首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of mononuclear organotin(IV) complexes of the types, R3SnL {R = C4H9 (1), C6H11 (2), CH3 (3) and C6H5 (4)}, R2SnClL {R = C4H9 (5), C2H5 (7) and CH3 (9)} and R2SnL2 {R = C4H9 (6), C2H5 (8) and CH3 (10)}, have been synthesized, where L = 4-(4-methoxyphenyl)piperazine-1-carbodithioate. The ligand-salt and the complexes have been characterized by Raman, FT-IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy and elemental microanalysis (CHNS). The spectroscopic data substantiate coordination of the ligands to the organotin moieties. The structures of complexes 4 and 6 have been determined by single-crystal X-ray diffraction and illustrate the asymmetric bidentate bonding of the ligand. The packing diagrams indicate O···H and π···H intermolecular interactions in complex 4 and intermolecular S2C···H interactions in complex 6, resulting in layer structures for both complexes. A subsequent antimicrobial study indicates that the compounds are active biologically and may well be the basis for a new class of fungicides.  相似文献   

2.
The First examples of (Te, N, S) type ligands, 2-CH3SC6H4CHNCH2CH2TeC6H4-4-OCH3 (L1) and 2- CH3SC6H4CHNHCH2CH2TeC6H4-4-OCH3 (L2), and their metal complexes, [PdCl(L1)]PF6 · CHCl3 · 0.5H2O (4), [PtCl(L1)]PF6 (5), [PdCl(L2)]ClO4.CHCl3 (6), [PtCl(L2)]ClO4 (7), and [Ru(p-cymene)(L2)](PF6)2 · CHCl3 (8), have been synthesized and characterized. The single crystal structures of 4, 6 and 8 have revealed that both the ligands coordinate in them in a tridentate (Te, N, S) mode. The geometry around Pd in both the complexes has been found to be square planar, whereas for Ru in a half sandwich complex 8, it is found to be octahedral. Between two molecules of 4 there are intra and inter molecular weak Te?Cl [3.334(3) and 3.500(3) Å, respectively] interactions along with weak intermolecular Pd?Te [3.621(2) Å] interactions. The Pd-Te bond lengths are between 2.517(6) and 2.541(25) Å and the Ru-Te bond length is 2.630(6) Å. The crystal structure of [PdCl2(4-MeO-C6H4- TeCH2CH2NH2)] (9) is also determined. It is formed when KPF6 is not added in the synthesis of 4 and Pd-complex of L1 is recrystallized. Apart from Te?Cl secondary interactions, C-H?π interactions also exist in the crystal of 9.  相似文献   

3.
A series of mononuclear acetonitrile complexes of the type [Ru(CH3CN)(L)(terpy)]2+ {L = phen (1), dpbpy (3), and bpm (5)}, and their reference complexes [RuCl(L)(terpy)]+ {L = phen (2), dpbpy (4), and dpphen (6)} were prepared and characterized by electrospray ionization mass spectrometry, UV-vis spectroscopy, and cyclic voltammograms (CV). Abbreviations of the ligands (Ls) are phen = 1,10-phenanthroline, dpbpy = 4,4′-diphenyl-2,2′-bipyridine, bpm = 2,2′-bipyrimidine, dpphen = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2′-bipyridine, and terpy = 2,2′:6′,2″-terpyridine. The X-ray structures of the two complexes 2 and 3 were newly obtained. The metal-to-ligand charge transfer (MLCT) bands in the visible region for 1, 3, and 5 in acetonitrile were blue shifted relative to those of the reference complexes [RuCl(L)(terpy)]+. CV for all the [Ru(CH3CN)(L)(terpy)]2+ complexes showed the first oxidation wave at around 0.95 V, being more positive than those of [RuCl(L)(terpy)]+. The time-dependent-density-functional-theory approach (TDDFT) was used to interpret the absorption spectra of 1 and 2. Good agreement between computed and experimental absorption spectra was obtained. The DFT approach also revealed the orbital interactions between Ru(phen)(terpy) and CH3CN or Cl. It is demonstrated that the HOMO-LUMO energy gap of the acetonitrile ligand is larger than that of the Cl one.  相似文献   

4.
A new type of multidentate ligand with both acetylacetonate and bis(2-pyridyl) units on the 1,3-dithiole moiety, 3-[2-(dipyridin-2-yl-methylene)-5-methylsulfanyl-[1,3]dithiol-4-ylsulfanyl]-pentane-2, 4-dione (L), has been prepared. Through reactions of the ligand with Re(CO)5X (X = Cl, Br), new rhenium(I) tricarbonyl complexes ClRe(CO)3(L) (2) and BrRe(CO)3(L) (3), have been obtained. With the use of 2 or 3 as the precursors, the further reactions with (TpPh2)Co(OAc)(HpzPh2) (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate); HpzPh2 = 3,5-diphenyl-pyrazole) or M(OAc)2(M = Mn, Zn), afford four new heteronuclear complexes: ClRe(CO)3(L)Co(TpPh2) (4), BrRe(CO)3(L)Co(TpPh2) (5), [ClRe(CO)3(L)]2Mn(CH3OH)2 (6) and [ClRe(CO)3(L)]2Zn(CH3OH)2 (7), respectively. Crystal structures of complexes 2 and 4-7 have been determined by X-ray diffraction. Their absorption spectra, photoluminescence and magnetic properties have been studied.  相似文献   

5.
A series of diorganotin (IV) complexes of the types of R2SnCl(SSCC3H3N2) (R = CH31, nBu 2, C6H53 and C6H5CH24), R2Sn(SSCC3H3N2)2 (R = CH35, nBu 6, C6H57 and C6H5CH28) and R2Sn(SSCC3H2N2) (R = CH39, nBu 10, C6H511 and C6H5CH212) have been obtained by reactions of 4(5)-imidazoledithiocarboxylic acid with diorganotin (IV) dichlorides in the presence of sodium ethoxide. All complexes are characterized by elemental, IR, 1H, 13C and 119Sn NMR spectra analyses. Also, the complexes 1, 7 and 9 are characterized by X-ray crystallography diffraction analyses, which reveal that the complex 1 is monomeric structure with five-coordinate tin (IV) atom, the complex 7 is monomeric structure with six-coordinate tin (IV) atom and the complex 9 is one-dimensional chain with five-coordinate tin (IV) atom.  相似文献   

6.
The nuclearity, bonding and H-bonded networks of copper(I) halide complexes with thiophene-2-carbaldehyde thiosemicarbazones {(C4H3S)HC2N3-N(H)-C1(S)N1HR} are influenced by R substituents at N1 atom. Thiophene-2-carbaldehyde-N1-methyl thiosemicarbazone (HttscMe) or thiophene-2-carbaldehyde-N1-ethyl thiosemicarbazone (HttscEt) have yielded halogen-bridged dinuclear complexes, [Cu2(μ-X)21-S-Htsc)2(Ph3P)2] (Htsc, X: HttscMe, I, 1; Br, 2; Cl, 3; HttscEt, I, 4; Br, 5; Cl, 6), while thiophene-2-carbaldehyde-N1-phenyl thiosemicarbazone (HttscPh) has yielded mononuclear complexes, [CuX(η1-S-HttscPh)2] (X, I, 7a; Br 8; Cl, 9) and a sulfur bridged dinuclear complex, [Cu2(μ-S-HttscPh)21-S-HttscPh)2I2] 7b co-existing with 7a in the same unit cell. These results are in contrast to S-bridged dimers [Cu2(μ-S-Httsc)21-Br)2(Ph3P)2] · 2H2O and [Cu2(μ-S-Httsc)21-Cl)2(Ph3P)2] · 2CH3CN obtained for R = H and X = Cl, Br (Httsc = thiophene-2-carbaldehyde thiosemicarbazone) as reported earlier. The intermolecular CHPh?π interaction in 1-3 (2.797 Å, 1; 3.264 Å, 2; 3.257 Å, 3) have formed linear polymers, whereas the CHPh?X and N3?HCH interactions in 4-6 (2.791, 2.69 Å, 5; 2.776, 2.745 Å, 6, respectively) have led to the formation of H-bonded 2D polymer. The PhN1H?π, interactions (2.547 Å, 8, 2.599 Å, 9) have formed H-bonded dimers only. The Cu?Cu separations are 3.221-3.404 Å (1-6).  相似文献   

7.
The reactions of N,N-dimethylaminopropyl chalcogenolates with platinum(II) compounds have been carried out and complexes of the types [PtCl(ECH2CH2CH2NMe2)]2 (1) (E = S (1a) and Se (1b)), [Pt(ECH2CH2CH2NMe2)2]n (2) (E = S (2a) and Se (2b)), [(PtCl2)2{(Me2NCH2CH2CH2E)2}]n (3), [PtX(SeCH2CH2CH2NMe2)]2 (4) (X = SePh (4a) and OAc (4b)) and [PtCl(ECH2CH2CH2NMe2)(PR3)]n (5) (E = S, Se, Te) have been isolated. These complexes have been characterized by elemental analysis, IR, UV-Vis, NMR (1H, 13C, 31P, 77Se, 195Pt) spectroscopy and FAB mass spectral data. The structures of [PtCl(SeCH2CH2CH2NMe2)]2 (1b) and [PtCl(SCH2CH2CH2NMe2)(PPr3)]2 (5a) have been established by single crystal X-ray diffraction data. Both the molecules have dimeric structures. In 1b, two platinum atoms are held together by symmetrically bridging Se atoms of the chelating selenolate groups. In 5a, two thiolates form a four-membered Pt2S2 bridge with dangling NMe2 groups.  相似文献   

8.
[Rh(CO)2Cl]2 reacts with two mole equivalent of 2-acetylpyridine (a), 3-acetylpyridine (b) and 4-acetylpyridine (c) to afford chelate [Rh(CO)Cl(η2-N∩O)] (1a) and non-chelate [Rh(CO)2Cl(η1-N∼O)] (1b, 1c) complexes, where, N∩O = a, N∼O = b, c. Oxidative addition (OA) of 1a-1c with CH3I and C2H5I yields penta coordinate rhodium(III) complexes, [Rh(COR)ClI(η2-N∩O)] {R = -CH3 (2a); -C2H5 (3a)} and [Rh(COR)(CO)ClI(η1-N∼O)] {R = -CH3 (2b, 2c); -C2H5 (3b, 3c)}. Kinetic study for the reaction of 1a-1c with CH3I indicates a pseudo-first order reaction. The catalytic activity of 1a-1c for the carbonylation of methanol to acetic acid and its ester was evaluated at different initial CO pressures 5, 10 and 20 bar at ∼25 °C and higher turn over numbers (TON = 1581-1654) were obtained compared to commercial Monsanto’s species [Rh(CO)2I2] (TON = 1000) under the reaction conditions: temperature = 130 ± 1 °C, pressure = 15-32 bar, rpm = 450, time = 1 h and catalyst: substrate = 1: 1900.  相似文献   

9.
The ligands bis-(imidazolium) hexafluorophosphate (Himy = -C3N2H3-, imidazolium; R = 1-naphthylmethylene, 1a; 9-anthracenylmethylene, 1b) with an oxoether chain were easily prepared by the reaction of substituted imidazole with the diglycol diiodide, followed by exchange of anions with . 1a and 1b reacted with Ag2O in DMSO or CH3CN to yield [2 + 2] dinuclear Ag(I) NHCs macrocyclic complexes 2a and 2b, which showed much different conformation in solid corresponding to the R- substituent. Carbene transmetalation reactions of 2a-b with Au(SMe2)Cl give dinuclear Au(I) analogs 3a and 3b. The new NHCs complexes were characterized by elemental analyses, 1H NMR, 13C NMR and the structures of 2a-b and 3a were confirmed by X-ray diffraction determination.  相似文献   

10.
The ruthenium complexes [RuII(bbp)(L)(Cl)] (1), [RuII(bbp)(L)(H2O)] (2) and [RuII(bbp)(L)(DMSO)] (3) {bbp = 2,6-bis(benzimidazol-2-yl)pyridine, L = o-iminoquinone} have been synthesized in a stepwise manner starting from [RuIII(bbp)Cl3]. The single crystal X-ray structures, except for the complex 2, have been determined. All the complexes were characterized by UV-Vis, FT-IR, 1H NMR, Mass spectroscopic techniques and cyclic voltammetry. The RuIII/RuII couple for complexes 1, 2, and 3 appears at 0.63, 0.49, 0.55 V, respectively versus SCE. It is observed that complex 2, on refluxing in acetonitrile, results into [RuII(bbp)(L)(CH3CN)], 4 which has been prepared earlier in a different method. The structural, spectral and electrochemical properties of complexes 1, 2 and 3 were compared to those of earlier reported complex 4, [RuII(bbp)(L)(CH3CN)].  相似文献   

11.
Schiff bases of 2-hydroxybenzophenone (HBP) (C6H5)(2-HOC6H4)CN(CH2)nEAr (L1/L2: E = S, Ar = Ph, n = 2/3; L3/L4: E = Se, Ar = Ph, n = 2/3; L5/L6: E = Te, Ar = 4-MeOC6H4, n = 2/3) and their complexes [PdCl(L-H)] (L = L1L6; 1, 2, 3, 5, 7, 11), [PtCl(L3-H/L5-H)] (4/8), [PtCl2(L4/L6)2] (6/12), [(p-cymene)RuCl(L5/L6)]Cl (9/13) and [HgBr2(L5/L6)2] (10/14) have been synthesized and characterized by proton, carbon-13, selenium-77 and tellurium-125 NMR, IR and mass spectra. Single crystal structures of L1, 1, 3, 4, 5 and 7 were solved. The Pd-E bond distances (Å): 2.2563(6) (E = S), 2.3575(6)−2.392(2) (E = Se); 2.5117(5)−2.5198(5) (E = Te) are near the lower end of the bond length range known for them. The Pt-Se bond length, 2.3470(8) Å, is also closer to the short values reported so far. The Heck and Suzuki reaction were carried out using complexes 1, 3, 5 and 7 as catalysts under aerobic condition. The percentage yields for trans product in Heck reaction were found upto 85%.  相似文献   

12.
Based on self-assembly of the dissymmetrical mononuclear entity CuL(CH3OH) [H2L = (E)-N1-(2-((2-aminocyclohexydiimino)(phenyl)methyl)-4-chlorophenyl)-N2-(2-benzyl-4-chlorophenyl)oxalamide] with Mn(II), two trinuclear complexes were prepared. They are of the formula [(LCuN3)2Mn(CH3OH)2] · 2CH3OH · 2H2O (1) and [(LCuSCN)2Mn(H2O)2] · 4CH3OH (2). Their magnetic properties were studied by susceptibility versus temperature measurement, the best fitting of the experimental data led to J = −14.40 cm−1 for 1 and J = −15.48 cm−1 for 2. Hydrogen bonds help complex 1 to produce a novel S type one-dimensional chain-like supramolecular structure. In complex 2, Cl?Cl interaction also results in the formation of a one-dimensional structure.  相似文献   

13.
Consecutive synthesis methodologies for the preparation of a series of copper(I) formates [LmCuO2CH] (L = nBu3P: 4a, m = 1; 4b, m = 2; 5, L = [Ti](CCSiMe3)2, m = 1, [Ti] = (η5-C5H4SiMe3)2Ti) and [LmCuO2CH·HO2CR] (L = nBu3P: 7a, m = 1, R = H; 7b, m = 2, R = H; 7c, m = 2, R = Me; 7d, m = 2, R = CF3; 7e, m = 2, R = Ph. L = (cC6H11)3P, R = H: 8a, m = 2; 8b, m = 3. L = (CF3CH2O)3P, R = H: 9a, m = 2; 9b, m = 3. L = (CH3CH2O)3P, R = H: 10a, m = 2; 10b, m = 3. L = [Ti](CCSiMe3)2; m = 1: 11a, R = H; 11b, R = Ph) is reported using [CuO2CH] (1) and L (2a, L = nBu3P; 2b, L (cC6H11)3P; 2c, L = (CF3CH2O)3P; 2d, L = (CH3CH2O)3P; 3, L = [Ti](CCSiMe3)2) as key starting materials. Addition of formic acid (6a) or carboxylic acid HO2CR (6b, R = Me; 6c, R = CF3; 6d, R = Ph) to the afore itemized copper(I) formates 4 and 5 gave metal-organic or organometallic 7-11. The molecular structures of 8a and 11a in the solid state are reported showing a threefold coordinated copper(I) ion, setup by either two coordinatively-bonded phosphorus atoms and one formate oxygen atom (8a) or two π-bonded alkyne ligands and one oxygen atom (11a). A formic acid molecule is additionally hydrogen-bonded to the CuO2CH moiety. The use of 7b as suitable precursor for the deposition of copper onto TiN-coated oxidized silicon wafers by the spin-coating process below 300 °C is described. Complex 7b offers an appropriate transformation behavior into metal phase by an elimination-decarboxylation mechanism. The morphology of the copper films strongly depends on the annealing conditions. A closed grain network densified by a post-treatment is obtained (8 °C min−1, N2/H2 carrier gas). Hydrogen post-anneal to 420 °C after film deposition gave a copper film showing resistivities from 2.5 to 3.7 μΩ cm. This precursor was also used for gap-filling processes.  相似文献   

14.
Five polymeric metal(II)-benzoate complexes of formula [Mn(O2CPh)2(CH3OH)2(bpa)]n (1-Mn), [Co(O2CPh)2(H2O)(bpa)1.5]n (2-Co), [Ni(O2CPh)2(H2O)(bpa)1.5]n (3-Ni), [Cu(O2CPh)2(CH3OH)2(bpa)]n (4-Cu), and [Cd(O2CPh)2(bpa)1.5]n (6-Cd) have been synthesized and characterized (bpa = 1,2-bis(4-pyridyl)ethane). They showed two kinds of structures: parallelogram-like two-dimensional sheets for Co, Ni, and Cd, and one-dimensional chains for Mn, Cu, and Zn. Since similar structures provide similar coordination geometries, the structures depend on the coordination geometries of metal ions. The compounds 1-Mn, 2-Co, 4-Cu, 5-Zn, and 6-Cd have catalyzed efficiently the transesterification of a variety of esters, while 3-Ni has displayed a very slow conversion. The reactivity of catalyst 6-Cd containing Cd ion, well known as an inert metal ion for the ligand substitution, was found to be comparable to that of 5-Zn. The reactivities of the compounds used in this study are in the order of 5-Zn > 6-Cd > 1-Mn > 4-Cu > 2-Co ? 3-Ni, indicating that the non-redox metal-containing compounds (5-Zn and 6-Cd) show better activity than the redox-active metal-containing compounds (1-Mn, 4-Cu, 2-Co, and 3-Ni).  相似文献   

15.
Reaction of [(p-cymene)RuCl2(PPh3)] (1) or [CpMCl2(PPh3)] (Cp = C5Me5) (3a: M = Rh; 4a: M = Ir) with 1-alkynes and PPh3 were carried out in the presence of KPF6, generating the corresponding alkenyl-phosphonio complexes, [(p-cymene)RuCl(PPh3){CHCR(PPh3)}](PF6) (2a: R = Ph; 2b: R = p-tolyl) or [CpMCl(PPh3){CHCPh(PPh3)}](PF6) (5: M = Rh; 6: M = Ir). Similar reactions of complexes [CpRhCl2(L1)] (3a: L1 = PPh3; 3c: L1 = P(OMe)3) with L2 (L2 = PPh3, PMePh2, P(OMe)3) gave [CpRhCl(L1)(L2)](PF6) (7bb: L1 = L2 = PMePh2; 7ca: L1 = P(OMe)3, L2 = PPh3; 7cc: L1 = L2 = P(OMe)3). Alkenyl-phosphonio complex 5 was treated with P(OMe)3 or 2,6-xylyl isocyanide, affording [CpRhCl(L){CHCPh(PPh3)}](PF6) (8a: L = P(OMe)3; 8b: L = 2,6-xylNC). X-ray structural analyses of 2a, 6 and 8a revealed that the phosphonium moiety bonded to the Cβ atom of the alkenyl group are E configuration.  相似文献   

16.
Two new mononuclear spin-crossover iron(II) complexes, [FeL2(NCS)2] · H2O (1) and [FeL2(NCSe)2] (2), have been synthesized from the reaction of the versatile ligand 4,5-bis(2-cyanoethylthio)-2-bis(2-pyridyl)methylene-1,3-dithiole (L), Fe(ClO4)2, and KNCX (X = S/Se). Reactions of L with CuII or CoII salts afford one mononuclear complex [CuL(hfac)2] · CH3OH (hfac = hexafluoroacetylacetonate) (3), one dinuclear complex [(CuLCl)2(μ-Cl)2] · CH3OH (4), and two 1D chain species, [CuL2]n(BF4)2n (5) and [CoL2]n(ClO4)2n · 2nCH2Cl2 (6). The crystal structures of complexes 1 and 3-6 have been determined by X-ray crystallography. Short intermolecular S?S contacts between neighboring 1D arrays are observed in 5 and 6, which lead to the formation of the 2D structure. The magnetic properties are studied, and antiferromagnetic couplings between the CuII centers across the chloride bridges have been found in 4 (J = 2.04 cm-1). Spin-crossover behaviors between high and low spin states are observed at T1/2 = 80 K for 1 and T1/2 = 300 K for 2, respectively.  相似文献   

17.
A series of osmium(VI) nitrido complexes containing pyridine-carboxylato ligands OsVI(N)(L)2X (L = pyridine-2carboxylate (1), 2-quinaldinate (2) and X = Cl (a), Br (1b and 2c) or CH3O (2b)) and [OsVI(N)(L)X3] (L = pyridine-2,6-dicarboxylate (3) and X = Cl (a) or Br (b)) have been synthesised. Complexes 1 and 2 are electrophilic and react readily with various nucleophiles such as phosphine, sulfide and azide. Reaction of OsVI(N)(L)2X (1 and 2) with triphenylphosphine produces the osmium(IV) phosphiniminato complexes OsVI(NPPh3)(L)2X (4 and 5). The kinetics of nitrogen atom transfer from the complexes OsVI(N)(L)2Br (2c) (L = 2-quinaldinate) with triphenylphosphine have been studied in CH3CN at 25.0 °C by stopped-flow spectrophotometric method. The following rate law is obtained: −d[Os(VI)]/dt = k2[Os(VI)][PPh3]. OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) reacts also with [PPN](N3) to give an osmium(III) dichloro complex, trans-[PPN][OsIII(L)2Cl2] (6). Reaction of OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) with lithium sulfide produces an osmium(II) thionitrosyl complex OsII(NS)(L)2Cl (7). These complexes have been structurally characterised by X-ray crystallography.  相似文献   

18.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   

19.
Neutral tris(trimethylsilylmethyl) complexes [Ln(CH2SiMe3)3(L)] (Ln = Sc (1), Lu (2)) and cationic bis(trimethylsilylmethyl) complexes [Ln(CH2SiMe3)2(L)(THF)]+[BPh4], (Ln = Sc (3), Lu (4)) that contain bis(2-methoxyethyl)(trimethylsilyl)amine (L = Me3SiN(CH2CH2OMe)2) as a neutral, tridentate ligand were synthesized and characterized by NMR spectroscopy. X-ray structural analysis was performed for the scandium complex 1 and exhibited a distorted octahedral coordination geometry with a facially arranged ligand at the neutral scandium center. NMR spectroscopy corroborated the coordination of the tertiary amine function of the ligand to the metal. Complexes 3 and 4 expand the still limited range of cationic rare-earth metal alkyl complexes with known neutral, multidentate ligands.  相似文献   

20.
Two novel Co(II) coordination polymers {[Co(H2O)2(CH3OH)2(4-bpfp)](NO3)2}n1 (4-bpfp=N,N-bis(4-pyridylformyl)piperazine) and [Co(NCS)2(CH3OH)2(3-bpfp)]n2 (3-bpfp=N,N-bis(3-pyridylformyl)piperazine) have been synthesized and characterized by single crystal X-ray diffraction. Both the polymers consist of one-dimensional chains constructed by bridging bpfp ligands and Co(II) ions. The existence of O?H-O hydrogen bond in 1 and S?H-O hydrogen bond in 2 play important roles in creating interesting supramolecular structures. Their third-order nonlinear optical (NLO) properties in DMF solution have been studied by Z-scan technique. The results reveal that polymers 1 and 2 exhibit strong NLO absorption effects (α2=9.00×10−11 m W−1 for 1; 1.41 × 10−10 m W−1 for 2) and self-focusing performance (n2=3.24×10−16 esu for 1; 3.05 × 10−16 esu for 2) in DMF solutions. The corresponding effective NLO susceptibilities χ(3) values are 3.08 × 10−12 esu (1) and 4.70 × 10−12 esu (2). All of the values are comparable to those of the reported good NLO materials. Additionally, the TG-DTA results of the two polymers are in agreement with the crystal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号