首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Azo coupling reactions of N-α-acetylhistidine, N-α-acetyltyrosine, and N-α-acetyllysine with p-methylbenzenediazonium ion were investigated as model reactions to obtain information on the relative reactivity of the histidine, tyrosine, and lysine moieties of protein, separated from structural effects. The azo coupling yields of the amino acids increased as the pH of the reaction medium was increased, indicating that the ractive species are the imidazole anion of histidine, the phenolate anion of tyrosine, and the neutral ε-amino group of lysine. It was calculated, based on percentage yields of the azo products, that the imidazole anion is more reactive than the phenolate anion and the ε-amino group, respectively.  相似文献   

2.
A bifunctional catalyst, N-(4-imidazolylmethyl)benzohydroxamic acid, was synthesized from benzohydroxamic acid and chloromethylimidazole, and used for the hydrolysis of p-nitrophenyl acetate. The reaction proceeded via the formation of the acetyl hydroxamate and its subsequent decomposition. The deacylation step was shown to be general base-catalyzed by the intramolecular imidazole group on the basis of the deuterium solvent kinetic isotope effect of 2.0. The efficiency of water attack on the acetyl hydroxamate was enhanced 130-fold by the imidazole group. The catalytic process is compared with the reactions of related monofunctional compounds, and finally its significance as a model of the charge relay system is discussed.  相似文献   

3.
Oxymyoglobin reacts with imidazole, substituted imidazoles, and hydroquinone to give metmyoglobin. The kinetics of these reactions have been studied. The rates are first order in both reactants, and second-order rate constants are reported. At pH 8.2, k1 for imidazole is 2.5 ± 0.3 × 10?3 M?1 sec?1 and for hydroquinone is 4 ± 0.4 × 10?1 M?1 sec?1. The rates are independent of pH for imidazole but increase rapidly with pH for hydroquinone. The mechanism for all these reactions is thought to involve the two-electron reduction of molecular oxygen to peroxide with concurrent oxidation of both the protein and the reactant. An analogous mechanism has been suggested previously [1] for the reaction of oxyhemoglobin with hydroquinone. It has previously been shown [6] that imidazole can mediate the transfer of electrons to heme proteins by forming a transient reduced radical. The present results indicate that it can also form a transient oxidized radical under mild conditions. This dual capability may be important in biological electron-transfer processes.  相似文献   

4.
Hit to Lead optimization and SAR development led to the identification of the potent and selective benzo[d]imidazole inhibitor (17b) of Co-activator Associated Arginine Methyltransferase (CARM1).  相似文献   

5.
Reactions of Au(III)-alkyldiamine complex with l-histidine and imidazole were carried out and monitored time-dependant by 1H and 13C NMR. Kinetics for the [Au(en)Cl2]+ reaction with l-histidine was determined by initial rate method at constant pH and 25 °C using UV-Vis absorption technique, and found to be first order with respect to each component, with a pseudo second order rate constant of 39 ± 3 M−1 s−1. Reaction rates of l-histidine and imidazole reactions with the [Au(en)Cl2]+ complex was found to be strongly dependant on pD. The pD also has profound effect on the stability of the complex. It was observed that concurrent redox reactions also take place in solution in which Au(III) is reduced to metallic Au(0), while l-histidine and imidazole are oxidized to oxy and hydroxyl products. The optimization of the structure of [(His)Au(en)]3+ complex was carried out by gaussian03 at the RB3LYP level that showed a distorted square pyramid with the histidine carboxyl group at the pyramid top.  相似文献   

6.
A unified strategy was conceived and implemented to deliver conformationally constrained anilides based on their preferred cis-amide conformers. The imidazole/triazole mimicing amide bonds were designed, building upon an earlier discovery of a novel series of tricyclic lactams MK2 kinase inhibitors. This approach enabled rapid, modular synthesis of structurally novel analogs. The efficient SAR development led to the discovery of low molecular weight and potent MK2 non-ATP competitive inhibitors with good ligand efficiency, which led to improved permeability and oral exposure in rats.  相似文献   

7.
8.
Three new imidazole derivatives have been isolated and characterized from oligomerizing HCN solutions. On the basis of these results as well as the earlier identification of a new precursor to adenine, a new and major pathway leading to the formation of adenine is suggested. The route accounts for the synthesis of adenine-8-carboxamide from cis-diamino-maleonitrile, without requiring an isomerization to the trans configuration or reactions with formamidine. The formation of previously reported imidazoles is also explained.  相似文献   

9.
1. Cytochrome c3, a unique hemoprotein with a negative redox potential and four heme groups bound to a single polypeptide chain, reacts with imidazole in the reduced state to form a low-spin ferro · imidazole complex which is spectrally characterized by a 3.1 nm blue shift in the α-peak (from 550.5 to 547.4 nm). The spectral imidazole · cytochrome c3 complex is detectable at 77 but not at 298 K.2. Mammalian ferrocytochrome c did not undergo a spectral interaction with imidazole at either 77 or 298 K, indicating that the imidazole · cytochrome c3 complex reflects a unique event for cytochrome c3.3. Formation of the imidazole · cytochrome c3 complex is strongly dependent on imidazole concentration (apparent Kd of approx. 50 mM), and is abolished in the presence of 100 mM phosphate. This latter effect is attributable to formation of an imidazole · phosphate complex. A pH titration of the imidazole · cytochrome c3 spectral complex implicates ionization of an imidazole function (pK = 8.5).4. EPR studies at 8.5 K of ferricytochrome c3 before and after one reduction-oxidation cycle indicate that at least two of the hemes undergo reaction with imidazole forming two different low-spin ferric heme · imidazole complexes, with significant shifts in the g values of two heme signals.5. The spectral and EPR results are consistent with formation as the primary event of a low-spin ferrocytochrome c3 · imidazole complex in which increased hydrophobicity and protonation-deprotonation effects are contributary to the consequent lability of cytochrome c3.  相似文献   

10.
A novel series of (E)-1-((2-(1-methyl-1H-imidazol-5-yl) quinolin-4-yl) methylene) thiosemicarbazides was discovered as potent inhibitors of IKKβ. In this Letter we document our early efforts at optimization of the quinoline core, the imidazole and the semithiocarbazone moiety. Most potency gains came from substitution around the 6- and 7-positions of the quinoline ring. Replacement of the semithiocarbazone with a semicarbazone decreased potency but led to some measurable exposure.  相似文献   

11.
The reaction of imidazole and imidazole derivatives with formaldehyde can be demonstrated with NMR techniques. The results show that only one nitrogen of the imidazole ring reacts to form a N-hydroxymethyl derivative in alkaline solution. Under acidic conditions both nitrogen positions can support N-hydroxymethyl derivatives.This reaction represents a useful tool for the further investigation of enzyme mechanisms involving the imidazole nucleus.  相似文献   

12.
Reactions between (meso-tetraphenylporphyrinato)iron(III) perchlorate [Fe(tpp)]ClO4 and various imidazoles have been examined in CD2Cl2 solutions. 1H NMR analysis revealed the formation of three kinds of complex; mu-oxo dimer, mono-imidazole adduct, and bis-imidazole adduct. The product ratios changed to a great extent depending on the amount and nature of imidazoles. In general, addition of less than 1.0 equiv of imidazole relative to [Fe(tpp)]ClO4 led to the formation of both mu-oxo dimer and mono-imidazole adduct. However, by the addition of excess amount of imidazole, either the mu-oxo dimer or bis-imidazole adduct was formed exclusively depending on the bulkiness of the imidazole used. In the case of bulky imidazole such as 2-methylbenzimidazole or 2-isopropyl-1-methylimidazole, the mu-oxo dimer was formed quantitatively. In the case of less bulky imidazole such as parent imidazole or 1-methylimidazole, bis-imidazole adduct became the sole product. The results have been explained in terms of the difference in steric interactions between the axial ligands and porphyrin core; the severe steric repulsion prohibits the formation of bis-adduct in the case of bulky imidazoles. As a result, bulky imidazoles prefer to behave as a base; they abstract a proton from coordinated water, and lead to the formation of mu-oxo dimer. Thus, the role of bulky imidazoles in these reactions has some relevance to that of distal histidine in hemoglobin and peroxidase.  相似文献   

13.
The kinetics of imidazole (Im) and N-methylimidazole (MeIm) binding to oxidized cytochrome (cyt) c1 of detergent-solubilized bc1 complex from Rhodobacter sphaeroides are described. The rate of formation of the cyt c1-Im complex exhibited three separated regions of dependence on the concentration of imidazole: (i) below 8 mm Im, the rate increased with concentration in a parabolic manner; (ii) above 20 mm, the rate leveled off, indicating a rate-limiting conformational step with lifetime ∼1 s; and (iii) at Im concentrations above 100 mm, the rate substantially increased again, also parabolically. In contrast, binding of MeIm followed a simple hyperbolic concentration dependence. The temperature dependences of the binding and release kinetics of Im and MeIm were also measured and revealed very large activation parameters for all reactions. The complex concentration dependence of the Im binding rate is not consistent with the popular model for soluble c-type cytochromes in which exogenous ligand binding is preceded by spontaneous opening of the heme cleft, which becomes rate-limiting at high ligand concentrations. Instead, binding of ligand to the heme is explained by a model in which an initial and superficial binding facilitates access to the heme by disruption of hydrogen-bonded structures in the heme domain. For imidazole, two separate pathways of heme access are indicated by the distinct kinetics at low and high concentration. The structural basis for ligand entry to the heme cleft is discussed.  相似文献   

14.
Use of the reductant dithiothreitol (DTT) as a substrate for measuring vitamin K 2,3-epoxide reductase (VKOR) activity in vitro has been reported to be problematic because it enables side reactions involving the vitamin K1 2,3-epoxide (K1>O) substrate. Here we characterize specific problems when using DTT and show that tris(3-hydroxypropyl)phosphine (THPP) is a reliable alternative to DTT for in vitro assessment of VKOR enzymatic activity. In addition, the pH buffering compound imidazole was found to be problematic in enhancing DTT-dependent non-enzymatic side reactions. Using THPP and phosphate-based pH buffering, we measured apparent Michaelis–Menten constants of 1.20 μM for K1>O and 260 μM for the active neutral form of THPP. The Km value for K1>O is in agreement with the value that we previously obtained using DTT (1.24 μM). Using THPP, we successfully eliminated non-enzymatic production of 3-hydroxyvitamin K1 and its previously reported base-catalyzed conversion to K1, both of which were shown to occur when DTT and imidazole are used as the reductant and pH buffer, respectively, in the in vitro VKOR assay. Accordingly, substitution of THPP for DTT in the in vitro VKOR assay will ensure more accurate enzymatic measurements and assessment of warfarin and other 4-hydroxycoumarin inhibition constants.  相似文献   

15.
Shiga toxin 1 (Stx1) catalyses the removal of a unique and specific adenine from 28S RNA in ribosomes (RNA-N-glycosidase activity) and the release of multiple adenines from DNA (DNA glycosylase activity). Added adenine behaves as an uncompetitive inhibitor of the RNA-N-glycosidase reaction binding more tightly to the Stx1–ribosome complex than to the free enzyme. Several purine derivatives and analogues have now been assayed as inhibitors of Stx1. Most of the compounds showed only minor differences in the rank order of activity on the two enzymatic reactions catalysed by Stx1. The survey highlights the importance of the amino group in the 6-position of the pyrimidine ring of adenine. Shifting (2-aminopurine) or substituting (hypoxanthine, 6-mercaptopurine, 6-methylpurine) the group greatly decreases the inhibitory power. The presence of a second ring, besides the pyrimidine one, is strictly required. Substitution, by introducing an additional nitrogen, of the imidazole ring of adenine with triazole leads to loss of inhibitory power, while rearrangement of the nitrogen atoms of the ring from the imidazole to the pyrazole configuration greatly enhances the inhibitory power. Thus 4-aminopyrazolo[3,4-d]pyrimidine (4-APP), the isomer of adenine with the five-membered ring in the pyrazole configuration, is by far the most potent inhibitor of both enzymatic reactions catalysed by Stx1. This finding opens perspectives on therapeutic strategies to protect endothelial renal cells once endocytosis of Stx1 has occurred (haemolytic uraemic syndrome). In the RNA-N-glycosidase reaction 4-APP binds, as adenine, predominantly to the Stx1–ribosome complex (uncompetitive inhibition), while inhibition of the DNA glycosylase activity by both inhibitors is of the mixed type.  相似文献   

16.
Since biphasic liquid-liquid continuous-flow catalytic processes often require the use of cationic phosphine ligands for the metal sequestration in the polar phase, we have prepared the first imidazolyl triphosphines, named Triphosim and Triphosmim. These ligands contain the Triphos unit [-P(CH2CH2PPh2)] which is linked to the imidazole fragment and have been obtained in three steps from imidazole (or 2-methylimidazole), diethylvinylphosphonate and diphenylvinylphosphine with global yields of 42-48%. The Triphosim ligand adopts a tridentate P-coordination mode in a palladium dichloride complex and the reaction of the dangling imidazole function with alkyl halides leads to a new kind of imidazolium-phosphine complexes.  相似文献   

17.
Several new potent CGRP receptor antagonists have been prepared in which the amide bond of lead compound 1 has been replaced by bioisosteric imidazole moieties. Substitution at N-1 of the imidazole was optimized to afford compounds with comparable potency to that of lead 1. Conformational restraint of the imidazole to form tetrahydroimidazo[1,5-a]pyrazine 43 gave substantially improved permeability.  相似文献   

18.
Over the past two decades a number of antifungal imidazole derivatives have been approved for use in agricultural. The purpose of this study was to characterize the interaction of a model antifungal imidazole compound with a cytochrome P450 isozyme in a species of fish. Clotrimazole inhibited rainbow trout (Oncorhyncus mykiss) hepatic CYP1A-catalyzed ethoxyresorufin O-deethylase (EROD) activity in vivo and in vitro. Although clotrimazole inhibited EROD activity in vivo, it did not effect CYP1A mRNA levels. Addition of clotrimazole to microsomes produced a type II binding spectrum and clotrimazole was determined to be a noncompetitive mixed-type inhibitor of EROD activity with an IC50 of 190 nM. Since antifungal imidazole compounds may be co-applied with other pesticides, inhibition of cytochrome P450 activity by antifungal imidazole compounds may lead to unexpected toxicological interactions.  相似文献   

19.
Enzyme-like polymer catalysts with the imprints of phosphonate transition state analogue (TSA) lined along with imidazole and pyridine moieties were synthesized using methacryloyl-l-histidine and 4-vinylpyridine as the functional monomers and phenyl-1-(N-benzyloxycarbonylamino)-2-(phenyl)ethyl phosphonate – the TSA of hydrolytic reaction as the template for the amidolysis of N-benzyloxycarbonyl-l-phenylalanine p-nitroanilide (Z-l-Phe-PNA). Polymers containing different functional groups can act together to provide catalytic activity and selectivity superior to what can be obtained from monofunctional analogues. The higher rate acceleration exhibited by the bifunctional polymer over the monofunctional polymers indicates cooperative catalysis of imidazole and pyridine moieties. The optimum catalytic competence is shown by the bifunctional polymer containing imidazole and pyridine moieties in 2:1 M ratio which may be due to alignment of the functional groups in proper H-bond distance. In addition to the non-covalent interactions like hydrogen bonding or π-stacking interactions between the functional groups of the polymer and the template, 3D-microcavities complementary to the geometry of the template are necessary for effective shape selective binding. Michaelis-Menten kinetics implies that only the catalysts with imidazole moieties act as enzyme-like catalysts and imidazole is the key catalytic function of the enzyme mimics.  相似文献   

20.
The activity of Prunus dulcis (sweet almond) β-glucosidase at the expense of p-nitrophenyl-β-d-glucopyranoside at pH 6 was determined, both under steady-state and pre-steady-state conditions. Using crude enzyme preparations, competitive inhibition by 1–5 mM imidazole was observed under both kinetic conditions tested. However, when imidazole was added to reaction mixtures at 0.125–0.250 mM, we detected a significant enzyme activation. To further inspect this effect exerted by imidazole, β-glucosidase was purified to homogeneity. Two enzyme isoforms were isolated, i.e. a full-length monomer, and a dimer containing a full-length and a truncated subunit. Dimeric β-glucosidase was found to perform much better than the monomeric enzyme, independently of the kinetic conditions used to assay enzyme activity. In addition, the sensitivity towards imidazole was found to differ between the two isoforms. While monomeric enzyme was indeed found to be relatively insensitive to imidazole, dimeric β-glucosidase was observed to be significantly activated by 0.125–0.250 mM imidazole under pre-steady-state conditions. Further, steady-state assays revealed that the addition of 0.125 mM imidazole to reaction mixtures increases the Km of dimeric enzyme from 2.3 to 6.7 mM. The activation of β-glucosidase dimer by imidazole is proposed to be exerted via a conformational transition poising the enzyme towards proficient catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号