首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiral N,O pyridine alcohols HL1-HL6 were used to form complexes with copper(II) ions. Ligands HL1 and HL2 formed complexes with copper(II) ions when Cu(OAc)2 and HL were refluxed in methanol/ethanol mixture. Ligand HL3 formed a complex with copper(II) when deprotonated with NaH and stirred in a Cu(II) acetate THF solution. Ligands HL4-HL6 did not form complexes with copper(II) under similar conditions. Two complexes, [Cu(L1)2] and [Cu(L2)2], were isolated as single crystals and characterized by X-ray crystallography. These complexes showed low catalytic activities in asymmetric reactions. However, they became active when reacted with triflic acid. Copper complexes, [Cu(L)] or [Cu(L)]+, formed in situ by reacting ligands HL with copper(I) or (II) ions, respectively, were also found to be active copper catalysts for asymmetric cyclopropanation of styrene with ethyl diazoacetate and allylic oxidation of cyclohexene with t-butylperoxybenzoate. Enantioselectivities up to 56% and 38% were obtained in asymmetric cyclopropanation of styrene and asymmetric allylic oxidation of cyclohexene, respectively.  相似文献   

2.
Reaction of the ligands 3-phenyl-5-(2-pyridyl)pyrazole (HL1), 3,5-bis(2-pyridyl)pyrazole (HL2), 3-methyl-5-(2-pyridyl)pyrazole (HL3) and 3-methyl-5-phenylpyrazole (HL4) with [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) or [PdCl2(cod)] gives complexes with stoichiometry [PdCl2(HL)2] (HL = HL1, HL2, HL3), [Pt(L)2] (L = L1, L2, L3) and [MCl2(HL4)2] (M = Pd(II), Pt(II)). The new complexes were characterised by elemental analyses, conductivity measurements, infrared and 1H NMR spectroscopies. The crystal and molecular structure of [PdCl2(HL1)] was resolved by X-ray diffraction, and consists of monomeric cis-[PdCl2(HL1)] molecules. The palladium centre has a typical square planar geometry, with a slight tetrahedral distortion. The tetra-coordinated metal atom is bonded to one pyridine nitrogen, one pyrazolic nitrogen and two chloro ligands in a cis disposition. The ligand HL1 is not completely planar.  相似文献   

3.
The metal complexation properties of a functionalized N3O2 donor ligand H2L2, where H2L2 stands for 2,6-diacetyl-4-carboxymethyl-pyridine bis(benzoylhydrazone), are investigated by structural and spectroscopic (IR, ESI-MS and EPR) characterization of its Mn(II) and Co(II) complexes. The ligand H2L2 is observed to react essentially in the same fashion as its unmodified parent H2L1 producing mixed-ligand [M(H2L2)(Cl2)] complexes (M = MnII (1), CoII (3)) upon treatment with MCl2. Complexes [M(HL2)(H2O)(EtOH)]BPh4 (M = Mn 2, M = Co 4), incorporating the supporting ligand in the partially deprotonated form (HL2), are formed by salt elimination of the [M(H2L2)(Cl2)] compounds with NaBPh4. Compounds 2 and 4 are isostructural featuring distorted pentagonal-bipyramidal coordinated MnII and CoII ions, with the H2O and EtOH ligands bound in axial positions. Intermolecular hydrogen bonding interactions of the type M-OH2?O-M involving the H2O ligands and the carbonyl functions of the supporting ligand assembles the complexes into dimers. Temperature-dependent magnetic susceptibility measurements (2-300 K) show a substantially paramagnetic Curie behavior for the Mn2+ compound (2) influenced by zero-field splitting and significant orbital angular momentum contribution for 4 (high-spin CoII). The exchange coupling across the MnII-OH2?O-MnII bridges in 2 was found to be less than 0.1 cm−1, suggesting that no significant intradimer exchange coupling occurs via this path.  相似文献   

4.
Synthesis and single crystal X-ray structures of H2L1 and VO(L1)(HL) [H2L1 = N,N-bis(2-hydroxy-3,5-ditertiarybutyl)-N′,N′-dimethylethylendiamine) or simply aminebis(phenol) and H2L = salicylic acid) are reported here. The complex [VO(L1)(HL)] is in distorted octahedral geometry under O4N2 donor environment where the basal core is defined by O(1), O(3), O(2) and N(5) atoms and two axial coordinates are occupied by O(4), an alkoxo-group and N(1), an imino-nitrogen atom. The electron spray mass spectrometric study on [VO(L1)(HL)] in MeCN clearly points out the existence of single species in solution. Again, the 51V NMR of the bulk polycrystalline sample reveals that the complex [VO(L1)(HL)] mainly exists in three out of four possible isomers. The formation of [VO(L1)(HL)] from both [VO(L1)(OMe)] and [VO(L1)(OEt)] was followed kinetically by reacting with salicylic acid in MeCN. The presence of isosbestic point indicates a clean conversion of the reactants to product.  相似文献   

5.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

6.
Reaction of the potassium salts of N-thiophosphorylated thioureas of common formula RNHC(S)NHP(S)(OiPr)2 [R = pyridin-2-yl (HLa), pyridin-3-yl (HLb), 6-amino-pyridin-2-yl (HLc)] with Cu(PPh3)3I in aqueous EtOH/CH2Cl2 leads to mononuclear [Cu(PPh3)2La,b-S,S′] (1, 2) and [Cu(PPh3)Lc-S,S′] (3) complexes. Using copper(I) iodide instead of Cu(PPh3)3I, polynuclear complexes [Cun(L-S,S′)n] (4-6) were obtained. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy, ES-MS and elemental analyses. The crystal structures of Cu(PPh3)2Lb (2) and Cu(PPh3)Lc (3) were determined by single-crystal X-ray diffraction.  相似文献   

7.
Reactions of labile [MCl3(PPh3)2(NCMe)] (M = Tc, Re) precursors with 1H-benzoimidazole-2-thiol (H2L1), 5-methyl-1H-benzoimidazole-2-thiol (H2L2) and 1H-imidazole-2-thiol (H2L3), in the presence of PPh3 and [AsPh4]Cl gave a new series of trigonal bipyramidal M(III) complexes [AsPh4]{[M(PPh3)Cl(H2L1-3)3]Cl3} (M = Re, 1-3; M = Tc, 4-6). The molecular structures of 1 and 3 were determined by X-ray diffraction. When the reactions were carried out with benzothiazole-2-thiol (HL4) and benzoxazole-2-thiol (HL5), neutral paramagnetic monosubstituted M(III) complexes [M(PPh3)2Cl2(L4,5)] (M = Re, 8, 9; M = Tc, 10, 11) were obtained. In these compounds, the central metal ions adopt an octahedral coordination geometry as authenticated by single crystal X-ray diffraction analysis of 8 and 11. Rhenium and technetium complexes 1, 4 and rhenium chelate compounds 8, 9 have been also synthesized by reduction of [MO4] with PPh3 and HCl in the presence of the appropriate ligand. All the complexes were characterized by elemental analyses, FTIR and NMR spectroscopy.  相似文献   

8.
Synthesis and characterization of the ruthenium complexes [RuH(CO)Cl(κ1-P-PPh2Py)2(PPh3)] (1) and [Ru(CO)Cl2(κ1-P-PPh2Py)(κ2-P-N-PPh2Py)] (2) containing diphenyl-2-pyridylphosphine (PPh2Py) are described. Spectral and structural data suggested linkage of the PPh2Py in κ1-P bonding mode in 1 and both the κ1-P and κ2-P-N bonding modes in 2. The complex 1 reacted with N,N-donor bases viz., ethylenediamine (en), N,N′-dimethyl-(ethylenediamine) (dimen), 1,3-diaminopropane (diap), 2,2′-bipyridine (bipy), 1,10-phenanthroline (phen) and di-2-pyridylaminomethylbenzene (dpa) to afford cationic complexes of formulation [RuH(CO)(κ1-P-PPh2Py)2(N-N)]+ (3-8) [N-N = en, 3; dimen, 4; diap, 5; bipy, 6; phen, 7; and dpa, 8], which have been isolated as their tetrafluoroborate salts. The complexes under investigation have been characterized by elemental analyses, spectroscopic and electrochemical studies. Molecular structures of 2, 3, 6, and 8 have been determined by single crystal X-ray diffraction analyses. Further, the complexes 1-8 act as effective precursor catalyst in transfer hydrogenation of acetophenone/ketones in basic 2-propanol.  相似文献   

9.
Palladium [PdCl2(L)] complexes with N-alkylpyridylpyrazole derived ligands [2-(5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L1), 2-(1-ethyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L2), 2-(1-octyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L3), and 2-(3-pyridin-2-yl-5-trifluoromethyl-pyrazol-1-yl)ethanol (L4) were synthesised. The crystal and molecular structures of [PdCl2(L)] (L = L2, L3, L4) were resolved by X-ray diffraction, and consist of monomeric cis-[PdCl2(L)] molecules. The palladium centre has a typical square-planar geometry, with a slight tetrahedral distortion. The tetra-coordinate metal atom is bonded to one pyridinic nitrogen, one pyrazolic nitrogen and two chlorine ligands in cis disposition. Reaction of L (L2, L4) with [Pd(CH3CN)4](BF4)2, in the ratio 1M:2L, gave complexes [Pd(L)]2(BF4)2. Treatment of [PdCl2(L)] (L = L2, L4) with NaBF4 and pyridine (py) and treatment of the same complexes with AgBF4 and triphenylphosphine (PPh3) yielded [Pd(L)(py)2](BF4)2 and [Pd(L)(PPh3)2](BF4)2 complexes, respectively. Finally, reaction of [PdCl2(L4)] with 1 equiv of AgBF4 yields [PdCl(L4)](BF4).  相似文献   

10.
The reactions of salicylaldehyde oxime (H2salox) with CuII precursors yielded the known complexes [Cu(Hsalox)2] (1) and [Cu(Hsalox)2]n (2), as well as complexes [Cu3(salox)(L1)(L2)]·MeCN (3·MeCN), [CuCl(L1)] (4) and [Cu2Na(O2CMe)5(HO2CMe)]n (5), where L1 = o-O-C6H4-CHNO-C(CH3)NH and L23− = o-O-C6H4-CHNO-C(o-O-C6H4)N. L1 was formed in situ via the nucleophilic addition of the oximato O-atom of salox2− to the unsaturated nitrile group of the MeCN reaction solvent. L23− is also formed in situ probably through the nucleophilic attack of the oximato O-atom to the unsaturated nitrile group of salicylnitrile; the latter, although not directly added to the reaction mixture, can be produced via the dehydration of salox2−. Compounds 1 and 2 contain Hsalox bound to the metal center in two different coordination modes; they both contain the same mononuclear unit, however a 2D network is generated in 2 due to a relatively long Cu-Ooximato bond. Compound 3 contains three different ligands, i.e. salox2−, L1 and L23−, which act as μ32OO′:κN, κONN′ and μ32O2NO′:κN′, respectively, whereas 4 consists of a square planar CuII atom bound to a κONN′ L1 and a chloride ion. Compound 5 consists of dinuclear [Cu2(O2CMe)5(HO2CMe)] units and Na+ ions assembled into an overall 3D network structure. Magnetic susceptibility measurements from polycrystalline samples of 2 and 5 gave best-fit parameters J = +0.36 cm−1 (H = −J?i?j) and J = −360 cm−1, zj = +20 cm−1 (H = −J?i?j − zJ〈Sz?z), respectively.  相似文献   

11.
The synthesis and characterisation of two dicopper(II) and two dinickel(II) macrocyclic complexes, [CuII2LPr] (10), [CuII2LBu] (11), [NiII2LPr] (12) and [NiII2LBu] (13), are reported. The two new Schiff-base macrocycles (LPr)4− and (LBu)4− are isolated as dimetallic complexes 10-13 by the [2+2] condensation of 5,5-dimethyl-1,9-diformyldipyrromethane (9) and 1,3-diaminopropane or 1,4-diaminobutane, respectively, using Cu2+ or Ni2+ template ions. Single crystal X-ray structure determinations carried out on 10-13 show that each metal atom is in a square planar N4 geometry, being bound to two deprotonated pyrrole nitrogen atoms of one dipyrromethane unit and to the two adjacent imine nitrogen atoms. NMR spectra obtained for the two dinickel(II) complexes 12 and 13 show that in CDCl3 solution they are highly symmetrical and diamagnetic.  相似文献   

12.
New complexes of formulae [Cu(HL2)(H2O)(NO3)](NO3) (1), [{Cu(L1)(tfa)}2] (2), [{Cu(L1)}2(pz)](ClO4)2 (3) and {[{Cu(L1)}2(dca)](ClO4)}n (4), where HL1 = pyridine-2-carbaldehyde thiosemicarbazone, HL2 = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone, Htfa = trifluoroacetic acid (CF3COOH), pz = pyrazine (C4H4N2) and dca = dicyanamide [N(CN)2], have been synthesized and characterized. The crystal structures of these compounds are built up of monomers (1), dinuclear entities with the metal centers bridged through the non-thiosemicarbazone coligand (2 and 3) and 1D chains of dimers (4). In all the cases, square-pyramidal copper(II) ions are present, except for the square-planar ones in 3. Magnetic measurements show antiferromagnetic couplings in 2, 3 and 4. The susceptibility data were fitted by the Bleaney-Bowers’ equation for copper(II) dimers derived from H = -2JS1S2 being the obtained J/k values −4.8, −4.3 and −5.1 K for compounds 2-4, respectively. The magnetic susceptibility of the already known [{Cu(HL1)(tfa)}2](tfa)2 compound has been also measured for the first time. The J/k value is -0.3 K, lower than that in 2. The nuclease activity of 3 and 4 has been analyzed.  相似文献   

13.
Reaction of O,O′-diisopropylphosphoric acid isothiocyanate (iPrO)2P(O)NCS with 2- or 3-aminopyridine leads to the new N-phosphorylated thioureas RNHC(S)NHP(O)(OiPr)2 (R = 2-Py, HLI; 3-Py, HLII). Reaction of the potassium salt KLI with Ni(II) in aqueous EtOH leads to the new complex Ni[2-PyNHC(S)NP(O)(OiPr)2-N(Py),N(P),O]2, where the metal cation is coordinated by two deprotonated ligands LI through the pyridine and phosphorylamide nitrogen atoms, and the PO oxygen atoms. Using KLII leads to an oligomeric (or polymeric) structure, where the Ni(II) cation is coordinated by two anionic ligands LII through the CS sulfur atoms and the P-N nitrogen atoms, and the pyridine nitrogen atoms of neighboring molecules. The new compounds were investigated by 1H and 31P{1H} NMR spectroscopy, and microanalysis. Single crystal X-ray diffraction studies showed HLI forms both intra- and intermolecular hydrogen bonds, which in turn lead to the formation of a polymeric chain. Moreover, π?π stacking interactions were observed between molecules of two neighboring chains.  相似文献   

14.
A new easily synthetic route with a 96% yield of ligand 2-(3,5-diphenyl-1H-pyrazol-1-yl)ethanol (L) is obtained. The reactivity of L against Pd(II), Zn(II) and Cu(II) leads to [PdCl2(L)2] (1), [ZnCl2(L)] (2) and [CuCl(L′)]2 (3) (L′ is the ligand L without alcoholic proton), respectively. According to the different geometries imposed by the metallic centre and the capability of L to present various coordination links, it has been obtained complexes with square planar (1 and 3) or tetrahedral (2) geometry and different nuclearity: monomeric (1 and 2) or dimeric (3). Complete characterisation by analytical and spectroscopic methods, resolution of L and 1-3 by single-crystal X-ray diffraction and magnetic studies for complex 3 are presented.  相似文献   

15.
In our continuing efforts to explore the effects of substituent groups of ligands in the formation of supramolecular coordination structures, seven new CuII complexes formulated as [Cu2(L1)4(DMF)2] (1), {[Cu2(L1)4(Hmta)](H2O)0.75} (2), [Cu2(L2)4(2,2′-bipy)2] (3), [Cu2(L3)4(H2O)2] (4), [Cu2(L3)4(Hmta)] (5), [Cu2(L3)4(Dabco)] (6) and [Cu2(L3)4(Pz)] (7) with three monocarboxylate ligands bearing different substituent groups HL1-HL3 (HL1 = phenanthrene-9-carboxylic acid, HL2 = 2-phenylquinoline-4-carboxylic acid, HL3 = adamantane-1-carboxylic acid, Hmta = hexamethylenetetramine, 2,2′-bipy = 2,2′-bipyridine, Dabco = 1,4-diazabicyclo[2.2.2] octane and Pz = pyrazine), have been prepared and characterized by X-ray diffraction. In 1, 2 and 4-7, each CuII ion is octahedrally coordinated, and carboxylate acid acts as a syn-syn bridging bidentate ligand. While each CuII ion in 3 is penta-coordinated in a distorted square-pyramidal geometry. 1 and 4 both show a dinuclear paddle-wheel block, while 2, 5, 6 and 7 all exhibit an alternated 1D chain structure between dinuclear paddle-wheel units of the tetracarboxylate type Cu2-(RCO2)4 and the bridging auxiliary ligands Hmta, Dabco and Pz. Furthermore, 3 has a carboxylic unidentate and μ1,1-oxo bridging dinuclear structure with the chelating auxiliary ligand 2,2′-bipy. Moreover, complexes 1-6 were characterized by electron paramagnetic resonance (EPR) spectroscopy.  相似文献   

16.
Palladium(II) and platinum(II) complexes with N-alkylpyridylpyrazole-derived ligands, 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L1) and 2-(1-octyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L2), cis-[MCl2(L)] (M = Pd(II), Pt(II)), have been synthesised. Treatment of [PdCl2(L)] (L = L1, L2) with excess of ligand (L1, L2), pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 and NaBPh4 produced the following complexes: [Pd(L)2](BPh4)2, [Pd(L)(py)2](BPh4)2 and [Pd(L)(PPh3)2](BPh4)2. All complexes have been characterised by elemental analyses, conductivity, IR and NMR spectroscopies. The crystal structures of cis-[PdCl2(L2)] (2) and cis-[PtCl2(L1)] (3) were determined by a single crystal X-ray diffraction method. In both complexes, the metal atom is coordinated by one pyrazole nitrogen, one pyridine nitrogen and two chlorine atoms in a distorted square-planar geometry. In complex 3, π-π stacking between pairs of molecules is observed.  相似文献   

17.
Reactions of 1-{[2-(arylazo)phenyl]iminomethyl}-2-phenol, HLsal, 1, [where H represents the dissociable protons upon complexation and aryl groups of HLsal are phenyl for HL1sal, p-methylphenyl for HL2sal, and p-chlorophenyl for HL3sal], ligands with Ru(H)(CO)(Cl)(PPh3)3 afforded complexes of composition [(Lsal)Ru(CO)(Cl)(PPh3)] and (Lsal)2Ru where the N,N,O donor tridentate (Lsal) ligands coordinated the metal centre facially and meridionally, respectively. Stepwise formation of [(Lsal)2Ru] has been ascertained. Reaction of 1-{[2-(arylazo)phenyl]iminomethyl}-2-napthol, HLnap, 2, [where H represents the dissociable protons upon complexation and aryl groups of HLnap are phenyl for HL1nap, p-methylphenyl for HL2nap, and p-chlorophenyl for HL3nap], ligands with Ru(H)(CO)(Cl)(PPh3)3 afforded exclusively the complexes of composition [(Lnap)Ru(CO)(Cl)(PPh3)], where N,N,O donor tridentate (Lnap) was facially coordinated. The ligand 1-{[2-(phenylazo)phenyl]aminomethyl}-2-phenol, HL, 3, was prepared by reducing the aldimine function of HL1sal. Reaction of HL with Ru(PPh3)3Cl2 afforded new azosalen complex of Ru(III) in concert with regiospecific oxygenation of phenyl ring of HL. All the new ligands were characterized by analytical and spectroscopic techniques. The complexes were characterized by analytical and spectroscopic techniques and subsequently confirmed by the determination of X-ray structures of selected complexes.  相似文献   

18.
Four new binucleating ligands featuring a hydroxytrimethylene linker between two coordination sites (1,3-bis{N-[3-(dimethylamino)propyl]-N-methylamino}propan-2-ol, HL1; 1,3-bis{N-[2-(dimethylamino)ethyl]-N-methylamino}propan-2-ol, HL2; 1,3-bis[bis(2-methoxyethyl)amino]propan-2-ol, HL3; and 1-bis[(2-methoxyethyl)amino]-3-{N-[2-(dimethylamino)ethyl]-N-methylamino}propan-2-ol, HL4) were synthesized, along with the corresponding zinc complexes. The structures of three dinuclear zinc complexes ([Zn2L1(μ-CH3COO)2]BPh4 (1), [Zn2L3(μ-CH3COO)2]BPh4 (3), and [Zn2L4(μ-CH3COO)(CH3COO)(EtOH)]BPh4 (4)) and a tetranuclear zinc complex ({[Zn2L2(μ-CH3COO)]2(μ-OH)2}(BPh4)2 (2)) were revealed by X-ray crystallography. Hydrolysis of tris(p-nitrophenyl)phosphate (TNP) by these zinc complexes in an acetonitrile solution containing 5% Tris buffer (pH 8.0) at 30 °C was investigated spectrophotometrically and by 31P NMR. Although zinc complexes 1, 3, and 4 did not show hydrolysis activity, the tetranuclear zinc complex 2, containing μ-hydroxo bridges, was capable of hydrolyzing TNP. This suggests that the hydroxide moiety in the complex may have an important role in the hydrolysis reaction.  相似文献   

19.
A new class of mononuclear metal complexes with 1-methylimidazole-2-aldoximate (miao) has been synthesized and characterized: trans-NiII(Cl)2(Hmiao)2 (1), trans-NiII(miao)2(py)2 (2), NO-trans-NiII(miao)2(phen) (3), and NO-trans-FeII(miao)2(phen) (4). The crystal structures of 2, 3, and 4 have been determined by single-crystal X-ray crystallography. Compound 1 having the protonated miao ligand (i.e., Hmiao) is a precursor for synthesizing 2 and 3. Compound 2 is an octahedral NiII complex surrounded by two miao bidentate ligands and two monodentate ligands of pyridine in a trans-arrangement. Compound 3 is a cis-type octahedral NiII complex with two miao ligands and a bidentate ligand of 1,10-phenanthroline, in which the ligand arrangement around NiII center is found in an NO-trans form. Compound 4 is an isostructural FeII derivative of 3. Compounds 1, 2, and 3 exhibit paramagnetic nature with an S = 1 spin and a positive zero-field splitting, among which it for 3 is overlapped with intermolecular ferromagnetic interaction (zJ/kB = +0.16 K). Compound 4 is diamagnetic due to the existence of low-spin FeII ion.  相似文献   

20.
In our efforts to investigate the factors that affect the formation of coordination architectures, such as secondary coordination donors and pendant skeletons of the carboxylic acid ligands, as well as H-bonding and other weak interactions, two kinds of ligands: (a) 3-(2-pyridyl)pyrazole (L1) with a non-coordinated N atom as a H-bonding donor, a 2,2′-bipyridyl-like chelating ligand, and (b) four carboxylic ligands with different secondary coordination donors and/or pendant skeletons, 1,4-benzenedicarboxylic acid (H2L2), 4-sulfobenzoic acid (H2L3), quinoline-4-carboxylic acid (HL4) and fumaric acid (H2L5), have been selected to react with Mn(II) salts, and five new complexes, [Mn(L1)2(SO4)]2 (1), [Mn(L1)2(L2)] (2), [Mn(L1)(HL3)2] (3), Mn(L1)2(L4)2 (4), and [Mn(L1)2(L5)] (5), have been obtained and structurally characterized. The structural differences of 1-5 can be attributed to the introduction of the different carboxylic acid ligands (H2L2, H2L3, HL4, and H2L5) with different secondary coordination donors and pendant skeletons, respectively. This result also reveals that the typical H-bonding (i.e. N-H?O and O-H?O) and some other intra- or inter-molecular weak interactions, such as C-H?O weak H-bonding and π?π interactions, often play important roles in the formation of supramolecular aggregates, especially in the aspect of linking the multi-nuclear discrete subunits or low-dimensional entities into high-dimensional supramolecular networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号