首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[Pd(dppf)(MeCN)2](OTf)2 [dppf = 1,1′-bis(diphenylphosphino)ferrocene, OTf = triflate] reacts with pyridyl acetic acid (PyAcOH) to yield a dipalladium ring structure, [Pd2(dppf)2(μ-PyOAc)2](OTf)2 (1). The doubly-bridging ligands exhibit basicity at the pendant carboxyl oxygen to attract AgX (X = OTf or CF3CO2) to form [Pd2Ag2(dppf)2(PyOAc)2(OTf)4] (2) and [Pd2Ag2(dppf)2(PyOAc)2(OTf)2(CF3CO2)2] (3), respectively. Complexes 1 and 2 have been crystallographically characterized. Similar spacer-guest affinity is not found in the Pt(II) or isonicotinate analogues.  相似文献   

2.
The ligands 1,3-bis(3-pyridyl)benzene (1), 1,3-bis(4-pyridyl)benzene (2) and 1,3,5-tris(4-pyridyl)benzene (3) have been prepared by Stille coupling of 3- or 4-trimethylstannylpyridine with the appropriate bromoarene. Ligands 1 and 2 react with [M(OTf)2(dppp)] (M=Pd, Pt) to produce the dipalladium- or diplatinum-containing macrocycles [M2(μ-1)2(dppp)2](OTf)4 or [M2(μ-2)2(dppp)2](OTf)4. These have been characterized by NMR spectroscopy and mass spectrometry and, in the case of [Pd2(μ-1)2(dppp)2](OTf)4, by X-ray crystallography. The molecular structure of the [Pd2(μ-1)2(dppp)2]4+ cation reveals a shallow arrangement of the aromatic rings, with the palladium atoms lying above and below. The tridentate ligand 3 reacts with [Pd(OTf)2(dppp)] to produce a trimetallic species of the form [Pd33-3)2(dppp)3](OTf)6.  相似文献   

3.
A series of new binuclear copper (II) and nickel (II) complexes of the macrocyclic ligands bis(1,4,7-triazacyclononan-1-yl)butane (Lbut) and bis(1,4,7-triazacyclononan-1-yl)-m-xylene (Lmx) have been synthesized: [Cu2LbutBr4] (1), [Cu2Lbut(imidazole)2Br2](ClO4)2 (2), [Cu2Lmx(μ-OH)(imidazole)2](ClO4)3 (3), [Cu2Lbut(imidazole)4](ClO4)4 · H2O (4), [Cu2Lmx(imidazole)4](ClO4)4 (5), [Ni2 Lbut(H2O)6](ClO4)4 · 2H2O (6), [Ni2Lbut(imidazole)6](ClO4)4 · 2H2O (7) and [Ni2Lmx (imidazole)4(H2O)2](ClO4)4 · 3H2O (8). Complexes 1, 2, 7 and 8 have been characterized by single crystal X-ray studies. In each of the complexes, the two tridentate 1,4,7-triazacyclononane rings of the ligand facially coordinate to separate metal centres. The distorted square-pyramidal coordination sphere of the copper (II) centres is completed by bromide anions in the case of 1 and/or monodentate imidazole ligands in complexes 2, 4 and 5. Complex 3 has been formulated as a monohydroxo-bridged complex featuring two terminal imidazole ligands. Complexes 6-8 feature distorted octahedral nickel (II) centres with water and/or monodentate imidazole ligands occupying the remaining coordination sites. Within the crystal structures, the ligands adopt trans conformations, with the two metal binding compartments widely separated, perhaps as a consequence of electrostatic repulsion between the cationic metal centres. The imidazole-bearing complexes may be viewed as simple models for the coordinative interaction of the binuclear complexes of bis (tacn) ligands with protein molecules bearing multiple surface-exposed histidine residues.  相似文献   

4.
The dinuclear complexes [Pd2(L)2(bipy)2] (1), [Pd2(L)2(phen)2] (2), [Pt2(L)2(bipy)2] (3) and [Pt2(L)2(phen)2] (4), where bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline and L = 2,2′-azanediyldibenzoic dianion) dibridged by H2L ligands have been synthesized and characterized. The binding of the complexes with fish sperm DNA (FS-DNA) were investigated by fluorescence spectroscopy. The results indicate that the four complexes bound to DNA with different binding affinity, in the order complex 4 > complex 3 > complex 2 > complex 1, and the complex 3 binds to DNA in both coordination and intercalative mode. Gel electrophoresis assay demonstrates the ability of the complexes to cleave the pBR 322 plasmid DNA. The cytotoxic activity of the complexes was tested against four different cancer cell lines. The four complexes exhibited cytotoxic specificity and significant cancer cell inhibitory rate.  相似文献   

5.
A series of flexible multidentate ligands containing N,P-donor, 2-[N-(diphenylphosphino)methyl]amino-pyridine (L1), 2-[N-bi-(diphenylphosphino) methyl]amino-pyridine (L2), 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L3) and 4-[(N-diphenylphosphino)methyl]amino-pyridine) (L4) have been synthesized. The mono- and dinuclear cyclometalated platinum(II) complexes [Pt(C^N^N)L1]ClO4 (HC^N^N = 6-phenyl-2,2′-bipyridine), [Pt2(C^N^N)2L1](ClO4)2, [Pt2(C^N^N)2L2](ClO4)2, [Pt(C^N^N)L3]ClO4 and [Pt2(C^N^N)2L4](ClO4)2 were prepared and their structures determined by X-ray crystal analysis. These complexes exhibit long-lived bright orange emissions ranging from 560 to 610 nm in the solid state at room temperature. In solution, dinuclear complexes have emissions with higher quantum yields than mononuclear complexes. This can be attributed to intramolecular interaction of free functional group with Pt(II) at axial position, resulting in the quenching of phosphorescence for platinum(II) complexes in the 3MLCT excited state.  相似文献   

6.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

7.
The electrochemical behavior of the Pt(II)-based Baeyer-Villiger catalysts of the general formulae [Pt(μ-OH)(PP)]2(BF4)2 (PP = dppe (1a), 2Fdppe (1 b), 4Fdppe (1c), dfppe (1d), dmpe (1e), depe (1f), dippe (1g), dtbpe (1h)) and [Pt(OH2)2(PP)](OTf)2 (PP = dppe (2a), 2Fdppe (2b), 4Fdppe (2c), dfppe (2d)) is reported. They exhibit irreversible reduction processes whose potentials reflect the Lewis acidity of the metal centres, showing (for the aromatic diphosphine complexes) overall relations with the number of fluorine atoms, with JPt-P, with the ν(CN) coordination shift of a ligand isocyanide probe and with the catalytic activity. Single-crystal X-ray diffraction analyses were carried out for [Pt(μ-OH)(4Fdppe)]2(BF4)2 (1c) and [Pt(μ-OH) (dippe)]2(BF4)2 (1g).  相似文献   

8.
Six 2D and 3D supramolecular complexes [Cu(L1)(O2CCH3)2] · H2O (1), [Cu2(L2)22-O2CCH3)2](BF4)2 (2), [Cu2(L1)2(BDC)(NO3)2] · 0.5H2O (3) [Cu2(L2)2(BDC)(NO3)2] (4), [Cu2(L3)2(BDC)(NO3)2] · 0.5H2O (5) and [Cu2(L2)2(BDC)(H2O)2](BDC) · 8H2O (6) (L1 = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine, L2 = 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine, L3 = 4′-phenyl-2,2′:6′,2″-terpyridine, BDC = 1,4-benzenedicarboxylate), have been prepared and structurally characterized by X-ray diffraction crystallography. In complexes 1, 3, and 4, 1D channels are formed through C-H?O and C-H?N hydrogen-bonding interactions, and further linked into 3D structure via C-H?O and O-H?O interactions. Complex 2 is a 2D layer constructed from intermolecular C-H?F and π-π stacking interactions. In the structure of 6, the BDC2− ions and solvent water molecules form a novel 2D layer containing left- and right-handed helical chains via hydrogen-bonds, and an unusual discrete water octamer is formed within the layer. In 2, 4, 6 and [Ag2(L2)2](PF6)2 (7) the bonding types of pendent pyridines of L2 depending on the twist about central pyridines are involved in intramolecular (2 and 4), intermolecular (6) or coordination bonds (7) in-twist-order of 5.8°, 3.7°, 28.2° and 38.0°, respectively. Differently, the pendent pyridines of L1 in 1 and 3 form intermolecular hydrogen bonds despite of distinct corresponding twist angles of 25.1° (1) and 42.6°(3). Meanwhile, π-π stacking interactions are present in 1-6 and responsible for the stabilization of these complexes.  相似文献   

9.
A series of Ni(II) and Cu(II) complexes of the hexaaza macrocycles, 3,6,9,17,20,23-hexaazatricyclo[23.3.1.111,15]triaconta-1(29),11(30),12,14,25,27-hexaene (L1) and 3,6,9,16,19,22-hexaazatricyclo[22.2.2.211,14]triaconta-1(26),11(29),12,14(30),24(28),25-hexaene (L2), have been prepared and the crystal structures determined for [Ni2L1(O2CCH3)2(H2O)2](ClO4)2 (1), [Ni2L2(DMF)6](ClO4)4 · 2H2O (2), {[Cu2L2Br(O2CCH3)](ClO4)2}n (3), [Cu2L2(μ-CO3)(H2O)2]2(ClO4)4 · 8H2O (4), [Cu2L2(O2CCH3)2](BF4)2 (5), and [Cu2L1(μ-imidazolate)Br]2Br4 · 6H2O (6). In these complexes, two metal centers are bound per ligand; in 1 and 3-6, the N3 subunits of L1 or L2 coordinate meridionally to the metal centers, whilst in 2, each N3 subunit in L2 adopts a facial mode of coordination. The binuclear cations in 1 and 2 have chair-like conformations, with the distorted octahedral Ni(II) coordination spheres completed by terminal water and a bidentate acetate ligand in 1 and three DMF ligands in 2. The Cu(II) centers in 3-6 generally reside in square planar environments, although a weakly binding ligand enters the coordination sphere in some cases, generating a distorted square pyramidal geometry. The binuclear [Cu2L2]4+ units in 3, 4 and 5 adopt similar bowl-shaped conformations, stabilized by H-bonding interactions between pairs of amine groups from L2 and a perchlorate or tetrafluoroborate anion. In 3, the binuclear units are linked through acetate groups, bridging in a syn-anti fashion, to produce a zig-zag polymeric chain structure, whilst 4 incorporates a tetrameric cation consisting of two binuclear units linked via a pair of carbonate bridges. Compound 6 features an imidazolate bridge between the two Cu(II) centers bound by L1. Pairs of [Cu2L1(μ-imidazolate)]3+ units are then weakly linked through a pair of bromide anions.  相似文献   

10.
The dinuclear terephthalato-bridged nickel(II) complexes [Ni2(cyclen)2(μ-tp)](ClO4)2 (1) [Ni2(trpn)2(μ-tp)(H2O)2](ClO4)2 (2) and [Ni2(3,3,3-tet)2(μ-tp)(H2O)2](ClO4)2 · 2H2O (3), where tp = terephthalate dianion, cyclen = 1,4,7,10-tetraazacyclododecane, trpn = tris(3-aminopropyl)amine and 3,3,3-tet = 1,5,9,13-tetraazatridecane, were synthesized and structurally characterized by X-ray crystallography. Their magnetic susceptibilities were also determined at variable temperatures over the range 2-300 K. The structures of these complexes consist of μ-tp bridging two Ni(II) centers in a bis(bidentate) bonding fashion in 1 and in bis(monodentate) bonding fashion in 2 and 3. The coordination geometry around the Ni(II) ions in these compounds has a distorted octahedral geometry with four nitrogen atoms from the amine ligand (cyclen, trpn or 3,3,3-tet) and two coordinated oxygen atoms supplied by the chelated carboxylate group of the bridged terephthalate ligand in 1, and by one tp-carboxylate-oxygen in 2 and 3. The sixth coordination site in the last two complexes 2 and 3 is achieved via an oxygen atom from a coordinated water molecule. The intradimer Ni…Ni distances in these complexes are 10.740, 11.428 and 11.537 Å for 1, 2 and 3, respectively. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Ni(II) centers. Also, the analysis of the infrared spectral data for the ν(COO) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(bidentate) and bis(monodentate) coordination modes for the bridged terephthalate ligand in 1, 2 and 3, respectively. Despite the different coordination modes of the tp bridging ligand in these complexes, they all exhibit very weak antiferromagnetic coupling. The coupling constants J were found to be −2.2, −0.6 and −1.5 cm3 K mol−1 for the complexes 1, 2 and 3, respectively. The structural and magnetic results of 1-3 are discussed in relation to the other related published μ-terephthalato dinuclear Ni(II) compounds.  相似文献   

11.
Two unique bimetalic Pt(II) coordination polymers of composition [Ni(hydeten)2Pt(CN)4] (Ni-Pt) and [Cu(hydeten)2Pt(CN)4] (Cu-Pt) [hydeten = N-(2-hydroxyethyl-ethylenediamine) or 2-(2-aminoethylamino)ethanol] have been synthesized and structurally characterized by various methods in this study. The crystal structure of Cu-Pt was determined by single-crystal X-ray diffraction analysis. The structure of Cu-Pt forms of infinite 2,2-TT type [-Cu(hydeten)2-NC-Pt(CN)2-CN-] chains containing paramagnetic copper atoms bridged by tetracyanoplatinate species. In this complex, Cu(II) centers display an axially elongated octahedron with two chelating hydeten molecules in the equatorial positions and N-bonded bridging cyano groups in the axial positions, whereas Pt(II) centers are four coordinate with four cyanide-carbon atoms in a square-planar arrangement. The decrease of the moments of these complexes in temperature range of 50 305 K can assigned to the antiferromagnetic interactions in the structures. The thermal decomposition of Cu-Pt comprise of five distinguished stages, while the thermal decomposition of Ni-Pt take place four different stages.  相似文献   

12.
Four novel nicotinato-copper(II) complexes containing polybenzimidazole and polyamine ligands were synthesized with formula [Cu2(bbma)2(nic)2](ClO4)2·CH3OH·0.5H2O (1), [Cu2(dien)2(nic)2](ClO4)2·2CH3OH (2), [Cu(ntb)(nic)]ClO4·H2O (3) and [Cu(tren)(nic)]BPh4·CH3OH·H2O (4), in which bbma is bis(benzimidazol-2-yl-methyl)amine, dien is diethylenetriamine, ntb is tris(2-benzimidazolylmethyl)amine, tren is tris(2-aminoethyl)amine and nic is nicotinate anion. All of the complexes were characterized by elemental analysis, IR and X-ray diffraction analysis. Complexes 1 and 2 contain centrosymmetric dinuclear entity with the two Cu(II) atoms bridged by two nicotinate anions in an anti-parallel mode. The Cu···Cu separation is 7.109 Å for 1 and 6.979 Å for 2. Complexes 3 and 4 are mononuclear with nicotinate coordinated to Cu(II) ion by the carboxylate O atom in 3 and the pyridine N atom in 4. All of the complexes exhibit abundant hydrogen bonds to form 1D chain for 1, 3, 4 and 2D network for 2. Magnetic susceptibility measurements over the 2-300 K range reveal very weak ferromagnetic interaction between the two Cu(II) ions in 1 and antiferromagnetic interaction in 2 mediated by nicotinate ligand, with J value to be 0.15 and −0.19 cm−1, respectively.  相似文献   

13.
Three novel heterometallic complexes [Cu(en)2Cr(NCS)4(NH3)2][Cr(NCS)4(NH3)2] · 6dmf (1), [Cu(en)2Cr(NCS)4(NH3)2](OAc) (2) and [{Cu(en)2}3{Cr(NCS)4(NH3)2}2(NCS)2](NCS)2 (3) have been synthesized in a one-pot reaction from copper powder, Reineckes salt, NH4X [X = OAc (2), NCS (3)] in a dmf (1) or CH3CN (2, 3) solution of ethylenediamine (en). X-ray studies showed that 1 and 2 consist of cationic polymeric chains, formed by and building blocks that bridged through thiocyanate anions. In both complexes, distinct hydrogen bonds are present and serve to increase the dimensionality of the compound from one to two (in 1) or three (in 2). The main structural feature of 3 is the pentanuclear Cu3Cr2 cation which is H-bonded with uncoordinated thiocyanate groups generating a 3D supramolecular assembly. The shortest Cu?Cr distances are 5.840(1) Å for 1, 5.856(1) and 6.018(3) Å for 2 and 6.009(9) and 6.465(9) Å for 3. Compounds 1 and 2 are essentially paramagnets whereas compound 3 shows a weak antiferromagnetic coupling. The magnetic properties are simulated and discussed in terms of the structural features.  相似文献   

14.
Reaction between the dinuclear model hydrolases [M2(μ-OAc)2(OAc)2(μ-H2O)(tmen)2]; M = Ni (1); M = Co (2) and trimethylsilyltrifluoromethanesulphonate (TMS-OTf) under identical reaction conditions gives the mononuclear complex [Ni(OAc)(H2O)2(tmen)][OTf] · H2O (3) in the case of nickel and the dinuclear complex [Co2(μ-OAc)2(μ-H2O)2(tmen)2][OTf]2 (4) in the case of cobalt.Reaction of (3) with urea gives the previously reported [Ni(OAc)(urea)2(tmen)][OTf] (5), whereas (4) gives [Co2(OAc)3(urea)(tmen)2][OTf] (6) previously obtained by direct reaction of (2) with urea. Both (3) and (4) react with monohydroxamic acids (RHA) to give the dihydroxamate bridged dinuclear complexes [M2(μ-OAc)(μ-RA)2(tmen)2][OTf]; M = Ni (7); M = Co (8) previously obtained by the reaction of (1) and (2) with RHA, illustrating the greater ability of hydroxamic acids to stabilize dinuclear complexes over that of urea by means of their bridging mode, and offering a possible explanation for the inhibiting effect of hydroxamic acids by means of their displacing bridging urea in a possible intermediate invoked in the action of urease.  相似文献   

15.
Reaction of CdCl2 with N-alkylaminopyrazole ligands 1-[(2-ethylamino)ethyl]-3,5-dimethylpyrazole (deae), 1-[(2-(tert-butylamino)ethyl)]-3,5-dimethylpyrazole (deat), bis-[(3,5-dimethylpyrazolyl)methyl]ethylamine (bdmae), and bis-[(3,5-dimethylpyrazolyl)ethyl]ethylamine (ddae) in absolute ethanol yields [CdCl2(NN′)] (NN′ = deae (1), deat (2)), [CdCl2(bdmae)] (3), and [CdCl(ddae)]2[CdCl4] (4). The Cd(II) complexes have been characterised by elemental analyses, conductivity measurements, IR, 1H, 13C{1H} and 113Cd NMR spectroscopies, and X-ray diffraction methods. 1H and 113Cd NMR experiments at variable temperature for 3 and 4 show that dynamic processes are taking place in solution. We report the measurements of 113Cd NMR chemical shift data for complexes 1-4 in solution. X-ray crystal structures for complexes 2 and 3 have been determined. The Cd(II) is coordinated to the deat ligand, in 2, by one nitrogen atom of the pyrazolyl group and one nitrogen atom of the amine. It finishes a tetrahedral geometry with two chlorine atoms. The bdmae ligand is linked to Cd(II), in 3, by two nitrogens atoms of the pyrazolyl groups and one amine nitrogen, along with two chlorine atoms, in a distorted trigonal bipyramidal geometry.  相似文献   

16.
Solution and solid state 31P NMR studies were carried out on a series of [Pd2X2(dppm)2] (X = Cl (1a), Br (1b), I (1c)), or [Pd2XY(dppm)2] (X = Cl, (1d)) complexes and on methyl substituted derivatives such as [Pd2Cl2(dppm)(dppmMe)] (2), syn-[Pd2Cl2(dppmMe)2] (3), and anti-[Pd2Cl2(dppmMe)2] (4) (dppmMe = 1,1-bis(diphenylphosphino)ethane) in order to study and understand the conformational behaviour of the eight-membered Pd2P4C2 rings depending on the substituents and their stereochemistry. These complexes with metal-metal bonds and mutually trans-dppm ligands act as molecular pendulums. On the basis of temperature dependent spectra qualitative correlations have been found between the molecular conformations and the rate of a specific intramolecular motion called “swinging”. While for the extended-boat conformers (2 and 3) this exchange process is of intermediate energy (41-45 kJ mol−1), the barrier is definitely higher (∼54 kJ mol−1) for the extended-chair conformer 4. Changes of symmetry relations are reflected very vividly in the 31P NMR spectra.The observed different chemical shifts, “swinging” rates and activation free energies obtained for the boat and chair conformers are explained by the steric effects and low-temperature conformations of the axial phenyl groups.  相似文献   

17.
The coordination chemistry of the diphosphine ligands 2,2-bis(diphenylphosphinomethyl)propionic acid, 1, and 2,2-bis(diphenylphosphinomethyl)propionate, 2, with copper(I), silver(I), gold(I), palladium(II) and platinum(II) is described. Structure determinations show that the carboxylic acid group in 1 can hydrogen bond to solvent molecules, to anions or to the carboxylic acid group of a neighboring complex, as in the complexes [MCl2(1)] · 2DMSO (M = Pd or Pt), [Pt(1)2](OTf)2 or [Pd(NCMe)2(1)](OTf)2, respectively. The tridentate diphosphine-carboxylate ligand 2 forms oligomeric or polymeric complexes, such as [{Ag(2)}n], [{PdCl(2)}n] or [{PtMe(2)}n].  相似文献   

18.
The paper explores the capability of [(dppf)Pt(H-nbu2-DTO)]Cl (2) (dppf = 1,1′-diphenylphosphinoferrocene; H-nbu2-DTO = di-nbutyl-dithioxamidate) to act as a starting module for heterometallic linear chains. Actually, the reaction of 2 with [RuCl2(p-cymene)]2 affords the heterotrimetallic complex [Cl(p-cymene) Ru(μ-nbu2-DTO κ-N,N Ru κ-S,S Pt)Pt(dppf κ-P,P Pt) ]2 (4). However 2, allowed to stand, provides a blue compound of formula [(dppf)Pt(H-nbu2-DTO)]nCln (3), the most reliable value of n being 6. The oxidation behavior of the new species 2-4 has also been investigated. In particular, the oxidation behavior of cyclic compound 3 is quite unusual, and suggests a large delocalization of the HOMO over the whole multicomponent molecule.  相似文献   

19.
Four cadmium(II) complexes of the semirigid tridentate ligand 8-[(pyridin-4-yl)methylthio] quinoline (TQMP4, L), namely, [CdL2](ClO4)2 (1), [Cd(L)Br2] (2), [Cd2(L)2(NO3)4] (3), and [Cd2(L)2I4] (4), have been prepared by the methods of layering and the diffusing of diethyl ether. The structures of the complexes have been identified by elemental analysis (EA), infrared spectra (IR) and single-crystal diffraction. The different coordination modes of the ligands and counter anions result in a 2D (4, 4) net structure in complex 1, a 1D polymer chain in complex 2, and 0D binuclear rings in complexes 3 and 4. Their antibacterial and antifungal activities were also tested.  相似文献   

20.
Four copper(II) complexes containing the reduced Schiff base ligands, namely, N-(2-hydroxybenzyl)-glycinamide (Hsglym) and N-(2-hydroxybenzyl)-l-alaninamide (Hsalam) have been synthesized and characterized. The crystal structures of [Cu2(sglym)2Cl2] (1), [Cu2(salam)2(NO3)2] · H2O (3), [Cu2(salam)2(NO3)(H2O)](NO3) · 1.5H2O (4), [Cu2(salam)2](ClO4)2 · 2H2O (5) show that the Cu(II) atoms are bridged by two phenolato oxygen atoms in the dimers. The sglym ligand bonded to Cu(II) in facial manner while salam ligand prefers to bind to Cu(II) in meridonal geometry. Variable temperature magnetic studies of 3 showed it is antiferromagnetic. These Cu(II) complexes and [Cu2(sglym)2(NO3)2] (2), exhibit very small catecholase activity as compared to the corresponding complexes containing acid functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号