oxofree rhenium(V) complex [Re(itp)2Cl(PPh3)] (2) (itp = 2-amidophenylthiolate). From the reaction of trans-[ReOBr3(PPh3)2] with 2-(2-hydroxyphenyl)benzothiazole (Hhpd) the complex [ReVOBr2(hpd)(PPh3)] (3) was obtained. Complexes 1-3 are stable and lipophilic. 1H NMR and infrared assignments, as well as the X-ray crystal structures, of the complexes are reported.  相似文献   

17.
Formation of three Cd(II)-ethylenediamine (en) complexes ([Cd(en)n]2+, n = 1-3) in aqueous solution and in DMSO solvent has been established by means of 113Cd NMR spectroscopy. It is clearly shown that Cd(II)-en complexes form primarily in basic solutions. A correlation between the 113Cd NMR chemical shifts and the ethylenediamine (en) coordination number has been observed and discussed. Two single crystals with the composition [Cd2(en)5](ClO4)4 (1) and [Cd(en)3](ClO4)2 (2) were prepared from aqueous solution, and their structures were determined by single crystal X-ray diffraction. Cd(II) ions are coordinated by six atoms in both compounds, 1 and 2: via five N-donor atoms and one O-donor atom forming a bimetallic complex 1, and via six N-donor atoms forming a distorted octahedral monometallic complex 2. Raman spectra of complexes 1 and 2 also provide additional evidence that the cis-form of the bridging en is present in complex 1.  相似文献   

18.
Three new trinuclear copper(II) complexes, [(CuL1)33-OH)](ClO4)2·3.75H2O (1), [(CuL2)33-OH)](ClO4)2(2) and [(CuL3)33-OH)](BF4)2·0.5CH3CN (3) have been synthesized from three tridentate Schiff bases HL1, HL2, and HL3 (HL1 = 2-[(2-amino-ethylimino)-methyl]-phenol, HL2 = 2-[(2-methylamino-ethylimino)-methyl]-phenol and HL3 = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol). The complexes are characterized by single-crystal X-ray diffraction analyses, IR, UV-vis and EPR spectroscopy, and variable-temperature magnetic measurements. All the compounds contain a partial cubane [Cu3O4] core consisting of the trinuclear unit [(CuL)33-OH)]2+ together with perchlorate or fluoroborate anions. In each of the complexes, the three copper atoms are five-coordinated with a distorted square-pyramidal geometry except in complex 1, in which one of the CuII ions of the trinuclear unit is six-coordinate being in addition weakly coordinated to one of the perchlorate anions. Variable-temperature magnetic measurements and EPR spectra indicate an antiferromagnetic exchange coupling between the CuII ions of complexes 1 and 2, while this turned out to be ferromagnetic for complex 3. Experimental values have been fitted according to an isotropic exchange Hamiltonian. Calculations based on Density Functional Theory have also been performed in order to estimate the exchange coupling constants in these three complexes. Both sets of values indicate similar trends and specially calculated J values establish a magneto-structural correlation between them and the Cu-O-Cu bond angle, in that the coupling is more ferromagnetic for smaller bond angle values.  相似文献   

19.
The synthesis, by fixation of SO2, the unusual crystal structure, and the spectral and redox properties of the new compound [Cu4(TPPNOL)2(μ-SO4)2](ClO4)2 (1) [HTPPNOL (N,N,N′-tris-(2-pyridylmethyl)-1,3-diaminopropan-2-ol)] are reported. In 1, the copper(II) ions are bridged by the alkoxo oxygen atoms of the HTPPNOL ligand and by exogenous sulfate bridges. The structure of 1 consists of a centro-symmetric tetranuclear core or a “Dimer of Dimers” complex, in which a μ-O,O′ sulfate oxygen atom is further coordinated to the copper centre of another similar dinuclear unit through a μ-O,O, sulfate bridge resulting in a tetranuclear arrangement. Thus, the dinuclear units are linked by two μ-O,O sulfate bridges. The simultaneous presence of two distinct coordination modes for the sulfate group in this structure is rare and 1 represents the first coordination compound presenting μ-O,O′ and μ-O,O type structures. The SO2 fixation was monitored by changes in the electronic spectra which indicated the formation of the intermediate hydroxo complex [Cu2(TPPNOL)(OH)2]+, in basic medium, which, we propose, acts as the nucleophile in the SO2 fixation mechanism.  相似文献   

20.
The organotin complex [Ph3SnS(CH2)3SSnPh3] (1) was synthesized by PdCl2 catalyzed reaction between Ph3SnCl and disodium-1,3-propanedithiolate which in turn was prepared from 1,2-propanedithiol and sodium in refluxing THF. Reaction of 1 with Ru3(CO)12 in refluxing THF affords the mononuclear complex trans-[Ru(CO)4(SnPh3)2] (2) and the dinuclear complex [Ru2(CO)6(μ-κ2-SCH2CH2CH2S)] (3) in 20 and 11% yields, respectively, formed by cleavage of Sn-S bond of the ligand and Ru-Ru bonds of the cluster. Treatment of pymSSnPPh3 (pymS = pyrimidine-2-thiolate) with Ru3(CO)12 at 55-60 °C also gives 2 in 38% yield. Both 1 and 2 have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号