首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present investigation reports, the synthesis of manganese oxide (α-Mn2O3) nanobundles using thermal decomposition and its physicochemical characterization. The α-Mn2O3 nanobundles have been prepared using manganese oxalate dihydrate powders as precursor in the presence of oleylamine and triphenylphosphine as solvent and capping agent. Transmission electron microscopy (TEM) analysis demonstrated Mn2O3 nanobundles compose of nanospheres with diameter 30 nm. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy. Manganese oxide nanocrystals have been prepared under different condition. The controlled experimental results showed that the use of oleylamine and triphenylphosphine as the solvent and capping agent in the chemical process played important role in the formation of the final products.  相似文献   

2.
The simple preparation of Co3O4 nanoparticles from a solid organometallic molecular precursor N-N′-bis(salicylaldehyde)-1,2-phenylenediimino cobalt(II); Co(salophen) has been achieved via two simple steps: firstly, the Co(salophen) precursor was precipitated from the reaction of cobalt(II) acetate and N-N′-bis(salicylaldehyde)-1,2-phenylenediimino; H2salophen; in propanol under nitrogen condition; then, cubic phase Co3O4 nanoparticles with the size of mostly 30-50 nm could be produced by thermal treatment of the Co(salophen) in air at 773 K for 5 h. The as-synthesized products were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and scanning electronic microscopy (SEM). These results confirm that the resulting oxide was pure single-crystalline Co3O4 nanoparticles. The optical property test indicates that the absorption peak of the nanoparticles shifts towards short wavelength, and the blue shift phenomenon might be ascribed to the quantum effect. The hysteresis loops of the obtained samples reveal the ferromagnetic behaviors the enhanced coercivity (Hc) and decreased saturation magnetization (Ms) in contrast to their respective bulk materials.  相似文献   

3.
4.
Surface modification of natural fibers has been made using different methods. In this paper, cellulose fibers from sugarcane bagasse were bleached and modified by zirconium oxychloride in situ. The chemically modified cellulose fibers were compared to those of bleached ones. Cellulose fibers were modified with ZrO2·nH2O nanoparticles through the use of zirconium oxychloride in acidic medium in the presence of cellulose fibers using urea as the precipitating agent. The spatial distribution characterization of hydrous zirconium oxide on cellulose fibers was carried out by combining both processing and image analyses obtained by SEM and statistical methodologies. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TG) were also used to characterize the nanocomposite. Results indicated that ZrO2·nH2O nanoparticles of about 30-80 nm diameter deposited on cellulose fibers were heterogeneously dispersed.  相似文献   

5.
Synthesis of a series of monoorganobismuth dithiocarboxylate complexes, [RBi(S2CAr)2] (R = Me, Ph, tol; Ar = Ph, tol), has been reported. They have been characterized by elemental analyses and spectroscopic methods. Molecular structures of [RBi(S2Ctol)2] (R = Me or Ph) have been established by single crystal X-ray diffraction studies. The bismuth atom in these complexes adopts a square pyramidal configuration with the R group at the apical position. In the solid state, these complexes show supra-molecular association devoid of Bi?S secondary interactions. Thermolysis of [RBi(S2Ctol)2] (R = Me or Ph) in refluxing diphenylether yielded Bi2S3 nanocrystals which were characterized by XRD, EDAX and SEM. The complex [PhBi(S2Ctol)2] has been employed for deposition of thin films of Bi2S3 by AACVD.  相似文献   

6.
A heterobimetallic single molecular precursor, [Fe2Ti4(μ-O)6(TFA)8(THF)6] (1) [TFA = trifluoroacetate, THF = tetrahydrofuran], was synthesized by the simple reaction of [Fe3O(OAc)6(H2O)3]NO3·4H2O [OAc = acetato] with tetrakis(2-ethoxyethanalato)titanium(IV) in the presence of trifluoroacetic acid in THF. The synthesized precursor was analyzed by melting point, CHN analysis, FTIR, single crystal X-ray diffraction and thermogravimetric analysis. Complex (1) crystallizes in the orthorhombic space group Pca21 with cell dimensions a = 19.2114(14), b = 20.4804(15) and c = 17.2504(12) Å, and the complex undergoes thermal decomposition at 490 °C to give a residual mass corresponding to an Fe2TiO5-TiO2 composite mixture. The synthesized precursor was utilized for deposition of Fe2TiO5-TiO2 composite thin films by aerosol-assisted chemical vapor deposition (AACVD) on glass substrates at 500 °C using argon as the carrier gas. Scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray powder diffraction (XRD) analyses of the thin films suggest the formation of good quality crystalline thin films of an Fe2TiO5-TiO2 composite with an average grain size of 0.105-0.120 μm.  相似文献   

7.
Cytochrome bd is a terminal component of the respiratory chain of Escherichia coli catalyzing reduction of molecular oxygen to water. It contains three hemes, b558, b595, and d. The detailed spectroelectrochemical redox titration and numerical modeling of the data reveal significant redox interaction between the low-spin heme b558 and high-spin heme b595, whereas the interaction between heme d and either hemes b appears to be rather weak. However, the presence of heme d itself decreases much larger interaction between the two hemes b. Fitting the titration data with a model where redox interaction between the hemes is explicitly included makes it possible to extract individual absorption spectra of all hemes. The α- and β-band reduced-minus-oxidized difference spectra agree with the data published earlier ([22] J.G. Koland, M.J. Miller, R.B. Gennis, Potentiometric analysis of the purified cytochrome d terminal oxidase complex from Escherichia coli, Biochemistry 23 (1984) 1051-1056., and [23] R.M. Lorence, J.G. Koland, R.B. Gennis, Coulometric and spectroscopic analysis of the purified cytochrome d complex of Escherichia coli: evidence for the identification of “cytochrome a1” as cytochrome b595, Biochemistry 25 (1986) 2314-2321.). The Soret band spectra show λmax = 429.5 nm, λmin ≈ 413 nm (heme b558), λmax = 439 nm, λmin ≈ 400 ± 1 nm (heme b595), and λmax = 430 nm, λmin = 405 nm (heme d). The spectral contribution of heme d to the complex Soret band is much smaller than those of either hemes b; the Soret/α (ΔA430A629) ratio for heme d is 1.6.  相似文献   

8.
As part of the desire to save the environment through “green” chemistry practices, we herein report an environmentally benign synthesis of silver nanoparticles (Ag-NPs) using cellulose extracted from an environmentally problematic aquatic weed, water hyacinth (WH), as both reducing and capping agent in an aqueous medium. By varying the pH of the solution and reaction time, the temporal evolutions of the optical and morphological properties of the as-synthesised Ag-NPs were investigated. The as-synthesised cellulose capped silver nanoparticles (C–Ag-NPs) were characterised using Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The maximum surface plasmon resonance (SPR) peak decreased as the pH increased indicating that an increase in the pH of the solution favoured the formation of smaller particles. In addition, instantaneous change in the colour of the solution from colourless to brown within 5 min at pH 11 showed that the rate of reduction is faster at this pH compared to those at lower pH. The TEM micrographs showed that the materials are small, highly monodispersed and spherical in shape. The average particle mean diameters were calculated to be 5.69 ± 5.89 nm, 4.53 ± 1.36 nm and 2.68 ± 0.69 nm nm at pH 4, 8 and 11 respectively. The HRTEM confirmed the crystallinity of the material while the FTIR spectra confirmed the capping of the as-synthesised Ag-NPs by the cellulose. It has been shown therefore that based on this synthetic method, this aquatic plant can be used to the advantage of mankind.  相似文献   

9.
Nitroxide radicals are widely used as molecular probes in different fields of chemistry and biology. In this work, we describe pH-sensitive imidazoline- and imidazolidine-based nitroxides with pK values in the range 4.7-7.6 (2,2,3,4,5,5-hexamethylperhydroimidazol-1-oxyl, 4-amino-2,2,5,5-tetramethyl-2,5-dihydro-1H-imidazol-1-oxyl, 4-dimethylamino-2,2-diethyl-5,5-dimethyl-2,5-dihydro-1H-imidazol-1-oxyl, and 2,2-diethyl-5,5-dimethyl-4-pyrrolidyline-1-yl-2,5-dihydro-1H-imidazol-1-oxyl), which allow the pH-monitoring inside chloroplasts. We have demonstrated that EPR spectra of these spin-probes localized in the thylakoid lumen markedly change with the light-induced acidification of the thylakoid lumen in chloroplasts. Comparing EPR spectrum parameters of intrathylakoid spin-probes with relevant calibrating curves, we could estimate steady-state values of lumen pHin established during illumination of chloroplasts with continuous light. For isolated bean (Vicia faba) chloroplasts suspended in a medium with pHout = 7.8, we found that pHin ≈ 5.4-5.7 in the state of photosynthetic control, and pHin ≈ 5.7-6.0 under photophosphorylation conditions. Thus, ATP synthesis occurs at a moderate acidification of the thylakoid lumen, corresponding to transthylakoid pH difference ΔpH ≈ 1.8-2.1. These values of ΔpH are consistent with a point of view that under steady-state conditions the proton gradient ΔpH is the main contributor to the proton motive force driving the operation of ATP synthesis, provided that stoichiometric ratio H+/ATP is n ≥ 4-4.7.  相似文献   

10.
Under physiological conditions (278 K) femtosecond pump-probe laser spectroscopy with 20-fs time resolution was applied to study primary charge separation in spinach photosystem II (PSII) core complexes excited at 710 nm. It was shown that initial formation of anion radical band of pheophytin molecule (Pheo) at 460 nm is observed with rise time of ~ 11 ps. The kinetics of the observed rise was ascribed to charge separation between Chl (chlorophyll a) dimer, primary electron donor in PSII (P680*) and Pheo located in D1 protein subunit (PheoD1) absorbing at 420 nm, 545 nm and 680 nm with formation of the ion-radical pair P680+PheoDI. The subsequent electron transfer from PheoD1 to primary plastoquinone electron acceptor (QA) was accompanied by relaxation of the 460-nm band and occurred within ~ 250 ps in good agreement with previous measurements in Photosystem II-enriched particles and bacterial reaction centers. The subtraction of the P680+ spectrum measured at 455 ps delay from the spectra at 23 ps or 44 ps delay reveals the spectrum of PheoDI, which is very similar to that measured earlier by accumulation method. The spectrum of PheoDI formation includes a bleaching (or red shift) of the 670 nm band indicating that Chl-670 is close to PheoD1. According to previous measurements in the femtosecond–picosecond time range this Chl-670 was ascribed to ChlD1 [Shelaev, Gostev, Vishnev, Shkuropatov, Ptushenko, Mamedov, Sarkisov, Nadtochenko, Semenov and Shuvalov, J. Photochemistry and Photobiology, B: Biology 104 (2011) 45–50]. Stimulated emission at 685 nm was found to have two decaying components with time constants of ~ 1 ps and ~ 14 ps. These components appear to reflect formation of P680+ChlD1 and P680+PheoD1, respectively, as found earlier. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

11.
A novel amperometric biosensor for xanthine was developed based on covalent immobilization of crude xanthine oxidase (XOD) extracted from bovine milk onto a hybrid nanocomposite film via glutaraldehyde. Toward the preparation of the film, a stable colloids solution of core–shell Fe3O4/polyaniline nanoparticles (PANI/Fe3O4 NPs) was dispersed in solution containing chitosan (CHT) and H2PtCl6 and electrodeposited over the surface of a carbon paste electrode (CPE) in one step. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used for characterization of the electrode surface. The developed biosensor (XOD/CHT/Pt NPs/PANI/Fe3O4/CPE) was employed for determination of xanthine based on amperometric detection of hydrogen peroxide (H2O2) reduction at –0.35 V (vs. Ag/AgCl). The biosensor exhibited a fast response time to xanthine within 8 s and a linear working concentration range from 0.2 to 36.0 μM (R2 = 0.997) with a detection limit of 0.1 μM (signal/noise [S/N] = 3). The sensitivity of the biosensor was 13.58 μA μM−1 cm−2. The apparent Michaelis–Menten (Km) value for xanthine was found to be 4.7 μM. The fabricated biosensor was successfully applied for measurement of fish and chicken meat freshness, which was in agreement with the standard method at the 95% confidence level.  相似文献   

12.
Prostaglandin H2 not only serves as the common precursor of all other PGs, but also directly triggers signals (e.g. platelet aggregation), depending on its location and translocation. The prostaglandin carrier PGT mediates the transport of several prostanoids, such as PGE2, and PGF. Here we used PGT in the plasma membrane as a model system to test the hypothesis that PGT also transports PGH2. Using wild-type and PGT-expressing MDCK cells, we show that PGH2 uptake is mediated both by simple diffusion and by PGT. The PGH2 influx permeability coefficient for diffusion is (5.66 ± 0.63) × 10−6 cm/s. The kinetic parameters of PGH2 transport by PGT are Km = 376 ± 34 nM and Vmax = 210.2 ± 11.4 fmol/mg protein/s. PGH2 transport by PGT can be inhibited by excess PGE2 or by a PGT inhibitor. We conclude that PGT may play a role in transporting PGH2 across cellular membranes.  相似文献   

13.
The ultrafast (< 100 fs) conversion of delocalized exciton into charge-separated state between the primary donor P700 (bleaching at 705 nm) and the primary acceptor A0 (bleaching at 690 nm) in photosystem I (PS I) complexes from Synechocystis sp. PCC 6803 was observed. The data were obtained by application of pump-probe technique with 20-fs low-energy pump pulses centered at 720 nm. The earliest absorbance changes (close to zero delay) with a bleaching at 690 nm are similar to the product of the absorption spectrum of PS I complex and the laser pulse spectrum, which represents the efficiency spectrum of the light absorption by PS I upon femtosecond excitation centered at 720 nm. During the first ∼ 60 fs the energy transfer from the chlorophyll (Chl) species bleaching at 690 nm to the Chl bleaching at 705 nm occurs, resulting in almost equal bleaching of the two forms with the formation of delocalized exciton between 690-nm and 705-nm Chls. Within the next ∼ 40 fs the formation of a new broad band centered at ∼ 660 nm (attributed to the appearance of Chl anion radical) is observed. This band decays with time constant simultaneously with an electron transfer to A1 (phylloquinone). The subtraction of kinetic difference absorption spectra of the closed (state P700+A0A1) PS I reaction center (RC) from that of the open (state P700A0A1) RC reveals the pure spectrum of the P700+A0 ion-radical pair. The experimental data were analyzed using a simple kinetic scheme: An* [(PA0)*A1 P+A0A1] P+A0A1, and a global fitting procedure based on the singular value decomposition analysis. The calculated kinetics of transitions between intermediate states and their spectra were similar to the kinetics recorded at 694 and 705 nm and the experimental spectra obtained by subtraction of the spectra of closed RCs from the spectra of open RCs. As a result, we found that the main events in RCs of PS I under our experimental conditions include very fast (< 100 fs) charge separation with the formation of the P700+A0A1 state in approximately one half of the RCs, the ∼ 5-ps energy transfer from antenna Chl* to P700A0A1 in the remaining RCs, and ∼ 25-ps formation of the secondary radical pair P700+A0A1.  相似文献   

14.
The measurement of elemental selenium (Se0) is needed to assess the rate and magnitude of bacteria reduction of selenite or selenate. We have developed a spectrophotometric method for the measurement Se0 that is rapid and can be employed to measure the quantity of Se0 produced by bacterial cultures. This method employs the use of 1 M Na2S to convert the insoluble elemental selenium to a red-brown solution and with this method there is a direct correlation between concentration of elemental selenium and the absorption at 500 nm. To demonstrate the utility of this assay, we have followed the reduction of selenite to Se0 by Moraxella bovis, and by bacterial consortia in soil and water samples.  相似文献   

15.
This article reports simple, green and efficient synthesis of γ-Fe2O3 nanoparticles (NPs) (maghemite) through single-source precursor approach for colorimetric estimation of human glucose level. The γ-Fe2O3 NPs, having cubic morphology with an average particle size of 30 nm, exhibited effective peroxidase-like activity through the catalytic oxidation of peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2 producing a blue-colored solution. On the basis of this colored-reaction, we have developed a simple, cheap, highly sensitive and selective colorimetric method for estimation of glucose using γ-Fe2O3/TMB/glucose–glucose oxidase (GOx) system in the linear range from 1 to 80 μM with detection limit of 0.21 μM. The proposed glucose sensor displays faster response, good stability, reproducibility and anti-interference ability. Based on this simple reaction process, human blood and urine glucose level can be monitored conveniently.  相似文献   

16.
Fe3O4 magnetic nanoparticles with different particle sizes were synthesized using two methods, i.e., a co-precipitation process and a polyol process, respectively. The atomic pair distribution analyses from the high-energy X-ray scattering data and TEM observations show that the two kinds of nanoparticles have different sizes and structural distortions. An average particle size of 6–8 nm with a narrow size distribution was observed for the nanoparticles prepared with the co-precipitation method. Magnetic measurements show that those particles are in ferromagnetic state with a saturation magnetization of 74.3 emu g−1. For the particles synthesized with the polyol process, a mean diameter of 18–35 nm was observed with a saturation magnetization of 78.2 emu g−1. Although both kinds of nanoparticles are well crystallized, an obviously higher structural distortion is evidenced for the co-precipitation processed nanoparticles. The synthesized Fe3O4 particles with different mean particle size were used for treating the wastewater contaminated with the metal ions, such as Ni(II), Cu(II), Cd(II) and Cr(VI). It is found that the adsorption capacity of Fe3O4 particles increased with decreasing the particle size or increasing the surface area. While the particle size was decreased to 8 nm, the Fe3O4 particles can absorb almost all of the above-mentioned metal ions in the contaminated water with the adsorption capacity of 34.93 mg/g, which is ∼7 times higher than that using the coarse particles. We attribute the extremely high adsorption capacity to the highly-distorted surface.  相似文献   

17.
We introduced a novel X-ray microscope system based on scanning electron microscopy using thin film, which enables the measurement of unstained biological samples without damage. An unstained yeast sample was adsorbed under a titanium (Ti)-coated silicon nitride (Si3N4) film 90 nm thick. The X-ray signal from the film was detected by an X-ray photodiode (PD) placed below the sample. With an electron beam at 2.6 kV acceleration and 6.75 nA current, the yeast image is obtained using the X-ray PD. The image is created by soft X-rays from the Ti layer. The Ti layer is effective in generating the characteristic 2.7-nm wavelength X-rays by the irradiation of electrons. Furthermore, we investigated the electron trajectory and the generation of the characteristic X-rays within the Ti-coated Si3N4 film by Monte Carlo simulation. Our system can be easily utilized to observe various unstained biological samples of cells, bacteria, and viruses.  相似文献   

18.
Shinorhizobial cyclosophoraose (cyclic β-(1→2)-glucan) or succinoglycan monomer (SGM 2), which has one acetyl, pyruvyl, and succinyl group, functions as a morphology-directing agent for the synthesis of pure trigonal selenium nanowires by using ascorbic acid (vitamin C) as the reducing agent. The synthesis was achieved in water at room temperature. Under these experimental conditions, the diameters of the as-prepared Se nanowires were varied in the range of 34-120 nm by cyclosophoraose and of 33-66 nm by SGM 2, in which the nanowires were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Through this study, we propose that Shinorhizobial cyclic and linear oligosaccharides have morphologically directing functions for the synthesis of single-crystalline selenium nanowires by green chemical methods.  相似文献   

19.
The reversible redox reaction between coenzyme F420 and H2 to F420H2 is catalyzed by an F420-reducing [NiFe]-hydrogenase (FrhABG), which is an enzyme of the energy metabolism of methanogenic archaea. FrhABG is a group 3 [NiFe]-hydrogenase with a dodecameric quaternary structure of 1.25 MDa as recently revealed by high-resolution cryo-electron microscopy. We report on the crystal structure of FrhABG from Methanothermobacter marburgensis at 1.7 Å resolution and compare it with the structures of group 1 [NiFe]-hydrogenases, the only group structurally characterized yet. FrhA is similar to the large subunit of group 1 [NiFe]-hydrogenases regarding its core structure and the embedded [NiFe]-center but is different because of the truncation of ca 160 residues that results in similar but modified H2 and proton transport pathways and in suitable interfaces for oligomerization. The small subunit FrhG is composed of an N-terminal domain related to group 1 enzymes and a new C-terminal ferredoxin-like domain carrying the distal and medial [4Fe-4S] clusters. FrhB adopts a novel fold, binds one [4Fe-4S] cluster as well as one FAD in a U-shaped conformation and provides the F420-binding site at the Si-face of the isoalloxazine ring. Similar electrochemical potentials of both catalytic reactions and the electron-transferring [4Fe-4S] clusters, determined to be E°′ ≈ − 400 mV, are in full agreement with the equalized forward and backward rates of the FrhABG reaction. The protein might contribute to balanced redox potentials by the aspartate coordination of the proximal [4Fe-4S] cluster, the new ferredoxin module and a rather negatively charged FAD surrounding.  相似文献   

20.
Absorbance difference spectroscopy and redox titrations have been applied to investigate the properties of photosystem I from the chlorophyll d containing cyanobacterium Acaryochloris marina. At room temperature, the (P740+ − P740) and (FA/B − FA/B) absorbance difference spectra were recorded in the range between 300 and 1000 nm while at cryogenic temperatures, (P740+A1 − P740A1) and (3P740 − P740) absorbance difference spectra have been measured. Spectroscopic and kinetic evidence is presented that the cofactors involved in the electron transfer from the reduced secondary electron acceptor, phylloquinone (A1), to the terminal electron acceptor and their structural arrangement are virtually identical to those of chlorophyll a containing photosystem I. The oxidation potential of the primary electron donor P740 of photosystem I has been reinvestigated. We find a midpoint potential of 450 ± 10 mV in photosystem I-enriched membrane fractions as well as in thylakoids which is very similar to that found for P700 in chlorophyll a dominated organisms. In addition, the extinction difference coefficient for the oxidation of the primary donor has been determined and a value of 45,000 ± 4000 M− 1 cm− 1 at 740 nm was obtained. Based on this value the ratio of P740 to chlorophyll is calculated to be 1:~ 200 chlorophyll d in thylakoid membranes. The consequences of our findings for the energetics in photosystem I of A. marina are discussed as well as the pigment stoichiometry and spectral characteristics of P740.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号