首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two new ruthenium complexes [Ru(bpy)2(mitatp)](ClO4)21 and [Ru(bpy)2(nitatp)](ClO4)22 (bpy = 2,2′-bipyridine, mitatp = 5-methoxy-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene, nitatp = 5-nitro-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene) have been synthesized and characterized by elemental analysis, 1H NMR, mass spectrometry and cyclic voltammetry. Spectroscopic and viscosity measurements proved that the two Ru(II) complexes intercalate DNA with larger binding constants than that of [Ru(bpy)2(dppz)]2+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine) and possess the excited lifetime of microsecond scale upon binding to DNA. Both complexes can efficiently photocleave pBR322 DNA in vitro under irradiation. Singlet oxygen (1O2) was proved to contribute to the DNA photocleavage process, the 1O2 quantum yields was determined to be 0.43 and 0.36 for 1 and 2, respectively. Moreover, a photoinduced electron transfer mechanism was also found to be involved in the DNA cleavage process.  相似文献   

2.
Cyclometalation of benzo[h]quinoline (bzqH) by [RuCl(μ-Cl)(η6-C6H6)]2 in acetonitrile occurs in a similar way to that of 2-phenylpyridine (phpyH) to afford [Ru(bzq)(MeCN)4]PF6 (3) in 52% yield. The properties of 3 containing ‘non-flexible’ benzo[h]quinoline were compared with the corresponding [Ru(phpy)(MeCN)4]PF6 (1) complex with ‘flexible’ 2-phenylpyridine. The [Ru(phpy)(MeCN)4]PF6 complex is known to react in MeCN solvent with ‘non-flexible’ diimine 1,10-phenanthroline to form [Ru(phpy)(phen)(MeCN)2]PF6, being unreactive toward ‘flexible’ 2,2′-bipyridine under the same conditions. In contrast, complex 3 reacts both with phen and bpy in MeCN to form [Ru(bzq)(LL)(MeCN)2]PF6 {LL = bpy (4) and phen (5)}. Similar reaction of 3 in methanol results in the substitution of all four MeCN ligands to form [Ru(bzq)(LL)2]PF6 {LL = bpy (6) and phen (7)}. Photosolvolysis of 4 and 5 in MeOH occurs similarly to afford [Ru(bzq)(LL)(MeCN)(MeOH)]PF6 as a major product. This contrasts with the behavior of [Ru(phpy)(LL)(MeCN)2]PF6, which lose one and two MeCN ligands for LL = bpy and phen, respectively. The results reported demonstrate a profound sensitivity of properties of octahedral compounds to the flexibility of cyclometalated ligand. Analogous to the 2-phenylpyridine counterparts, compounds 4-7 are involved in the electron exchange with reduced active site of glucose oxidase from Aspergillus niger. Structure of complexes 4 and 6 was confirmed by X-ray crystallography.  相似文献   

3.
A series of Ru(II) polypyridyl complexes [Ru(bpy)2(ptdb)](ClO4)2 (1), [Ru(bpy)2(ptda)](ClO4)2 (2) and [Ru(bpy)2(ptdp)](ClO4)2 (3) with asymmetric intercalative ligands have been synthesized and characterized by EA, mass spectra, 1H NMR and cyclic voltammetry. The crystal structure of complex 1 has been determined. The DNA-binding properties of the complexes were investigated by absorption titration, luminescence spectroscopy and viscosity measurements. The experimental results suggest that all these complexes bind to DNA in an intercalation mode. The results also show that the order of DNA-binding affinities (A) of this series of complexes is A(1) < A(2) < A(3). It is further confirmed that a ligand planarity of the complexes is a very important factor in affecting the DNA-binding behaviors of such complexes. Theoretical studies for these complexes were also carried out with the density functional theory (DFT) method. The trend in the DNA-binding affinities of this series of complexes can be reasonably explained by the synthetical considerations of the calculated planarity of intercalative ligands, some frontier molecular orbital energies of the complexes and the planarity area (S) of the intercalative ligands.  相似文献   

4.
A series of mononuclear acetonitrile complexes of the type [Ru(CH3CN)(L)(terpy)]2+ {L = phen (1), dpbpy (3), and bpm (5)}, and their reference complexes [RuCl(L)(terpy)]+ {L = phen (2), dpbpy (4), and dpphen (6)} were prepared and characterized by electrospray ionization mass spectrometry, UV-vis spectroscopy, and cyclic voltammograms (CV). Abbreviations of the ligands (Ls) are phen = 1,10-phenanthroline, dpbpy = 4,4′-diphenyl-2,2′-bipyridine, bpm = 2,2′-bipyrimidine, dpphen = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2′-bipyridine, and terpy = 2,2′:6′,2″-terpyridine. The X-ray structures of the two complexes 2 and 3 were newly obtained. The metal-to-ligand charge transfer (MLCT) bands in the visible region for 1, 3, and 5 in acetonitrile were blue shifted relative to those of the reference complexes [RuCl(L)(terpy)]+. CV for all the [Ru(CH3CN)(L)(terpy)]2+ complexes showed the first oxidation wave at around 0.95 V, being more positive than those of [RuCl(L)(terpy)]+. The time-dependent-density-functional-theory approach (TDDFT) was used to interpret the absorption spectra of 1 and 2. Good agreement between computed and experimental absorption spectra was obtained. The DFT approach also revealed the orbital interactions between Ru(phen)(terpy) and CH3CN or Cl. It is demonstrated that the HOMO-LUMO energy gap of the acetonitrile ligand is larger than that of the Cl one.  相似文献   

5.
A novel polypyridyl ligand CNPFIP (CNPFIP = 2-(5(4-chloro-2-nitrophenyl)furan-2-yl)-1H-imidazo[4,5f][1,10]phenanthroline) and its mononuclear Ru(II) polypyridyl complexes of [Ru(phen)2CNPFIP]2+(1) (phen = 1,10-phenanthroline), [Ru(bpy)2CNPFIP]2+(2) (bpy = 2,2′-bipyridine), and [Ru(dmb)2CNPFIP]2+(3) (dmb = 4,4′-dimethyl-2,2′-bipyridine) have been synthesized successfully and characterized thoroughly by elemental analysis, UV/Vis, IR, NMR, and ESI-MS. The interaction of the Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by absorption titration, fluorescence, viscosity measurements. The experimental results suggest that three complexes bind to CT-DNA through an intercalative mode and the DNA-binding affinity of complex 1 is greater than that of complexes 2 and 3. The photocleavage of plasmid pBR322 DNA by ruthenium complexes 1, 2, and 3 was investigated. We have also tested three complexes for their antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. The in vitro cytotoxicity of these complexes was evaluated by MTT assay, and complex 1 shows higher cytotoxicity than 2 and 3 on HeLa cells. The induced apoptosis and cell cycle arrest of HeLa cells were investigated by flow cytometry for 24 h. The molecular docking of ruthenium complexes 1, 2, and 3 with the active site pocket residues of human DNA TOP1 was performed using LibDock.  相似文献   

6.
Dimethyl platinum(II) complexes [PtMe2(NN)] {NN = bu2bpy (4,4′-di-tert-butyl-2,2′-bipyridine) (1a), bpy (2,2′-bipyridine) (1b), phen (1,10-phenanthroline) (1c)} reacted with commercial 3-bromo-1-propanol in the presence of 1,3-propylene oxide to afford cis, trans- [PtBrMe2{(CH2)3OH}(NN)] (NN = bu2bpy (2a), bpy (2b), phen (2c)). On the other hand, [PtMe2(NN)] (1a)-(1b) reacted with the trace of HBr in commercial 3-bromo-1-propanol to give [PtBr2(NN)] (NN = bu2bpy (3a), bpy (3b)). The reaction pathways were monitored by 1H NMR at various temperatures. Treatment of 1a-1b with a large excess of 3-bromo-1-propanol at −80 °C gave the corresponding methyl(hydrido)platinum(IV) complexes [PtBr(H)Me2(NN)] (NN = bu2bpy (4a), bpy (4b)) via the oxidative addition of dimethyl platinum(II) complexes with HBr. The complexes [PtBr(H)Me2(NN)] decomposed by reductive elimination of methane above −20 °C for bu2bpy and from −20 to 0 °C for bpy analogue to give methane and platinum(II) complexes [PtBrMe(NN)] (5a)-(5b) and then decomposed at about 0 °C to yield [PtBr2(NN)] and methane. When the reactions were performed at a molar ratio of Pt:RX/1:10, the corresponding complexes [PtBrMe(NN)] (5a)-(5b) were also obtained. The crystal structure of the complex 3b shows that platinum adopts square planar geometry with a twofold axis through the platinum atom. The Pt…Pt distance (5.164 Å) is considerably larger than the interplanar spacing (3.400 Å) and there is no platinum-platinum interaction.  相似文献   

7.
Pyrazole-3,5-dicarboxylate-bridged dinuclear ruthenium(II) and osmium(II) complexes of 2,2-bipyridine of composition [(bpy)2Ru(pzdc)Ru(bpy)2](ClO4) · H2O (1) and [(bpy)2Os(pzdc)Os(bpy)2](ClO4) · H2O (2) have been obtained in high yield and have been separated to their homochiral (ΛΛ/ΔΔ) rac (1a, 2a) and heterochiral (ΛΔ/ΔΛ) meso (1b, 2b) diastereoisomers. The distinctive structural features of these diastereoisomers have been characterized by 1-D and 2-D 1H NMR spectroscopy. The X-ray crystal structure of rac-[(bpy)2Os(pzdc)Os(bpy)2](ClO4) · H2O (2a) has been determined. The electrochemical and electronic spectral studies have established that there remain difference in properties and hence difference in intermetallic communication between the diastereoisomeric forms in each case.  相似文献   

8.
Six complexes (1-6) with the type of [Ru(bpy)2L]X2 (1-3: L = L1-L3, X = Cl; 4-6: L = L1-L3, X = PF6) were synthesized based on 2,2′-bipyridine and three 2,2′-bipyridine derivatives L1, L2 and L3 (L1 = 5,5′-dibromo-2,2′-bipyridine, L2 = 5-bromo-5′-carbazolyl-2,2′-bipyridine, L3 = 5,5′-dicarbazolyl-2,2′-bipyridine). The complexes 1-6 were characterized by 1H NMR, MS(ESI) and IR spectra, along with the X-ray crystal structure analysis for 1, 5 and 6. Their photophysical properties and electrochemiluminescence (ECL) properties were investigated in detail. In the UV-Vis absorption spectra, all complexes 1-6 show strong intraligand (π → π) transitions and metal-ligand charge transfer (MLCT, dπ (Ru) → π) bands. Upon the excitation wavelengths at ∼508 nm, all complexes 1-6 exhibit typical MLCT emission of ruthenium(II) polypyridyl complexes. The introduction of carbazole moieties improves the MLCT absorption and emission intensity. The ruthenium(II) complexes 1-6 exhibit good electrochemiluminescence (ECL) properties in [Ru(bpy)2L]2+/tri-n-propylamine (TPrA) acetonitrile solution and the complexes with PF6 showed higher ECL emission intensity than that of the complexes with Cl based on the same ligands.  相似文献   

9.
Six antimony adducts with N-donor neutral ligands (1,10-phenanthroline, 4,4′-bipyridine) have been obtained following the reaction of antimony halides with phenanthroline and 4,4′-bipyridine. By changing the solvent and stoichiometry, we obtained six different complexes, Sb(phen)Cl3 (1), Sb(phen)Br3 (2), Sb2(phen)4Br8 (3) and Sb(bpy)Cl3 (4), Sb(bpy)2Cl3 (5), Sb(bpyH · bpyH2)Br6 (6) (where phen = 1,10-phenanthroline, bpy = 4,4′-bipyridine). All the complexes have been characterized via elemental analysis, FT-IR and NMR (1H, 13C) spectroscopy. The crystal structures of complexes 2, 3 and 6 have been determined by X-ray single crystal diffraction.The structural analysis show that the coordination sphere around antimony atom in complex 2 is a distorted square pyramid, coordinated by three bromine atoms and two nitrogen atoms from phen. In complex 3, the central antimony atom is six-coordinated through four bromine atoms and two nitrogen atoms forming a distorted octahedral geometry. Besides that, there are also uncoordinated 1,10-phenanthroline bonded by hydrogen bonds and π-π stacking interactions, which is rarely observed in previous reports. The crystal structure of complex 6 consists of bpyH · bpyH2 trications and hexabromoantimonate trianions. The antimony atom in the anion has a distorted octahedral environment. Additionally, all complexes present a 3D framework built up by N-H?Br, C-H?Br and C-H?Cl weak hydrogen bonds interactions.  相似文献   

10.
New mixed polypyridyl {NMIP = 2′-(2″-nitro-3″,4″-methylenedioxyphenyl)imidazo-[4′,5′-f][1,10]-phenanthroline, dmb = 4,4′-dimethyl-2,2′-bipyridine, bpy = 2,2′-bipyridine} ruthenium(II) complexes [Ru(dmb)2(NMIP)]2+ (1) and [Ru(bpy)2(NMIP)]2+ (2) have been synthesized and characterized. The binding of these complexes to calf thymus DNA (CT-DNA) has been investigated with spectroscopic methods, viscosity and electrophoresis measurements. The experimental results indicate that both complexes could bind to DNA via partial intercalation from the minor/major groove. In addition, both complexes have been found to promote the single-stranded cleavage of plasmid pBR 322 DNA upon irradiation. Under comparable experimental conditions compared with [Ru(phen)2(NMIP)]2+, during the course of the dialysis at intervals of time, the CD signals of both complexes started from none, increased to the maximum magnitude, then no longer changed, and the activity of effective DNA cleavage dependence upon concentration degree lies in the following order: [Ru(phen)2NMIP]2+ > complex 2 > complex 1.  相似文献   

11.
Two bis-heteroleptic Ru(II) complexes [Ru(bpy)2(pcip)]2+ (1, bpy = 2,2′-bipyridine, pcip = 2-[4-phenylcarboxy]-1H-imidazol[4,5-f][1,10]phenanthroline) and [Ru(phen)2(pcip)]2+ (2, phen = 1,10-phenanthroline), bearing highly conjugated diimine ligands, were prepared and isolated as their PF6 salts. The bpy-derivative 1 showed better photophysical properties (emission quantum yield, lifetime of the emitting state, and the radiative decay rate constant) than the phen-compound 2. These results followed by theoretical calculations at DFT level established a comprehensive understanding between the structural parameters and the photophysical properties, as well as of the influence of π conjugation and the symmetry of the molecules on spectroscopic characteristics. These results provide fundamental photophysical data for selecting ancillary ligands in the design and improvement of Ru-based light-harvesting complexes.  相似文献   

12.
The trend in DNA-binding affinities and the spectral properties of a series of Ru(II) polypyridyl complexes, [Ru(bpy)2(dmdpq)]2+ (1), [Ru(bpy)2(dpq)]2+ (2), [Ru(bpy)2(cndpq)]2+ (3) (bpy = 2,2′-bipyridine; dpq = dipyrido[3,2-d:2′,3′-f]quinoxaline; dmdpq = di-methyl-dpq; dcdpq = di-cyano-dpq), have been experimentally and theoretically investigated. The DNA-binding constants Kb of the complexes were determined systematically with spectrophotometric titration. The density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were carried out for these complexes. The experimental results show that these complexes bind to DNA in intercalation mode, and the order of their intrinsic DNA-binding constants Kb is Kb(1) < Kb(2) ? Kb(3). The substituents on the intercalative ligands of the complexes play a very important role in the control of DNA-binding affinities of the complexes, in particular, the stronger electron-withdrawing substituent (-CN) on the intercalative ligand can greatly improve the DNA-binding property of the derivative complex. The trend in DNA-binding affinities as well as the spectral properties of metal-ligand charge-transition (1MLCT) of this series of complexes can be reasonably explained by applying the DFT and TDDFT calculations and the frontier molecular orbital theory.  相似文献   

13.
Two novel Ru(II) complexes [Ru(bpy)2(MCMIP)]2+ (1) and [Ru(phen)2(MCMIP)]2+ (2) (bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline; MCMIP = 2-(6-methyl-3-chromonyl)imidazo[4,5-f][1,10]-phenanthroline) have been synthesized and characterized by elemental analysis, mass spectra and 1H NMR. The DNA-binding properties of the complexes were investigated by absorption, emission, melting temperature and viscosity measurements. Experimental results indicate that the two complexes can intercalate into DNA base pairs. Upon irradiation at 365 nm, two Ru(II) complexes were found to promote the cleavage of plasmid pBR 322 DNA from supercoiled form I to nicked form II, and the mechanisms for DNA cleavage by the complexes were also investigated.  相似文献   

14.
Four new dinuclear Mn(III) compounds have been synthesised: [{Mn(bpy)(H2O)}2(μ-4-ClC6H4COO)2(μ-O)}](ClO4)2 (1), [{Mn(EtOH)(phen)}2(μ-O)(μ-4-ClC6H4COO)2](ClO4)2 (2), [{Mn(bpy)(EtOH)}(μ-4-BrC6H4COO)2(μ-O){Mn(bpy)(ClO4)](ClO4) (3) and [{Mn(H2O)(phen)}2(μ-4-BrC6H4COO)2(μ-O)](ClO4)2 (4). The crystal structures of 2 and 3 are evidence for the tendency of the ethanol and the perchlorate to act as ligands. Due to the coordination of these groups, the environment of the manganese ions is elongated in the monodentate ligand direction, and this distortion is more important when this ligand is the perchlorate. The magnetic properties of the four compounds have been analysed: compounds 1, 3 and 4 show antiferromagnetic behaviour, with J = −6.33 cm−1 for 1, J = −6.76 cm−1 for 3 and J = −3.08 cm−1 for 4 (H = −JS1·S2), while compound 2 shows a very weak ferromagnetic coupling. For this compound, at low temperature the most important effect on the χMT data is the zero-field splitting of the ion, and the best fit was obtained with |DMn| = 2.38 cm−1 and |EMn| = 0.22 cm−1.  相似文献   

15.
We report here the synthesis, characterisation, electrochemical, photophysical and protein-binding properties of four luminescent ruthenium(II) polypyridine indole complexes [Ru(bpy)2(L1)](PF6)2 (1), [Ru(bpy)2(L2)](PF6)2 (2), [Ru(L1)3](PF6)2 (1a), and [Ru(L2)3](PF6)2 (2a) (bpy = 2,2′-bipyridine; L1 = 4-(N-(2-indol-3-ylethyl)amido)-4′-methyl-2,2′-bipyridine; L2 = 4-(N-(6-N-(2-indol-3-ylethyl)hexanamidyl)amido)-4′-methyl-2,2′-bipyridine). Their indole-free counterparts, [Ru(bpy)2(L3)](PF6)2 (3) and [Ru(L3)3](PF6)2 (3a) (L3 = 4-(N-(ethyl)amido)-4′-methyl-2,2′-bipyridine), have also been synthesised for comparison purposes. Cyclic voltammetric studies revealed ruthenium-based oxidation at ca. +1.3 V versus SCE and diimine-based reductions at ca. −1.20 to −2.28 V. The indole moieties of complexes 1, 2, 1a and 2a displayed an irreversible wave at ca. +1.1 V versus SCE. All the ruthenium(II) complexes exhibited intense and long-lived orange-red triplet metal-to-ligand charge-transfer 3MLCT (dπ(Ru) → π*(L1-L3)) luminescence upon visible-light irradiation in fluid solutions at 298 K and in alcohol glass at 77 K. The binding of the indole-containing complexes to bovine serum album (BSA) has been studied by quenching experiments and emission titrations.  相似文献   

16.
In order to explore the electronic effects of Ru(II) complexes binding to DNA, a series of Ru(II) complexes [Ru(phen)2 (p-MOPIP)]2+ (1), [Ru(phen)2 (p-HPIP)]2+ (2), and [Ru(phen)2(p-NPIP)]2+ (3) were synthesized and characterized by elementary, 1H NMR, and ES-MS analysis. The binding properties of these complexes to CT-DNA were investigated with spectroscopic methods and viscosity experiments. Furthermore, the computations for these complexes applying the density functional theory (DFT) method have also been performed. The results show that all of these complexes can well bind to DNA in intercalation mode and DNA-binding affinity of these complexes is greatly influenced by electronic effects of intercalating ligands. The intrinsic binding constants for 1, 2, and 3 are 0.20, 0.69, and 1.56 × 105 M−1, respectively. This order is in accordance with that of the electron-withdrawing ability of substituent [-OR < -OH < -NO2]. Such a trend in electronic effects of Ru(II) complexes binding to DNA can be reasonably explained by the DFT calculations.  相似文献   

17.
Three new copper(I) complexes with tricyclohexylphosphine (PCy3) and different diimine ligands, [Cu(phen)(PCy3)]BF4 (1) (phen = 1,10′-phennanthroline), [Cu(bpy)(PCy3)2]BF4 (2) (bpy = 2,2′-bipyridine) and [Cu(MeO-CNN)(PCy3)]BF4 (3) (MeO-CNN = 6-(4-methoxyl)phenyl-2,2′-bipyridine), have been synthesized and characterized. X-ray structure reveals that complexes 1 and 3 are three-coordinated with trigonal geometry, while complex 2 adopts distorted tetrahedron geometry. Complexes 1 and 3 exhibit ligand redistribution reactions in chloromethane solution by addition of excess amount of PCy3, in which three-coordinated 1 changes into four-coordinated [Cu(phen)(PCy3)2]+, and 3 leads to form [Cu(PCy3)2]BF4 and CNN-OMe. All the three complexes display yellow 3MLCT emissions in solid state at room temperature with λmax at 558, 564 and 582 nm for 1, 2 and 3, respectively, and red-shift to 605, 628 and 643 nm at 77 K in dichloromethane solution.  相似文献   

18.
Ruthenium complexes containing pdon (pdon = 1,10-phenanthroline-5,6-dione) were synthesized. Their spectroscopic and electrochemical properties were examined. The molecular structure with [Ru(pdon)(bpy)2](ClO4)2 ([1](ClO4)2) (bpy = 2,2′-bipyridyl) was determined by single crystal X-ray diffraction. The optically transparent thin-layer electrochemical measurements confirm that the quinone form of [1](ClO4)2 is reduced to the semi-quinone state in acetonitrile (′ = −8 mV). Comparing the model complex, [1](ClO4)2, and metal-free pdon, the positive charge on two carbon atoms of the o-quinone group is bigger than that of metal-free pdon. The assemblies of the complexes were finally examined using ligand substitution.  相似文献   

19.
Six ruthenium(II) complexes have been prepared using the tridentate ligands 2,6-bis(benzimidazolyl) pyridine and bis(2-benzimidazolyl methyl) amine and having 2,2′-bipyridine, 2,2′:6′,2″-terpyridine, PPh3, MeCN and chloride as coligands. The crystal structures of three of the complexes trans-[Ru(bbpH2)(PPh3)2(CH3CN)](ClO4)2 · 2H2O (2), [Ru(bbpH2)(bpy)Cl]ClO4 (3) and [Ru(bbpH2)(terpy)](ClO4)2 (4) are also reported. The complexes show visible region absorption at 402-517 nm, indicating that it is possible to tune the visible region absorption by varying the ancillary ligand. Luminescence behavior of the complexes has been studied both at RT and at liquid nitrogen temperature (LNT). Luminescence of the complexes is found to be insensitive to the presence of dioxygen. Two of the complexes [Ru(bbpH2)(bpy)Cl]ClO4 (3) and [Ru(bbpH2)(terpy)](ClO4)2 (4) show RT emission in the NIR region, having lifetime, quantum yield and radiative constant values suitable for their application as NIR emitter in the solid state devices. The DFT calculations on these two complexes indicate that the metal t2g electrons are appreciably delocalized over the ligand backbone.  相似文献   

20.
Ternary l-glutamine (l-gln) copper(II) complexes [Cu(l-gln)(B)(H2O)](X) (B = 2,2′-bipyridine (bpy), , 1; B = 1,10-phenanthroline (phen), , 2) and [Cu(l-gln)(dpq)(ClO4)] (3) (dpq, dipyridoquinoxaline) are prepared and characterized by physicochemical methods. The DNA binding and cleavage activity of the complexes have been studied. Complexes 1-3 are structurally characterized by X-ray crystallography. The complexes show distorted square pyramidal (4+1) CuN3O2 coordination geometry in which the N,O-donor amino acid and the N,N-donor heterocyclic base bind at the basal plane with a H2O or perchlorate as the axial ligand. The crystal structures of the complexes exhibit chemically significant hydrogen bonding interactions besides showing coordination polymer formation. The complexes display a d-d electronic band in the range of 610-630 nm in aqueous-dimethylformamide (DMF) solution (9:1 v/v). The quasireversible cyclic voltammetric response observed near −0.1 V versus SCE in DMF-TBAP is assignable to the Cu(II)/Cu(I) couple. The binding affinity of the complexes to calf thymus (CT) DNA follows the order: 3 (dpq) > 2 (phen) ? 1 (bpy). Complexes 2 and 3 show DNA cleavage activity in dark in the presence of 3-mercaptopropionic acid (MPA) as a reducing agent via a mechanistic pathway forming hydroxyl radical as the reactive species. The dpq complex 3 shows efficient photo-induced DNA cleavage activity on irradiation with a monochromatic UV light of 365 nm in absence of any external reagent. The cleavage efficiency of the DNA minor groove binding complexes follows the order: 3 > 2 ? 1. The dpq complex exhibits photocleavage of DNA on irradiation with visible light of 647.1 nm. Mechanistic data on the photo-induced DNA cleavage reactions reveal the involvement of singlet oxygen (1O2) as the reactive species in a type-II pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号