首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new Mn(II) coordination polymers with bis(5-tetrazolyl)methane (H2btm), [Mn(btm)(phen)(H2O)] · H2O (1) and [Mn(btm)(2,2′-bpy)] · 1.5H2O (2), have been synthesized and their structures determined by X-ray diffraction. In complex 1, the btm ligands assume the μ2-1,1′:4 coordination mode and interlink Mn(II) ions into infinite one-dimensional chains. The chains are assembled into a three-dimensional architecture via hydrogen bonds and π-π interactions. For 2, Mn(II) ions are connected by btm ligands in the μ3-1,1′:2:3′ mode to produce two-dimensional (6,3) coordination network. Magnetic investigations revealed that interactions through the btm bridges in both 1 and 2 are antiferromagnetic.  相似文献   

2.
The copper(II) and nickel(II) complexes of three new 1,2-bis(1,4,7-triazacyclononane) ligands containing unsaturated four carbon bridging groups is studied by continuous variation UV-Vis spectroscopic and pH potentiometric equilibrium experiments. The cis-butene-2 (LC) linked ligand may form monomeric MN6-type complexes while the trans-butene-2 (LT) and butyne-2 (LY) ligands are prevented by their stereochemistry from forming monomeric complexes and form oligomeric complexes. It is determined that the stability of the CuLC2+ complex is not appreciably different from the oligomeric complexes of LT and LY. Single-crystal X-ray structure determinations are made on three square pyramidal Cu2L4+ complexes: [Cu2LCCl4] (1), [Cu2LYCl4] (2), and [Cu2LT(NO3)2(H2O)2](NO3)2 (3). The structure of [Ni2(LC)2](ClO4)4 · 2H2O (4) is a binuclear dimer that contains two nickel(II) ions sandwiched between two ligands, indicating that bis([9]aneN3) ligands with four linker atom chains may form either monomeric or oligomeric structures.  相似文献   

3.
A structural comparison of the coordination chemistry of the two linkage isomeric forms of bis(1-methylthioimidazolyl)methane, [H2C(N-mt)2] (LS), and [H2C(S-mt)2] (LN) to a number of zinc complexes has been carried out. The complexes ZnX2LS and ZnX2LN (where X = Cl, Br and I) have all been prepared in good to high yields and have been characterised by spectroscopic and analytical methods. X-ray crystallography studies were also carried out on all of the newly prepared compounds, revealing κ2-SS and κ2-NN coordination modes for LS and LN containing complexes, respectively.  相似文献   

4.
New copper(II) complexes [CuL2]2+ (L2=7,7,9-trimethyl-1,3,6,10,13-pentaazabicyclo[11,2,11.13]hexadec-9-ene) and [Cu2(L3)(H2O)2]4+ have been prepared by the reaction of [CuL1]2+ (L1=5,5,7-trimethyl-1,4,8,11,14-pentaazatetradce-7-ene) and formaldehyde. The mononuclear complex [CuL2]2+ has a square-planar coordination geometry with a 5-6-5-6 chelate ring sequence and is relatively stable even in low pH at room temperature. The dinuclear complex [Cu2(L3)(H2O)2]4+ consists of two unsaturated 15-membered pentaaza macrocyclic units (7,7,9-trimethyl-1,3,6,10,13-pentaazacyclopentadec-9-ene) that are linked together by a methylene group in a tilted face-to-face arrangement [Cu?Cu distance: 7.413(2) Å ]. Each macrocyclic unit of [Cu2(L3)(H2O)2]4+ contains one four-membered chelate ring and has a severely distorted octahedral coordination polyhedron. The dinuclear complex is quite stable in aqueous solutions containing an excess of formaldehyde or in dry acetonitrile but is decomposed to [CuL1]2+ and [CuL2]2+ in pure water.  相似文献   

5.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

6.
The self-assembly reaction of the flexible ligand 1,2-bis(1,2,4-triazol-4-yl)ethane (btre) and Ag salts with BF4, SO42−, NO3 and ClO4 gives novel coordination polymers {[Ag(btre)2](BF4)}n (1), {[Ag2(btre)1.5(H2O)](SO4)·5H2O}n (2), {[Ag(btre)](NO3)·H2O}n (3) and {[Ag(btre)](ClO4)}n (4). The structure of 1 is a one-dimensional double chain through double bis-monodentate btre bridges. Compound 2 is a novel two-dimensional network containing the Ag4 unit node and μ4-btre building block. In 3 and 4, adjacent two silver(I) atoms are linked through four nitrogen atoms of two N1/N2 atoms of two btre ligands and form Ag2N4 6-membered rings and construct a one-dimensional chain. The chains extends through btre bridges in four different directions alternatively to construct a novel three-dimensional network. The luminescences of 1-4 were observed in the solid state at room temperature. Compounds 3 and 4 are inversely transfered by the anion exchange procedure.  相似文献   

7.
Two new complexes [Cu(NITmPy)2(tp)] 1 and [Ni(NITmPy)2(tp)(H2O)2] 2 (NITmPy=2-(3-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and tp=terephthalato dianion) were synthesized and structurally and magnetically characterized. The structure of 1 is a neutral infinite chain where Cu(NITmPy)2 units are linked by terephthalate ligands. In complex 2, the 1-D chains of Ni(NITmPy)2 (H2O)2 units connected by tp develop into 2-D network via hydrogen bond interactions. The magnetic properties of 1 and 2 have been investigated in the temperature range 2-300 K. Both complexes exhibit ferromagnetic coupling and antiferromagnetic interactions dominate at low temperature. The magnetic behavior is discussed based on their structures.  相似文献   

8.
A series of new coordination polymers of Cu(II) have been prepared in a reaction between copper(II) perchlorate or tetrafluoroborate salt and a novel ligand 1,4-di(1,2,3,4-tetrazol-2-yl)butane (bbtz). The compounds were characterised by an elemental analysis, TG measurements, IR, EPR and UV-Vis spectroscopy. Crystal structures of bbtz and five complexes of Cu(II) were determined by a single crystal X-ray diffraction measurement performed at 100 K. The composition and architecture of the obtained complexes strongly depend on the reaction conditions especially on the kind of solvent. Investigated complexes are composed of polymeric macrocations and non-coordinated anions. In all cases the bbtz molecules act as the bidentate ligand coordinated to metal(II) ions via N4, N4 nitrogen atoms from tetrazole rings. The complexes {[Cu(bbtz)2(MeOH)2]X2} (X=ClO4, BF4) crystallise from methanol as 2D coordination polymers. In these compounds central metal ions are coplanar linked by molecules of bbtz and a coordination sphere is completed by axially coordinated solvent molecules. The complexes {[Cu(bbtz)3]X2} (X=ClO4, BF4) were synthesised in EtOH/H2O solvent system and posses a common network topology. In this group of complexes each central atom is linked by ligand molecules to six other in plane arranged central atoms resulting in 2D networks. Reactions between Cu(II) salts and bbtz performed in absolute ethanol resulted in the formation of the next type of product. In {[Cu(bbtz)3](ClO4)2·2EtOH} neighboured copper(II) ions are linked by ligand molecules in the three directions what leads to the formation of 3D net. A crystal of this complex is composed of two mutually interpenetrated 3D networks.  相似文献   

9.
Three new one-dimensional copper coordination polymers have been prepared and fully characterized by single-crystal X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and magnetic susceptibility measurements. The structure of [Cu(CN)2(bpy)] (1) (bpy = 2,2-bipyridyl) (monoclinic P21/c, a = 8.9761(7) Å, b = 16.731(1) Å, c = 8.0224(6) Å, β = 114.437(1)°) consists of Cu(II) metal centers coordinated by three cyanide ligands and chelated by one bpy to form the monomers Cu(CN)3(bpy) with distorted square pyramidal geometry. Each monomer shares two cyanide ligands with two adjacent monomers to form infinite -Cu(II)-CN-Cu(II)-CN-Cu zigzag chains along the c-axis. The one-dimensional structure of [Cu(CN)(bpy)] (2) (hexagonal P32, a = 14.4883(6) Å, b = 12.921(1) Å) is built of tetrahedral Cu(CN)2bpy metal complexes in which Cu(I) metal centers are coordinated by one nitrogen and one carbon from two different CN ligands, and two nitrogens from one bpy. The two CN ligands act as bridging ligands between adjacent monomers to form helical chains along the 32 screw axis. The crystal structure of [Cu2Cl(CN)(bpy)] (3) (orthorhombic Pbca, a = 17.853(2) Å, b = 6.9724 (9) Å, c = 18.7357 (9) Å) consists of two monomers, CuCl2(CN) and Cu(bpy)(CN) that share a cyanide ligand to form Cu2Cl2(CN)(bpy) dimers. The dimers link to each other by sharing Cl ligands leading to the formation of infinite Cu-Cl-Cu chain decorated by the complex Cu(CN)(bpy). Variable-temperature magnetic measurement shows an overall ferromagnetic behavior for compound 1. The magnetic pathway of compound 1 is through the cyanide bridge connecting apical and equatorial positions of adjacent copper (II) ions.  相似文献   

10.
Hua Tian 《Inorganica chimica acta》2010,363(11):2481-2487
Two new metal-organic coordination polymers with 1,5-dinitronaphthalene-3,7-dicarboxylate (NNDC), [Cu2(NNDC)2(DMF)1.8(DMSO)2.2(H2O)2]·H2O (1) and [Mn3(NNDC)3(DMSO)4]·2DMSO (2) have been synthesized under solvothermal conditions and characterized by single crystal X-ray diffraction and Thermogravimetric Analysis (TGA). The structure of compound 1 consists of one-dimensional chains with copper ions being linked by the dicarboxylate ligands. The coordination chains are associated into ladder-like double chains through O-H?O hydrogen bonds and π-π interactions, and the ladders are packed in a cross fashion through further π-π interactions to give the three-dimensional structure. The Mn(II) compound exhibits a 3D framework with the pcu topology, in which [Mn3(COO)6] clusters as octahedral secondary building blocks are linked by the naphthalene spacers. Magnetic analyses were carried out based on both temperature- and field-dependent data, consistently suggesting relatively weak antiferromagnetic interactions within the carboxylate bridged [Mn3(COO)6] cluster.  相似文献   

11.
Four Cd(II) metal-organic complexes, namely, [Cd(Cl)2(bbdmbm)] (1), [Cd(NO3)(N3)(bbdmbm)1.5] (2), [Cd(BBA)2(bbdmbm)(H2O)] (3), [Cd(DNBA)2(bbdmbm)] (4), (bbdmbm = 1,1-(1,4-butanediyl)bis(5,6-dimethylbenzimidazole), HBBA = 4-bromobenzoic acid, and HDNBA = 3,5-dinitrobenzoic acid) have been obtained from hydrothermal reactions of different Cd(II) salts with the mixed ligands of bbdmbm and five anions (Cl, NO3, N3, BBA and DNBA). Single crystal X-ray diffraction analyses reveal that the four complexes exhibit different structures. Complex 1 possesses a one-dimensional (1D) helical chain, which is finally extended into a two-dimensional (2D) supramolecular structure through π-π stacking interactions. Complex 2 shows a 1D ladderlike chain bridged by bbdmbm ligands with two kinds of coordination conformations. Complex 3 is a 1D coordination polymer and is ultimately extended into a 2D supramolecular network through H-bonding interactions. Complex 4 displays a dinuclear cluster, which is finally packed into a three-dimensional (3D) supramolecular framework through three kinds of π-π stacking interactions. The Cd(II) exhibits four different coordination modes in complexes 1-4, respectively. The results indicate that the anion ligands with different steric hindrance and size play important roles in the coordination modes of Cd(II) and construction of the title complexes, leading to the structural diversity. In addition, the conformations of bbdmbm ligand also show some effect on the final structures. Fluorescence properties of complexes 1-4 are reported in this paper.  相似文献   

12.
The alkoxo-bridged dinuclear copper(II) complexes [Cu2(ap)2(NO2)2] (1), [Cu2(ap)2(C6H5COO)2] (2) and [Cu2(ap)2μ-1,3-C6H4(COO)2(dmso)2]·dmso (3) (ap = 3-aminopropanolato and dmso = dimethyl sulfoxide) have been synthesized via self-assembly from copper(II) perchlorate, 3-aminopropanol as main chelating ligand and nitrite and isophthalate anions as spacers and benzoate anion as auxiliary ligand. Complexes 1 and 3 crystallize as 2D and 1D coordination polymers, respectively, and their structures consist of dinuclear [Cu2(ap)2]2+ units connected with nitrite and isophthalate ligands. The adjacent dinuclear units of 2 and 1D polymers of 3 are further connected by hydrogen bonds resulting in the formation of 2D layers. The variable temperature crystallographic measurements of 1 at 100, 173 and 293 K indicate the static Jahn-Teller distortion with librational disorder in the nitrite group. Experimental magnetic studies showed that complexes 1-3 exhibit strong antiferromagnetic couplings. The values of the magnetic exchange coupling constant for 1-3 are well reproduced by the theoretical calculations.  相似文献   

13.
Two coordination polymers [Ni(ipt)(dap)2]n (1) and [Cu(ipt)(dap)H2O]n · nH2O (2) with an overall one-dimensional arrangement and having isophthalate (ipt) as bridging moieties and chelating 1,3-diaminopropane (dap) as structure modulating units have been prepared and characterized by crystallographic, spectroscopic and thermo-analytical studies. Both have an overall one-dimensional zig-zag nature but with a distorted octahedral NiN4O2 chromophore for 1 and a distorted square pyramidal CuN2O3 chromophore for 2. Even though the ipt units are acting as bridging units through mono-dentatively coordinating carboxylate functions in both polymers, compound 1 has the carboxylate oxygen linkages at the trans positions, while in 2 the oxygen linkages occur at the cis positions leading to a different type of zig-zag arrangement. Relevant spectral and bonding parameters also could be evaluated for the compounds using UV-Vis and EPR spectra. Thermal stability and possible structural modifications on thermal treatment of the compounds were also investigated and the relevant thermodynamic and kinetic parameters evaluated from the thermal data.  相似文献   

14.
15.
Two new one-dimensional azido-bridged chiral copper(II) coordination polymers, [(μ-1,1,3-N3)2{Cu2(R-L)2(N3)2}]n (1) (R-L = R-2-(N-(2-hydroxybutyl)carbaldimino) pyridine) and [(μ-1,1,3-N3)2{Cu2(S-L)2(N3)2}]n (2) (S-L = S-2-(N-(2-hydroxybutyl)carbaldimino)pyridine) have been synthesized and structurally characterized. Complexes 1 and 2 crystallize in the monoclinic chiral space group P21. For 1, with a = 6.9565(17) Å, b = 20.675(5) Å, c = 9.859(2) Å, β = 105.944(5)° and Z = 2. In the case of compound 2, a = 6.9650(17) Å, b = 20.705(5) Å, c = 9.878(2) Å, β = 105.941(4)° and Z = 2. Both complexes consist of one-dimensional chiral structures in which the copper(II) ions with a distorted octahedral geometry are interlinked by the unusual μ-1,1,3 azido ligands. Circular dichroism spectra demonstrate that 1 and 2 are a pair of enantiomers. Their magnetic properties have been studied. Fitting of the susceptibility data for 1 and 2 using the Bleany-Bowers expression derived from the isotropic spin-exchange Hamiltonian H = −2JS1S2 leads to the parameters g = 2.21, J = −2.06 cm−1, zJ′ = −0.0309 cm−1 and R = 4.0 × 10−4.  相似文献   

16.
Several alkyl- or aryl-tin(IV) halides of general formula SnRnX4−n (n = 0-2; R = Me, Et, nBu, tBu, Ph; X = Cl, Br), possessing Lewis acidic character, have been reacted with the polydentate N-donor ligand bis(1,2,4-triazolyl)methane (Btm), affording Btm(SnRnCl4−n) complexes. (Btm)2SnnBu2Br2 and (Btm)SnnBu2(NO3)2 are also reported. These materials were characterized by elemental analyses, IR and 1H (and, in selected cases, 119Sn) NMR spectroscopy, and, were possible, ab initio X-ray powder diffraction methods. The crystal structures determined by the latter method showed that Btm ligands, in the exobidentate mode, link Sn(IV) fragments which lie 9.5-11.2 Å apart (depending on the Btm conformation and on the local metal stereochemistry), in one-dimensional chains packed in parallel bundles. The main geometrical features of these 1D polymers are compared with those of the bis(imidazolyl)methane complexes and of the known Btm derivative, Btm(Ph2SnBr2). Interestingly, the expected isomorphous structures for selected couples was not found, as if very subtle energetic differences were driving the crystallization of these species into different structure types.  相似文献   

17.
Hydrothermal synthesis has afforded divalent copper coordination polymers containing bis(4-pyridylformyl)piperazine (4-bpfp) tethers and aromatic meta-dicarboxylate ligands. {[Cu(ip)(4-bpfp)]·2H2O}n (1, ip = isophthalate) possesses a (4, 4) rectangular grid structure with an unusual ABCD stacking pattern along a 41 screw axis. Sterically bulky substituents in the 5-position of the isophthalate ligands reduced the coordination polymer dimensionality, with [Cu2(tBuip)2(4-bpfp)(H2O)2]n (2, tBuip = 5-tert-butylisophthalate) and {[Cu(MeOip)(HMeOip)2(4-bpfp)]·3H2O}n (3, MeOip = 5-methoxyisophthalate) displaying 1D polymeric ladder and chain motifs, respectively. Compound 3 possesses a rare twofold interpenetrated binodal supramolecular hms net with (63)(698) topology. Longer meta-disposed acetate pendant arms induced a doubly interpenetrated 3D primitive cubic topology in {[Cu2(1,3-phda)2(H2O)2(4-bpfp)]}n (4, 1,3-phda = 1,3-phenylenediacetate), which possesses antiferromagnetically coupled {Cu2O2} kernels (J = −6.14(8) cm−1).  相似文献   

18.
A cobalt(II) complex [Co((bnzim)2CO)Cl2] (1) (where (bnzim)2CO; bis(benzimidazol-2-yl)methanone), was obtained by reacting cobalt(II) chloride with bis(benzimidazol-2-yl)methane ((bnzim)2CH2) in CH3OH/CH3CN and characterized using EA, IR, XRD and X-ray single crystal diffraction. The process of ketonization of methylene of (bnzim)2CH2 was investigated using spectroscopy and electrochemistry method. The experimental results reveal that there were new species forming in the reaction system and the formation of new species was related to the dissolving oxygen in the mixture. Oxygenation mechanism was thus proposed, in which oxygen atom transfer from a superoxo intermediate species {((bnzim)2CH2)Co(III)-O-O} to the methylenic carbon of (bnzim)2CH2, and then goes O-O hemolytic cleavage and hydrogen migration to give intermediate species [Co((bnzim)2CHOH)]2+. The ketonization was achieved after [Co((bnzim)2CHOH)]2+repeating the process.  相似文献   

19.
The three-substituted dipyridyl ligand bis(3-pyridylmethyl)sulfide (L1) was prepared by the reaction of 3-(chloromethyl)pyridine hydrochloride with thioacetamide under basic conditions. L1 was reacted with CuI to give complexes with 1:2 and 1:1 molar ratios. Crystal structures of [(CuI)2(L1)] (1) and [CuI(L1)] (2) were determined. In complex 1 the CuI species formed a one-dimensional staircase polymer to which L1 was bound in a side-by-side fashion with π-π interactions between the ligands on each side. Complex 2 consisted of a one-dimensional ribbon polymer of metallomacrocycles formed from two L1 ligands bridging Cu2I2 dimers which were fused within the macrocyclic ring. The analogous disulfide ligand bis(3-pyridylmethyl)disulfide (L2) was prepared by oxidation of the corresponding thiol 3-(sulfanylmethyl)pyridine. L2 was reacted with CuI in 1:2 and 1:1 molar ratios and products isolated but only the 1:1 product was able to be crystallised. The crystal structure of [CuI(L2)] (3) consisted of a one-dimensional ribbon polymer of metallomacrocycles formed from two L2 ligands linked through Cu2I2 dimers. The difference in the metallomacrocycle linking between the related structures 2 and 3 was attributed to the difference in ligand conformation.  相似文献   

20.
Two copper(II) compounds named [Cu2(μ-O2CCH2C4H3S)4(bipy)]n (1) and [Cu2(O2CCH2C4H3S)4(bpe)2]n (2) [(O2CCH2C4H3S) = 3-thiopheneacetate anion; bipy = 4,4′-bipyridine and bpe = 1,2-bis(4-pyridyl)ethylene] have been synthesized and structurally characterized by single crystal X-ray diffraction analysis. Compound 1 consists of binuclear paddle wheel SBUs connected by bridging bipy ligands resulting on a 1D polymeric chain. On the other hand, compound 2 contains two crystallographically independent copper(II) centers coordinated by 3-thiopheneacetate ions in a monodentate fashion and by bpe ligands acting in a bridging mode to form 1D polymeric chains. In both cases, the 1D polymeric chains are linked through non-classical hydrogen bondings C-H···O, that apparently control the crystal packing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号