首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of complexes with the formulations [M(CPI)2Cl2] (M = Zn, 1; M = Cd, 4) and [M(CPI)6](X)2 (M = Zn, X = NO3, 2; X = ClO4, 3; M = Cd, X = NO3, 5; X = ClO4, 6) have been achieved from the reactions of MCl2, M(NO3)2·xH2O and M(ClO4)2·xH2O (M = Zn, Cd) with 1-(4-cyanophenyl)-imidazole (CPI). Complexes 1-6 have been characterized by elemental analyses and spectral studies (IR, 1H, 13C NMR, electronic absorption and emission). Molecular structures of 1, 2, 3 and 6 have been determined crystallographically. Weak interaction studies on the complexes revealed presence of various interesting motifs resulting from C-H···N, C-H···Cl and π-π stacking interactions. The complexes under study exhibit strong luminescence at ∼450 nm in DMSO at room temperature.  相似文献   

2.
Some copper(I) complexes of the type [Cu(L)(dppe)]X (1-4) [where L = (3-trifluoromethylphenyl)pyridine-2-ylmethylene-amine; dppe = 1,2-bis(diphenylphosphino)ethane; X = Cl, CN, ClO4 and BF4] have been synthesized by the condensation of 3-aminobenzotrifluoride with 2-pyridinecarboxaldehyde followed by the reaction with CuCl, CuCN, [Cu(MeCN)4]ClO4 and [Cu(MeCN)4]BF4 in presence of dppe. The complexes 1-4 were then characterized on the basis of elemental analysis, IR, UV-Vis and 1H NMR spectral studies. The representative complex of the series 4 has been characterized by single crystal X-ray diffraction which reveal that in complex the central copper(I) ion assumes the irregular pseudo-tetrahedral geometry. The catalytic activity of the complexes was tested and it was found that all the complexes worked as effective catalyst in the amination of aryl halide.  相似文献   

3.
A series of osmium(VI) nitrido complexes containing pyridine-carboxylato ligands OsVI(N)(L)2X (L = pyridine-2carboxylate (1), 2-quinaldinate (2) and X = Cl (a), Br (1b and 2c) or CH3O (2b)) and [OsVI(N)(L)X3] (L = pyridine-2,6-dicarboxylate (3) and X = Cl (a) or Br (b)) have been synthesised. Complexes 1 and 2 are electrophilic and react readily with various nucleophiles such as phosphine, sulfide and azide. Reaction of OsVI(N)(L)2X (1 and 2) with triphenylphosphine produces the osmium(IV) phosphiniminato complexes OsVI(NPPh3)(L)2X (4 and 5). The kinetics of nitrogen atom transfer from the complexes OsVI(N)(L)2Br (2c) (L = 2-quinaldinate) with triphenylphosphine have been studied in CH3CN at 25.0 °C by stopped-flow spectrophotometric method. The following rate law is obtained: −d[Os(VI)]/dt = k2[Os(VI)][PPh3]. OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) reacts also with [PPN](N3) to give an osmium(III) dichloro complex, trans-[PPN][OsIII(L)2Cl2] (6). Reaction of OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) with lithium sulfide produces an osmium(II) thionitrosyl complex OsII(NS)(L)2Cl (7). These complexes have been structurally characterised by X-ray crystallography.  相似文献   

4.
The reaction of aqueous solutions of the preformed 1:1 Cu(ClO4)2-polydentate amine with tetrasodium 1,2,4,5-benzene tetracarboxylate (Na4bta) afforded three different types of polynuclear compounds. These include the tetranuclear complexes: [Cu4(Medpt)44-bta)(ClO4)2(H2O)2](ClO4)2·2H2O (1), [Cu4(pmdien)44-bta)(H2O)4](ClO4)4 (2), [Cu4(Mepea)44-bta)(H2O)2](ClO4)4(3), [Cu4(TPA)44-bta)](ClO4)4·10H2O (4) and [Cu4(tepa)44-bta)](ClO4)4·2H2O (5), the di-nuclear: [Cu2(DPA)22-bta)(H2O)2]·4H2O (6), [Cu2(dppa)22-bta)(H2O)2]·4H2O (7) and [Cu2(pmea)22-bta)]·14H2O (8) and the trinuclear complex [Cu3(dppa)33-bta)(H2O)2.25](ClO4)2·6.5H2O (9) where Medpt = 3,3′-diamino-N-methyldipropylamine, pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, Mepea = [2-(2-pyridyl)ethyl]-(2-pyridylmethyl)methylamine, TPA = tris(2-pyridylmethyl)amine, tepa = tris[2-(2-pyridyl)ethyl)]amine, DPA = di(2-pyridymethyl)amine, dppa = N-propanamide-bis(2-pyridylmethyl)amine and pmea = bis(2-pyridylmethyl)-[2-(2-pyridylethyl)]amine. The complexes were structurally characterized by elemental analyses, spectroscopic techniques, and by X-ray crystallography for complexes 1, 2, 4, 6, 7 and 9. X-ray structure of the complexes reveal that bta4− is acting as a bridging ligand via its four deprotonated caboxylate groups in 1, 2 and 4, three carboxylate groups in 9 and via two trans-carboxylates in 6 and 7. The complexes exhibit extended supramolecular networks with different dimensionality: 1-D in 2 and 4 due to hydrogen bonds of the type O-H···O, 2-D in 1 and 7, and 3-D network in 6 as a result of hydrogen bonds of the types N-H···O and O-H···O. Magnetic susceptibility measurements showed very weak antiferromagnetic coupling between the CuII ions in 1-5, 7-9 (|J| = 0.02-0.87 cm−1) and weak ferromagnetic coupling for 6 (= 0.08 cm−1).  相似文献   

5.
The preparation of a series of 1,2-phenylenedioxoborylcyclopentadienyl-metal complexes is described. These are of formula [M{η5-C5H4(BX)}Cl3] [M = Ti and X = CAT (2a), CATt (2b) or CATtt (2c); X = CATtt and M = Zr (4a) or Hf (4b)], [M{η5-C5H4(BX)}2Cl2] [M = Zr, X = CAT (3a) or CATt (3c); or M = Hf, X = CAT (3b) or CATt (3d)], [M{(μ-η5-C5H3BCAT)2 SiMe2}Cl2] [M = Zr (5a) or Hf (5b)], [M{η5-C5H3(BCAT)2}Cl3] [M = Zr (6a) or Hf (6b)], [M{η5-C5H4BCAT}3(THF)] [M = La (7a), Ce (7b) or Yb (7c)], [Sn{η5-C5 H4(BCATt)}Cl](8) and [Fe{η5-C5H4(BCATt)}2] (9). The abbreviations refer to BO2C6H4-1,2 (BCAT) and the 4-But (BCATt) and the (BCATtt) analogues. The compounds 2a-9 have been characterised by microanalysis, multinuclear NMR and mass spectra. The single crystal X-ray structure of the lanthanum compound 7a is presented.  相似文献   

6.
Two nitrogen and sulfur containing ligands, 1-methyl-4-((4-methylimidazol-5-yl)methylthio)benzene (NS-mim) (1) and 1-methyl-4-(2-pyridylmethylthio)benzene (NS-mpy) (2) were synthesized and a series of their Cu(II) complexes, 3-10, prepared. The imidazole-containing complexes (3-6) have the form [Cu(NS-mim)2(solvent)2](X)2 where X = ClO4, BF4and [Cu(NS-mim)2(Y)2] where Y = Cl or Br and the pyridine-containing complexes (7-10) have the form [Cu(NS-mpy)2]X2 (where X = ClO4, BF4) and [Cu2(NS-mpy)2Y4] (where Y = Cl or Br). These complexes were characterized by a combination of elemental analysis, FAB-MS and electrochemistry. The X-ray structure of the imidazole-containing [Cu(NS-mim)2(DMF)2](ClO4)2 (3) was determined and it showed the copper(II) coordinated only by the nitrogen donors while the sulfurs remain uncoordinated. In comparison, the X-ray structure of the pyridine-containing [Cu2(NS-mpy)2(Cl)4] (9) shows a dinuclear copper(II) complex with the nitrogens and the sulfurs coordinated along with a terminal chloride and two μ-chloro atoms bridging the coppers. Cyclic voltammetry studies indicated that the complexes undergo quasi-reversible one-electron reductions in acetonitrile at potentials between 0.31 and 0.51 V versus SCE. The complexes were found to be active for the oxidation of di-tert-butyl catechol (DTBC) with the rate dependent on the ligand and the counterion present.  相似文献   

7.
The synthesis and characterization of several complexes of the composition [{M(terpy)}n(L)](ClO4)m (M = Pt, Pd; L = 1-methylimidazole, 1-methyltetrazole, 1-methyltetrazolate; terpy = 2,2′:6′,2″-terpyridine; n = 1, 2; m = 1, 2, 3) is reported and their applicability in terms of a metal-mediated base pair investigated. Reaction of [M(terpy)(H2O)]2+ with 1-methylimidazole leads to [M(terpy)(1-methylimidazole)](ClO4)2 (1: M = Pt; 2: M = Pd). The analogous reaction of [Pt(terpy)(H2O)]2+ with 1-methyltetrazole leads to the organometallic compound [Pt(terpy)(1-methyltetrazolate)]ClO4 (3) in which the aromatic tetrazole proton has been substituted by the platinum moiety. For both platinum(II) and palladium(II), doubly metalated complexes [{M(terpy)}2(1-methyltetrazolate)](ClO4)3 (4: M = Pt; 5: M = Pd) can also be obtained depending on the reaction conditions. In the latter two compounds, the [M(terpy)]2+ moieties are coordinated via C5 and N4. X-ray crystal structures of 1, 2, and 3 are reported. In addition, DFT calculations have been carried out to determine the energy difference between fully planar [Pd(mterpy)(L)]2+ complexes Ip-IVp (mterpy = 4′-methyl-2,2′:6′,2″-terpyridine; L = 1-methylimidazole-N3 (I), 1-methyl-1,2,4-triazole-N4 (II), 1-methyltetrazole-N3 (III), or 3-methylpyridine-N1 (IV)) and the respective geometry-optimized structures Io-IVo. Whereas this energy difference is larger than 70 kJ mol−1 for compounds I, II, and IV, it amounts to only 0.8 kJ mol−1 for the tetrazole-containing complex III, which is stabilized by two intramolecular C-H?N hydrogen bonds. Of all complexes under investigation, only the terpyridine-metal ion-tetrazole system with N3-coordinated tetrazole appears to be suited for an application in terms of a metal-mediated base pair in a metal-modified oligonucleotide.  相似文献   

8.
Based on the complex ligand (CuL H2L = 2,3-dioxo-5,6:15,16-dibenzo-1,4,8,13-tetraazacyclotetradeca-7,13-diene), which includes macrocyclic oxamido bridge, three trinuclear complexes were prepared. They are of the formula [(CuL)2M(ClO4)2] (M = Co(1), Ni(2)) and [(CuL)2Zn(CH3OH)2] · (ClO4)2 (3). The crystal structures of the three complexes have been determined and the M(II) of the three complexes all exist on the mirror plane. Complex 1 is the first Cu-Co complex bridged by oxamido. Their magnetic properties were studied by susceptibility versus temperature measurement, the best fitting of the experimental data led to J = −28.12 cm−1 for 1, J = −42.88 cm−1 for 2, and J = −2.13 cm−1 for 3.  相似文献   

9.
The dinuclear bis(6-X-pyridin-2-olato) ruthenium complexes [Ru2(μ-XpyO)2(CO)4(PPh3)2] (X = Cl (4B) and Br (5B)), [Ru2(μ-XpyO)2(CO)4(CH3CN)2] (X = Cl (6B), Br (7B) and F (8B)) and [Ru2(μ-ClpyO)2(CO)4(PhCN)2] (9B) were prepared from the corresponding tetranuclear coordination dimers [Ru2(μ-XpyO)2(CO)4]2 (1: X = Cl; 2: X = Br) and [Ru2(μ-FpyO)2(CO)6]2 (3) by treatment with an excess of triphenylphosphane, acetonitrile and benzonitrile, respectively. In the solid state, complexes 4B-9B all have a head-to-tail arrangement of the two pyridonate ligands, as evidenced by X-ray crystal structure analyses of 4B, 6B and 9B, in contrast to the head-to-head arrangement in the precursors 1-3. A temperature- and solvent-dependent equilibrium between the yellow head-to-tail complexes and the red head-to-head complexes 4A-7A and 9A, bearing an axial ligand only at the O,O-substituted ruthenium atom, exists in solution and was studied by NMR spectroscopy. Full 1H and 13C NMR assignments were made in each case. Treatment of 1 and 2 with the N-heterocyclic carbene (NHC) 1-butyl-3-methylimidazolin-2-ylidene provided the complexes [Ru2(μ-XpyO)2(CO)4(NHC)], X = Cl (11A) or Br (12A). An XRD analysis revealed the head-to-head arrangement of the pyridonate ligands and axial coordination of the carbene ligand at the O,O-substituted ruthenium atom. The conversion of 11A and 12A into the corresponding head-to-tail complexes was not possible.  相似文献   

10.
Three water-soluble dicobalt(III) complexes, [Co2L2(µ-OH)2](ClO4)2·5H2O (1), [Co2L2(µ-OH)2](ClO4)2·CH3OH·H2O(2); [Co2L2(µ-OH)2](ClO4)2·4H2O(3) (L = 1,4,7-triazacyclononane-N-acetate monoanion), were prepared to serve as nuclease mimics. The complexes were characterized by X-ray, IR and UV-vis spectroscopy as well as ESI-MS. Three complexes exhibit similar structures, just with different solvent molecules. The electrospray mass spectrum of 1 in solution indicates that dinuclear ion [Co2L2(µ-OH)2-H+] + (4) is the active species. In the absence of any reducing agent, the complexes cleave plasmid pBR322 DNA was performed and its hydrolytic mechanism was demonstrated with radical scavengers, anaerobic reaction and T4 ligase. The kinetic aspects of DNA cleavage under pseudo- or true-Michaelis-Menten conditions are also detailed, kinetic parameters (kcat, KM) were calculated to be 3.57 h− 1, 6.92 × 10− 4 M; 0.28 h− 1, 1.9 × 10− 5 M for 4, respectively.  相似文献   

11.
Six complexes (1-6) with the type of [Ru(bpy)2L]X2 (1-3: L = L1-L3, X = Cl; 4-6: L = L1-L3, X = PF6) were synthesized based on 2,2′-bipyridine and three 2,2′-bipyridine derivatives L1, L2 and L3 (L1 = 5,5′-dibromo-2,2′-bipyridine, L2 = 5-bromo-5′-carbazolyl-2,2′-bipyridine, L3 = 5,5′-dicarbazolyl-2,2′-bipyridine). The complexes 1-6 were characterized by 1H NMR, MS(ESI) and IR spectra, along with the X-ray crystal structure analysis for 1, 5 and 6. Their photophysical properties and electrochemiluminescence (ECL) properties were investigated in detail. In the UV-Vis absorption spectra, all complexes 1-6 show strong intraligand (π → π) transitions and metal-ligand charge transfer (MLCT, dπ (Ru) → π) bands. Upon the excitation wavelengths at ∼508 nm, all complexes 1-6 exhibit typical MLCT emission of ruthenium(II) polypyridyl complexes. The introduction of carbazole moieties improves the MLCT absorption and emission intensity. The ruthenium(II) complexes 1-6 exhibit good electrochemiluminescence (ECL) properties in [Ru(bpy)2L]2+/tri-n-propylamine (TPrA) acetonitrile solution and the complexes with PF6 showed higher ECL emission intensity than that of the complexes with Cl based on the same ligands.  相似文献   

12.
The reactions between the copper (II) salts [CuXL]PF6 (L: 2,6-[1-(2,6-diisopropylphenylimino)ethyl]pyridine) (X = Cl 1, X = Br 2) and LiTCNQ, in a DMF/water mixture, or Et3NH(TCNQ)2, in acetone, produced the new complexes [CuXL(TCNQ)] (X = Cl 3, X = Br 4). For both compounds, crystallographic studies have clearly evidenced the existence of dimeric complexes [{CuClL}(TCNQ)]2 owing to π-π overlap between two adjacent TCNQ radical anions. Compound 1 reacted with Et4N(C10N7) to afford the mononuclear derivative [CuClL(C10N7)] (5), while its reaction with K2C10N6 produced the dinuclear complex [(CuClL)2(C10N6)] (6). The crystal structures of complexes 5 and 6 have been determined by X-ray crystallography. Magnetic studies have revealed that compound 6 displays weak antiferromagnetic interactions between the two metal centres, conversely compounds 3 and 5 exhibit purely paramagnetic behaviours.  相似文献   

13.
The reaction of AgX with the diphosphazane ligand, PriN(PPh2)2 (L) gives the polymeric complexes, [Ag2(μ-X)2(μ-L)]n (X = NO31a or OSO2CF31b). Single crystal X-ray analysis of 1a reveals a novel structural motif formed by interlinking of giant 40-membered rings; the diphosphazane ligand L adopts a unique ‘Cs’ geometry. These polymeric complexes exhibit a completely reversible ring-opening polymerization-depolymerization relationship with the dinuclear and mononuclear complexes, [{Ag(μ-L)(X)}2] (X = NO32a, X = OSO2CF32b) and [Ag(κ2-L)2]X (X = NO33a, X = OSO2CF33b).  相似文献   

14.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

15.
The one pot aqueous reaction of M(ClO4)2 (M = Cu2+ or Ni2+) with N-methylbis[2-(2-pyridylethyl)]amine (MeDEPA) and N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)ethylenediamine (bpmen) and 1,4,7,10-tetraazacyclododecane (cyclen) in presence of sodium dicyanamide (Nadca) yielded dicyanamido-bridged polynuclear complex {[Cu(MeDEPA)(μ-1,5-dca)]ClO4}n (1), and two dinuclear complexes [Cu2(bpmen)2(μ-1,5-dca)]2(ClO4)5dca (2) and [Ni(cyclen)(μ-1,5-dca)]2(ClO4)2 (3). These complexes were characterized by IR and UV-Vis spectroscopy. Room temperature single-crystal X-ray studies have confirmed that the Cu(II) centers in 1 and 2 adopt geometries that are more close to trigonal bipyramidal (TBP) in 1 and close to square pyramidal (SP) in 2, whereas in 3, the Ni(II) centers are located in octahedral environment with doubly bridged μ-1,5-dca bonding mode. The intermolecular M···M distances in these complexes are in the range of 7.3-8.6 Å. Variable temperature magnetic susceptibility studies have confirmed that the dca-bridges mediate very weak antiferromagnetic interaction between the M(II) centers with J values of −0.35, −0.18 and −0.43 cm−1 for 1, 2 and 3, respectively. The results are compared and discussed in the light of other related bridged μ-1,5-dca Cu(II) and Ni(II) complexes.  相似文献   

16.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   

17.
A series of chiral Ag(I) and Cu(II) complexes have been prepared from the reaction between AgX (X = NO3, PF6, OTf) or CuX2 (X = Cl, ClO4) and chiral biaryl-based N-ligands. The rigidity of the ligand plays an important role in the Ag(I) complex formation. For example, treatment of chiral N3-ligands 1-3 with half equiv of AgX (X = NO3, PF6, OTf) gives the chiral bis-ligated four-coordinated Ag(I) complexes, while ligand 4 affords the two-coordinated Ag(I) complexes. Reaction of AgX with 1 equiv of chiral N4-ligands 5, 7, 8 and 10 gives the chiral, binuclear double helicate Ag(I) complexes, while chiral mono-nuclear single helicate Ag(I) complexes are obtained with N4-ligands 6 and 9. Treatment of either N3-ligand 1 or N4-ligand 9 or 10 with 1 equiv of CuX2 (X = Cl, ClO4) gives the mono-ligated Cu(II) complexes. All the complexes have been characterized by various spectroscopic techniques, and elemental analyses. Seventeen of them have further been confirmed by X-ray diffraction analyses. The Cu(II) complexes do not show catalytic activity for allylation reaction, in contrast to Ag(I) complexes, but they do exhibit catalytic activity for Henry reaction (nitroaldol reaction) that Ag(I) complexes do not.  相似文献   

18.
Several molybdenum complexes, [Mo(η3-C3H5)X(CO)2(N-N)] (N-N = 1,10-phenanthroline, phen: X = CF3SO3T1, X = Br B1, X = Cl C1; N-N = 2,2′-bipyridyl, X = CF3SO3T2, X = Br B2) and [W(η3-C3H5)Br(CO)2(phen)] (W1) have been synthesized and characterized. Their antitumor properties have been tested in vitro against human cancer cell lines cervical carcinoma (HeLa) and breast carcinoma (MCF-7) using a metabolic activity test (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT), leading to IC50 values ranging from 3 to 45 μM, approximately. Most complexes exhibited significant antitumoral activity. Complexes B1 and T2 were chosen for subsequent studies aiming to understand their mechanism of action. Cellular uptake of molybdenum and octanol/water partition assays revealed that both B1 and T2 exhibit a selective uptake by cells and intermediate partition coefficients. The binding constants of B1 and T2 with ct DNA, as determined by absorption titration, are 2.08 (± 0.98) × 105 and 3.68 (± 2.01) × 105 M− 1, respectively. These results suggest that they interact with DNA changing its conformation and possibly inducing cell death, and may therefore provide a valuable tool in cancer chemotherapy.  相似文献   

19.
Two new mononuclear spin-crossover iron(II) complexes, [FeL2(NCS)2] · H2O (1) and [FeL2(NCSe)2] (2), have been synthesized from the reaction of the versatile ligand 4,5-bis(2-cyanoethylthio)-2-bis(2-pyridyl)methylene-1,3-dithiole (L), Fe(ClO4)2, and KNCX (X = S/Se). Reactions of L with CuII or CoII salts afford one mononuclear complex [CuL(hfac)2] · CH3OH (hfac = hexafluoroacetylacetonate) (3), one dinuclear complex [(CuLCl)2(μ-Cl)2] · CH3OH (4), and two 1D chain species, [CuL2]n(BF4)2n (5) and [CoL2]n(ClO4)2n · 2nCH2Cl2 (6). The crystal structures of complexes 1 and 3-6 have been determined by X-ray crystallography. Short intermolecular S?S contacts between neighboring 1D arrays are observed in 5 and 6, which lead to the formation of the 2D structure. The magnetic properties are studied, and antiferromagnetic couplings between the CuII centers across the chloride bridges have been found in 4 (J = 2.04 cm-1). Spin-crossover behaviors between high and low spin states are observed at T1/2 = 80 K for 1 and T1/2 = 300 K for 2, respectively.  相似文献   

20.
Three novel ternary copper(II) complexes, [Cu2(phen)2(l-PDIAla)(H2O)2](ClO4)2·2.5H2O (1), [Cu4(phen)6(d,l-PDIAla)(H2O)2](ClO4)6·3H2O (2) and [Cu2(phen)2(d,l-PDIAla)(H2O)](ClO4)2·0.5H2O (3) (phen = 1,10-phenanthroline, H2PDIAla = N,N’-(p-xylylene)di-alanine acid) have been synthesized and structurally characterized by single-crystal X-ray crystallography and other structural analysis. Spectrometric titrations, ethidium bromide displacement experiments, CD (circular dichroism) spectral analysis and viscosity measurements indicate that the three compounds, especially the complex 3, strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants of the ternary copper(II) complexes with CT-DNA are 0.89 × 105, 1.14 × 105 and 1.72 × 105 M−1, for 1, 2 and 3, respectively. Comparative cytotoxic activities of the copper(II) complexes are also determined by acid phosphatase assay. The results show that the ternary copper(II) complexes have significant cytotoxic activity against the HeLa (Cervical cancer), HepG2 (hepatocarcinoma), HL-60 cells (myeloid leukemia), A-549 cells (pulmonary carcinoma) and L02 (liver cells). Investigations of antioxidation properties show that all the copper(II) complexes have strong scavenging effects for hydroxyl radicals and superoxide radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号