首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The labile iridium(I) precursor trans-[IrCl(C8H14)(PiPr3)2] (2), prepared in situ from [IrCl(C8H14)2]2 (1) and PiPr3, reacted with equimolar amounts of 1,4-C6H4(CCSiMe3)2 (3) at 60 °C to give the mononuclear vinylidene complex trans-[IrCl(CC(SiMe3)C6H4CCSiMe3)(PiPr3)2] (4). From 2 and 3 in the molar ratio of 2:1, the dinuclear compound trans,trans-[(PiPr3)2ClIr(CC(SiMe3)C6H4C(SiMe3)C)IrCl(PiPr3)2] (5) was obtained. Reaction of 4 with [RhCl(PiPr3)2]2 (6) at room temperature afforded the heterodinuclear alkyne(vinylidene) complex trans,trans-[(PiPr3)2ClIr(CC(SiMe3)C6H4CCSiMe3)RhCl(PiPr3)2] (7), which on heating at 45 °C was converted to the bis(vinylidene) isomer trans,trans-[(PiPr3)2ClIr(CC(SiMe3)C6H4C(SiMe3)C)RhCl(PiPr3)2] (8).  相似文献   

2.
Use of a simple inorganic ring system with the cyclodiphosph(III)azane skeleton [e.g. [(RNH)P-N(t-Bu)]2 [R = t-Bu (7), i-Pr (8)] to probe some of the intermediates proposed in phosphine mediated organic reactions is highlighted. Thus the reaction of 7-8 with the allenylphosphine oxide Ph2P(O)C(Ph)CCH2 (9) affords the phosphinimines [(RNH)P(μ-N-t-Bu)2P(N-R)-C(CH2)CH(Ph)-P(O)Ph2] [R = t-Bu (10), i-Pr (11)], while a similar reaction of 7-8 with dimethyl maleate (or dimethyl fumarate) affords the ylides [(RNH)P(μ-N-t-Bu)2P(NH-R)C(CO2Me)-CH2(CO2Me) [R = t-Bu (18), i-Pr (19)]. The implication of such reactions on phosphine mediated organic transformations including Morita-Baylis-Hillman reaction is mentioned. In a rather rare type of situation, an unusually long phosphoryl (PO) bond [1.538 (5) Å] as revealed the X-ray structure of {(R)-6,6′-(t-Bu)2-1,1′-(C10H5)2-2,2′-O2-}{P(O)(N-t-Bu)2-P(Se)} (27) is rationalized by means of crystallographic disorder in packing after comparing the data with that in the literature and {1,1′-(C10H6)2-2,2′-O2}{P(Se)(N-t-Bu)2-P(Se)} (29). X-ray structures of the new compounds 10-11, 18-19, 27 and 29 are discussed. Compound 10 crystallizes in the chiral space group Pca2(1) with (S)-chirality at the carbon center [-C(CH2)CH(Ph)-P] suggesting a case of spontaneous resolution through crystallization.  相似文献   

3.
The addition reactions of zinc(II) chloride to N-substituted pyridine-2-carbaldimines [Py-CHNR, R = Me (1a), Ph (1b), Bz (1c), allyl (1d)] lead to different complexes dependent on the N-bound substituent R. The 1:1 complexes show molecular structures of the type [(Py-CHNR)ZnCl2] for R = methyl (2a), phenyl (2b), and allyl (2d) with a distorted tetrahedral environment for the zinc atom. The zinc complex with the N-methylated pyridine-2-carbaldimine also forms a dimer of the type [(Py-CHNR)ZnCl2]2 (2a)2 with a square pyramidal coordination sphere of zinc. A 3:2 stoichiometry is observed for R = benzyl and an ion pair of the type [Zn(Py-CHNR)3]2+ [ZnCl4]2− (2c) is found in the solid state.  相似文献   

4.
Five new complexes of general formula: [Ni(RSO2NCS2)(dppe)], where R = C6H5 (1), 4-ClC6H4 (2), 4-BrC6H4 (3), 4-IC6H4 (4) and dppe = 1,2-bis(diphenylphosphino)ethane and [Ni(4-IC6H4SO2NCS2)(PPh3)2] (5), where PPh3 = triphenylphosphine, were obtained in crystalline form by the reaction of the appropriate potassium N-R-sulfonyldithiocarbimate K2(RSO2NCS2) and dppe or PPh3 with nickel(II) chloride in ethanol/water. The elemental analyses and the IR, 1H NMR, 13C NMR and 31P NMR spectra are consistent with the formation of the square planar nickel(II) complexes with mixed ligands. All complexes were also characterized by X-ray diffraction techniques and present a distorted cis-NiS2P2 square-planar configuration around the Ni atom. Quantum chemical calculations reproduced the crystallographic structures and are in accord with the spectroscopic data. Rare C-H···Ni intramolecular short contact interactions were observed in the complexes 1-5.  相似文献   

5.
The reactions of CoCl2 with three equivalents of 2-(phenylimino)pyrrolyl sodium salts, performed under a nitrogen atmosphere, lead to the formation of the Co(III) complexes [Co(κ2N,N′-NC4H3C(H)N-C6H5)3] (2a), [Co(κ2N,N′-NC4H3C(CH3)N-C6H5)3] (2b) and [Co(κ2N,N′-NC16H9C(H)N-C6H5)3] (2c), accommodating three chelating iminopyrrolyl ligands. Complexes 2a-c were obtained in moderate yields, and their characterisation by 1H, 13C NMR and X-ray diffraction show they are diamagnetic and have an octahedral geometry about the cobalt centre, respectively. Uncharacterised products were obtained in the same reaction involving ligand precursors such as 2-(2,6-dimethylphenylimino)pyrrolyl sodium salts, which is attributed to a greater steric hindrance in the coordination of three of these bulkier ligands. The redox behaviour of complexes 2a-c shows an irreversible reduction wave with a peak potential in the range −3.2 to −3.7 V. Upon reduction, the complexes decompose giving rise, in the case of 2a, to a redox pattern compatible with the formation of [Co(κ2N,N′-NC4H3C(H)N-C6H5)2].  相似文献   

6.
Reaction of the potassium salt of the N-thiophosphorylthiourea H2NC(S)NHP(S)(OiPr)2 (HL) with Co(II), Ni(II), Zn(II) and Cd(II) cations in aqueous EtOH leads to the chelate complexes [ML2] all showing a 1,5-S,S′-coordination formed by the CS and PS sulfur atoms of two deprotonated ligands L. The structures of the resulting compounds were studied by IR, UV-Vis, 1H, 31P{1H} NMR spectroscopy and microanalysis. The metal center is found in a tetrahedral environment in [CoL2], [ZnL2] and [CdL2]. According to NMR and UV-Vis spectroscopy the metal cation of [NiL2] exhibits square planar coordination geometry in CH2Cl2, CHCl3 and C6H6, while tetrahedral geometry is observed in acetone, DMSO and DMF. Regardless of the solvent used for the crystallization of [NiL2], the molecular structure in the solid is always square planar as was confirmed by XRD of single crystals and magnetic measurements of the polycrystalline material. The magnetic and photoluminescent properties of all complexes are also reported.  相似文献   

7.
Treatment of diphenyl-di(phenylethynyl)germane with two equivalents of di(tert-butyl)aluminum hydride afforded the corresponding dialkenyl derivative, Ph2Ge[C(AltBu2)C(H)-Ph]2 (1) by dual hydroalumination. The aluminum atoms of 1 are attached to the carbon atoms in α-position to germanium. They are coordinatively unsaturated and are able to act as chelating Lewis-acids and to coordinate donors such as chloride or bromide anions in a chelating manner (2, 3). The analogous reaction of the corresponding silicon-centered dialkyne with two equivalents of dimethylaluminum hydride gave a mixture of unknown compounds. Interestingly, equimolar quantities of the hydride and the dialkyne resulted in dismutation and the formation of the unprecedented compound MeAl[C(CH-Ph)-SiPh2-CC-Ph]2 (4). Compound 4 has two alkenyl groups bonded to the central aluminum atom and a terminal alkynyl group attached to each silicon atom. An attempt to reduce the remaining triple bonds by reaction with di(tert-butyl)aluminum hydride resulted in cleavage and isolation of the monoalkenyl compound tBu2Al-C[C(H)-Ph]-SiPh2-CC-Ph (5). The molecular structure of 5 showed a close interaction between the α-carbon atom of the triple bond and the coordinatively unsaturated aluminum atom.  相似文献   

8.
A series of triphenylphosphine coordinated silver α,β-unsaturated carboxylates of type [Ag(O2CR)(PPh3)n: n = 1, R = CH3CHCH (2a), (CH3)2CCH (2b), CH3CH2CHCH (2c), CH3CH2CH2CHCH (2d), PhCHCH (2e), CH2CH (2f); n = 2, CH3CHCH (3a), (CH3)2CCH (3b), CH3CH2CHCH (3c), CH3CH2CH2CHCH (3d)] were prepared by reaction of relative silver carboxylates (1a-1f) with triphenylphosphine in chloroform. These complexes were obtained in high yields and characterized by elemental analysis, 1H NMR, 13C NMR, 31P NMR and IR spectroscopy. Thermal stability of the complexes has been determined by TG analysis. The molecular structure of [Ag((O2CCHC(CH3)2))(PPh3)2] (3b) shows that the senecioato ligand is chelated with silver atom and generate, a distorted tetrahedron.  相似文献   

9.
The aminoallenylidene(pentacarbonyl)chromium complexes [(CO)5CrCCC(NR1R2)Ph] (1a-c) react with dimethylamine by addition of the amine to the C1C2 bond of the allenylidene ligand to give alkenyl(amino)carbene complexes [(CO)5CrC(NMe2)CHC(NR1R2)Ph] (2a-c) (R1 = Me: R2 = Me (a), Ph (b); R1 = Et: R2 = Ph (c)). In contrast, addition of a large excess (usually 20 equivalents) of ammonia or primary amines, H2NR, to solutions of [(CO)5CrCCC(NMe2)Ph] (1a) affords the aminoallenylidene complexes [(CO)5CrCCC(NHR)Ph] (1d-w) in which the dimethylamino group is replaced by NH2 or NHR, respectively. In addition to simple amines such as methylamine, butylamine, and aniline, amines carrying a functional group (allylamine, propargylamine) and amino acid esters as well as amino terpenes and amino sugars can be used to displace the NMe2 substituent. Usually the Z isomer (with respect to the partial C3-N double bond) is formed exclusively. Products derived from addition of H2NR to the C1C2 bond of 1a are not observed. The amino group in 1d-w is rapidly deprotonated by excess of amine to form iminium alkynyl chromates [1d-w], thus protecting 1d-w from addition of free amine to either C3 or across the C1C2 bond. The iminium alkynyl chromates are readily reprotonated by acids or by chromatography on wet SiO2 to reform 1d-w.  相似文献   

10.
Reaction of the Schiff base ligands 2-Br-4,5-(OCH2O)C6H2C(H)NCH2CH2NMe2 (a) and 4,5-(OCH2CH2)C6H3C(H)NCH2CH2NMe2 (b) with Pd(OAc)2 or K2[PdCl4] leads to the mononuclear cyclometallated compounds [Pd{2-Br-4,5-(OCH2O)C6HC(H)NCH2CH2NMe2-C6,N,N}(OCOMe)] (1a) and [Pd{4,5-(OCH2CH2)C6H2C(H)NCH2CH2NMe2-C6,N,N}(Cl)] (1b), derived from C-H activation at the C6 carbon. Treatment of a with Pd2(dba)3 gave [Pd{4-5-(OCH2O)C6H2C(H)NCH2CH2NMe2-C2,N,N}(Br)] (2a), via C-Br activation.The metathesis reaction of 1a with aqueous sodium chloride gave [Pd{2-Br-4,5-(OCH2O)C6HC(H)NCH2CH2NMe2-C6,N,N}(Cl)] (3a), with exchange of the acetate group by a chloride ligand. Treatment of the cyclometallated monomers 1a-3a with PPh3 in a 1:1 molar ratio yielded the mononuclear complexes [Pd{2-Br-4,5-(OCH2O)C6HC(H)NCH2CH2NMe2-C6,N}(L)(PPh3)] (L: OAc, 4a; Cl, 5a) and [Pd{4-5-(OCH2O)C6H2C(H)NCH2CH2NMe2-C2,N}(Br)(PPh3)] (6a), with Pd-NMe2 bond cleavage. However, treatment of a solution of 3a or 2a with silver trifluoromethanesulfonate, followed by reaction with PPh3 in acetone yielded the cyclometallated complexes [Pd{2-Br-4,5-(OCH2O)C6HC(H)NCH2CH2NMe2-C6,N,N}(PPh3)][CF3SO3] (7a) and [Pd{4-5-(OCH2O)C6H2C(H)NCH2CH2NMe2-C2,N,N}(PPh3)][CF3SO3] (8a), respectively, where the Pd-NMe2 bond was retained.The reaction of the ligands 2-Br-4,5-(OCH2O)C6H2C(H)N(2′-OH-5′-tBuC6H3) (c) and 4,5-(OCH2CH2)C6H3C(H)N(2′-OH-5′-tBuC6H3) (d) with Pd(OAc)2 gave the tetranuclear complexes [Pd{2-Br-4,5-(OCH2O)C6HC(H)N(2′-O-5′-tBuC6H3)-C6,N,O}]4 (1c) and [Pd{4,5-(OCH2CH2)C6H2C(H)N(2′-O-5′-tBuC6H3)-C6,N,O}]4 (1d), respectively. Treatment of 1c with PPh3 in 1:4 molar ratio, gave the mononuclear species [Pd{2-Br-4,5-(OCH2O)C6HC(H)N(2′-(O)-5′-tBuC6H3)-C6,N,O}(PPh3)] (2c) with opening of the polynuclear structure after P-Obridging bond cleavage.The structure of compounds 2a, 1c and 1d has been determined by X-ray diffraction analysis.  相似文献   

11.
Complexes TptolRh(C2H4)2 (1a) and TptolRh(CH2C(Me)C(Me)CH2) (1b) have been prepared by reaction of KTptol with the appropriate [RhCl(olefin)2]2 dimer (Tptol means hydrotris(3-p-tolylpyrazol-1-yl)borate). The two complexes show a dynamic behaviour that involves exchange between κ2 and κ3 coordination modes of the Tptol ligand. The iridium analogue, TptolIr(CH2C(Me)CHCH2) (2) has also been synthesized, and has been converted into the Ir(III) dinitrogen complex [(κ4-N,N’,N’’,C-Tptol)Ir(Ph)(N2) (3) by irradiation with UV light under a dinitrogen atmosphere. Compound 3 constitutes a rare example of Ir(III)-N2 complex structurally characterized by X-ray crystallography. Its N2 ligand can be easily substituted by acetonitrile or ethylene upon heating and denticity changes in the Tptol ligand, from κ4-N,N’,N’’,C (monometallated Tptol, from now on represented as Tptol′) to κ5-N,N′,N″,C,C″ (dimetallated Tptol ligand, represented as Tptol) have been observed. When complex 3 is heated in the presence of acetylene, dimerization of the alkyne takes place to yield the enyne complex [(κ5-N,N′,N′′,C,C′-Tptol)Ir(CH2CHCCH), 7¸ in which the unsaturated organic moiety is bonded to iridium through the carbon-carbon double bond.  相似文献   

12.
Cu(Ph2P(o-C6H4C(O)H))2(NO2) (3) has been prepared in high yield by treating [Cu(Ph2P(o-C6H4C(O)H))2(NCMe)]BF4 (2) with [Ph2PNPPh2]NO2 at ambient temperature. The nitrite ligand of 3 is coordinated to the Cu(I) center in an O,O-bidentate mode. Protonation of 3 releases NO molecule, which mimics the reactivity of the Type 2 Cu-NiRs. In contrast, reaction of [Pd(NCMe)4](BF4)2 and Ph2P(o-C6H4C(O)H) affords cis-[Pd(Ph2P(o-C6H4C(O)H))2](BF4)2 (4) with the Pd2+ ion chelated by two phosphino-aldehyde moieties. The hemilabile formyl ligands of 4 can be displaced by NO2 to produce trans-Pd(Ph2P(o-C6H4C(O)H))2(NO2)2 (5), of which the nitrite ligands present an N-monodentate bonding feature. Protonation of 5 with HBF4, however, regenerates compound 4, likely via elimination of nitrous acid. The structures of 3-5 have been determined by an X-ray diffraction study.  相似文献   

13.
In this paper it is reported the synthesis of the phosphonium salts [Ph2P(CH2)n(Ph)2PCH2COOMe]Br (n = 1 (1), 2 (2)) and [Ph2P(CH2COOMe)(CH2)n(Ph)2PCH2COOMe]Br2 (n = 3 (3)) derived from the reactions of the diphosphines dppm, dppe and dppp with methyl bromoacetate. By reaction of the monophosphonium salt of dppm and dppe with the strong base Na[N(SiMe3)2] the corresponding carbonyl stabilized ylides Ph2P(CH2)n(Ph)2PCHCOOMe (n = 1 (4), 2 (5)) were obtained. The Ph2P(CH2)2(Ph)2PCHCOOMe (5) ylide was reacted with Pd(II) and Pt(II) substrates. From these reactions were isolated exclusively complexes in which the ylide was chelated to the metal through the free phosphine group and the ylidic carbon atom. A further reaction of the Ph2P(CH2)2(Ph)2PCHCOOMe (5) ylide with 1.5 equiv. of Na[N(SiMe3)2] gives the bifunctionalized ketenylidene Ph2P(CH2)2(Ph)2PCCO (6) system. This cumulenic ylide reacts with Pt(II) complexes to form a chelated derivative in which IR and NMR spectra suggest the breaking of the CC bond of the -CCO group.  相似文献   

14.
The tetragonal-pyramidal VO2+ complexes [VO{(RSC-S)N-NX}2] (1-6) were synthesised by the reactions of VO(OCHMe2)3 with the dithiocarbazate ligands RSC(S)-NH-NX, where X = cyclo-pentyl, cyclo-hexyl or 4-Me2N-C6H4-CH, and R = CH3 or CH2C6H5. The compounds were characterised by elemental analysis, IR- and mass spectrometries, and in cases of compounds 1, 3, 4 and 5, by X-ray diffraction. The chiral compound 4 (X = cyclo-hexyl, R = CH2C6H5) crystallises in the C configuration. In compound 5, the VO moiety is disordered (83.3:16.7%) with respect to the plane spanned by the four equatorial ligand functions.  相似文献   

15.
The reaction of the chelating P,N ligand RNC(But)CH(R)PPh2 (R = SiMe3) (1) with CuCl and CuCl2 (probably by way of reduction to Cu(I) by the phosphine ligand) or Cu(NCCH3)4ClO4 yielded the dimeric 1:1 complex [Cu{PPh2CH(R)C(But)NR}Cl]2 (2) or the monomeric 2:1 complex [Cu{PPh2CH(R)C(But)NR}2]ClO4 (3), respectively. The presence of trace amounts of water during the reaction resulted in the successive cleavage of the two trimethylsilyl groups of the ligand and the formation of the monomeric chelate complexes [Cu{PPh2CH(R)C(But)NH}2]ClO4 (4) and [Cu{PPh2CH2C(But)NH}2]ClO4 (5). Oxidation of 5 by atmospheric oxygen led to small quantities of the blue Cu(II) complex [Cu{(O)PPh2CH2C(But)NH}2](ClO4)2 (6). The dimeric gold complexes [Au{PPh2CH2C(But)NH}]2X2 (X = BF4, ClO4) (7) were similarly obtained from the previously described Au{PPh2CH(R)C(But)NR}Cl by replacing the covalently bound chlorine with the weakly coordinating anions in the presence of small quantities of water. The solution and solid state structures (except 5) of all complexes were determined by NMR spectroscopy and X-ray crystallography.  相似文献   

16.
The activity of homobimetallic ruthenium alkylidene complexes, [(p-cymene)Ru(Cl)(μ-Cl)2Ru(Cl)(CHPh)(PCy3)] [Ru-I] and [(p-cymene)Ru(Cl)(μ-Cl)2Ru(Cl)(CHPh)(IPr)] [Ru-II], on intermolecular [2+2+2] cyclotrimerisation reactions of monoynes has been investigated for the first time. It was found that these complexes can catalyse the chemo and regioselective cyclotrimerisation reactions of alkynes at both 25 and 50 °C in polar, aprotic solvents. The catalytic activity of [Ru-I] and [Ru-II] was compared to other well-known ruthenium catalysts such as Grubbs first generation catalyst [RuCl2(CHPh)(PCy3)2] [Ru-III], [RuCl(μ-Cl)(p-cymene)]2 [Ru-IV] and [RuCl2(p-cymene)PCy3] [Ru-V] complexes. To examine the effect of the steric hinderance of substrates on the regioselectivity of the reaction, a series of sterically hindered silicon containing alkynes (1a, 1b, 1c) were used. It was shown that the isomeric product distribution of the reaction shifts from 1,2,4-trisubstituted arenes to 1,3,5-trisubstituted arenes as the steric hinderance on the substrates increases. These homobimetallic ruthenium alkylidene complexes also catalysed regio- and chemo-selective cross-cyclotrimerisation reactions between silicon-containing alkynes (1a, 1b, 1c) and aliphatic alkynes (1d-g).  相似文献   

17.
The diphosphinite ligand 9,9-(Ph2POCH2)2-fluorene (1) was reacted with group 10 metal dichlorides to form chelate complexes of formula [MCl2(1)] (MNi, 2; MPd, 3; MPt, 4) showing 8-membered metallocycles. Chloride abstraction from 3 with AgOTf afforded the dinuclear complex [M(μ-Cl)Pd(1)]2(OTf)2 (5), in which the ligand adopts a different conformation with respect of 3. In 5, the fluorene moiety and the phenyl groups display stabilizing interactions with the anion which is located close to the metal centre. With Fe(II), Co(II) and Zn(II) chlorides, the non-isolated intermediates [MCl2(1)] readily undergo oxidation to [MCl2(1ox)] (MFe, 6; MCo, 7; MZn, 8; 1ox = 9,9-(Ph2P(O)OCH2)2-fluorene) in which the diphosphinate ligand and the metal centre form 10-membered metallocycles. Complexes 6-8 are the first examples of structurally characterized diphosphinate metal chelates. The Zn(II) diphosphinite complex [ZnCl2(1)] (9) could be observed by NMR spectroscopy, along with the mixed phosphinite-phosphinate, mono-oxidized complex which is an intermediate in the formation of 8. Complex [ZnCl2(9.9-fluorene-dimethanol)(Ph2P(O)H)] (10) was also observed as hydrolysis product of 9. The X-ray molecular structures of 2, 3, 5.2OTf, 6, 7, 8 and 10 are reported.  相似文献   

18.
The reaction of the dihydrido iridium(III) precursor [IrH2(Cl)(PiPr3)2] (5) with internal alkynes RCC(CO2Me) (R = Me, CO2Me) afforded the five-coordinate hydrido(vinyl) complexes [IrH(Cl){(E)-C(R)CH(CO2Me)}(PiPr3)2] (6, 7), via insertion of the alkyne into one of the IrH bonds. Compounds 6 and 7 are also accessible by careful hydrogenation of the alkyne iridium(I) derivatives trans-[IrCl{RCC(CO2Me)}(PiPr3)2] (9, 10), the latter being prepared from in situ generated trans-[IrCl(C8H14)(PiPr3)2] and RCC(CO2Me). UV irradiation of 6 (R = CO2Me) led to the formation of the isomer [IrH(Cl){κ2(C,O)-C(CO2Me)CHC(OMe)O}(PiPr3)2] (3) having the vinyl ligand coordinated in a bidentate fashion. While 6 reacted with acetonitrile and CO to afford the six-coordinate iridium(III) compounds [IrH(Cl){(E)-C(CO2Me)CH(CO2Me)}(L′)(PiPr3)2] (11, 12), treatment of 6 with LiC5H5 gave the half-sandwich-type complex [(η5-C5H5)IrH{(E)-C(CO2Me)CH(CO2Me)}(PiPr3)] (13) by, the loss of one PiPr3. The reaction of 3 with CO under pressure resulted in the formation of [IrH(Cl){(Z)-C(CO2Me)CH(CO2Me)}(CO)(PiPr3)2] (14) in which, in contrast to the stereoisomer 12, the two CO2Me substituents are trans disposed.  相似文献   

19.
The study of the reactivity of three 1-(2-dimethylaminoethyl)-1H-pyrazole derivatives of general formula [1-(CH2)2NMe2}-3,5-R2-pzol] {where pzol represents pyrazole and RH (1a), Me (1b) or Ph (1c)} with [MCl2(DMSO)2] (MPt or Pd) under different experimental conditions allowed us to isolate and characterize cis-[M{κ2-N,N′-{[1-(CH2)2NMe2}-3,5-R2-pzol])}Cl2] {MMPtPt (2a-2c) or Pd (3a-3c)} and two cyclometallated complexes [M{κ3-C,N,N′-{[1-(CH2)2NMe2}-3-(C5H4)-5-Ph-pzol])}Cl] {MPt(II) (4c) or Pd(II) (5c)}. Compounds 4c and 5c arise from the orthometallation of the 3-phenyl ring of ligand 1c. Complex 2a has been further characterized by X-ray crystallography. Ligands and complexes were evaluated for their in vitro antimalarial against Plasmodium falciparum and cytotoxic activities against lung (A549) and breast (MDA MB231 and MCF7) cancer cellular lines. Complexes 2a-2c and 5c exhibited only moderate antimalarial activities against two P. falciparum strains (3D7 and W2). Interestingly, cytotoxicity assays revealed that the platinacycle 4c exhibits a higher toxicity than cisplatin in the three human cell lines and that the complex 2a presents a remarkable cytotoxicity and selectivity in lung (IC50 = 3 μM) versus breast cancer cell lines (IC50 > 20 μM). Thus, complexes 2c and 4c appear to be promising leads, creating a novel family of anticancer agents. Electrophoretic DNA migration studies in presence of the synthesized compounds have been performed, in order to get further insights into their mechanism of action.  相似文献   

20.
Bis(ferrocenyl)-substituted allenylidene complexes, [(CO)5MCCCFc2] (1a-c, Fc = (C5H4)Fe(C5H5), M = Cr (a), Mo (b), W (c)) were obtained by sequential reaction of Fc2CO with Me3Si-CCH, KF/MeOH, n-BuLi, and [(CO)5M(THF)]. For the synthesis of related mono(ferrocenyl)allenylidene chromium complexes, [(CO)5CrCCC(Fc)R] (R = Ph, NMe2), three different routes were developed: (a) reaction of the deprotonated propargylic alcohol HCCC(Fc)(Ph)OH with [(CO)5Cr(THF)] followed by desoxygenation with Cl2CO, (b) Lewis acid induced alcohol elimination from alkenyl(alkoxy)carbene complexes, [(CO)5CrC(OR)CHC(NMe2)Fc], and (c) replacement of OMe in [(CO)5CrCCC(OMe)NMe2] by Fc. Complex 1a was also formed when the mono(ferrocenyl)allenylidene complex [(CO)5CrCCC(Fc)NMe2] was treated first with Li[Fc] and the resulting adduct then with SiO2. The replacement route (c) was also applied to the synthesis of an allenylidene complex (7a) with a CC spacer in between the ferrocenyl unit and Cγ of the allenylidene ligand, [(CO)5CrCCC(NMe2)-CCFc]. The related complex containing a CHCH spacer (9a) was prepared by condensation of [(CO)5CrCCC(Me)NMe2] with formylferrocene in the presence of NEt3. The bis(ferrocenyl)-substituted allenylidene complexes 1a-c added HNMe2 across the Cα-Cβ bond to give alkenyl(dimethylamino)carbene complexes and reacted with diethylaminopropyne by regioselective insertion of the CC bond into the Cβ-Cγ bond to afford alkenyl(diethylamino)allenylidene complexes, [(CO)5MCCC(NEt2)CMeCFc2]. The structures of 5a, 7a, and 9a were established by X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号