首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new series of chiral carboxylate-bridged complexes of Mn(II), Co(II), and Ni(II) has been synthesized by reaction of M(II) salts with (S)-2-hydroxy-2-methyl-butanedioic acid ((S)-citramalic acid) under solvothermal conditions. The Mn(II) compound 1 is obtained as a crystalline powder, whereas the Co(II) and Ni(II) compounds (2 and 3 respectively) are obtained as single crystals. All the compounds crystallize in orthorhombic chiral space group P212121. Compounds 2 and 3 are isostructural, and their structure consists in helicoïdal chains of M(II) centres linked by carboxylate bridges. The magnetic data indicate a rather weak coupling interaction between paramagnetic centres. The Mn(II) compound 1 exhibits antiferromagnetic ordering at TN = 2.64 K. The Co(II) and Ni(II) compounds show ferromagnetic interactions within the chains. For 3, the chains couple antiferromagnetically, which leads to a metamagnetic behaviour with TN = 1.69 K.  相似文献   

2.
A series of nickel(II) and cobalt(II) complexes, NiX2L (X = Cl, Br; 1-6) and CoCl2L (7-9), with 2,9-diaryl-1,10-phenanthroline ligands (L1-L3) have been synthesized and characterized by elemental analysis, UV-Vis, IR spectroscopy, and X-ray crystal structural study (for 1, 4-7, 9). The solid-state structures of 1, 5-7 and 9 show four-coordinate, slightly flattened tetrahedral geometry at the Ni(II) or Co(II) center, while 4 is five-coordinated (square-pyramidal), containing a THF molecule as an auxiliary ligand. The title complexes (1-9) display good catalytic activities in ethylene oligomerization when activated with methylaluminoxane (MAO). While the Co(II) precatalysts produce primarily C4 isomers, the Ni(II) complexes give ethylene dimers and trimers at normal pressure. The activities and yields of linear α-olefins increase with increasing ethylene pressure for the Ni(II) complexes, leading to more high-molar-mass products (C8-C18). Complex 6 displays the best catalytic activity among the complexes studied (up to 1518 kg/mol[Ni] h at 10 atm).  相似文献   

3.
The acid-base and coordination properties towards Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) of four polyamino-phenol macrocycles 15-hydroxy-3,6,9-triazabicyclo[9.3.1]pentadeca-11,13,115-triene L1, 18-hydroxy-3,6,9,12-tetraazabicyclo[12.3.1]octadeca-14,16,118-triene L2, 21-hydroxy-3,6,9,12,15-pentaazabicyclo[15.3.1]enaicosa-17,19,121-triene L3 and 24-hydroxy-3,6,9,12,15,18-hexaazabicyclo[18.3.1]tetraicosa-20,22,124-triene L4 are reported. The protonation and stability constants were determined by means of potentiometric measurements in 0.15 mol dm−3 NMe4Cl aqueous solution at 298.1 K. L1 forms highly unsaturated Co(II), Cu(II), Zn(II) and Cd(II) mononuclear complexes that are prone to give dimeric dinuclear species with [(MH−1L1)2]2+ stoichiometry, in solution. L2 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes that can coordinate external species as OH anion, giving hydroxylated complexes at alkaline pH. L3 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes and Co(II), Ni(II), Cu(II) and Zn(II) dinuclear [M2H−1L3]3+ species. L4 forms stable mono- and dinuclear Co(II), Cu(II), Zn(II) and Cd(II) complexes, but only mononuclear species with Pb(II). The effect of macrocyclic size is considered in the discussion of results.  相似文献   

4.
(ML)2(bipy) complexes (LH2 = thiosemicarbazone of 2-hydroxybenzaldehyde, bipy = 4,4′-bipyridine, M = Ni(II), 1, or Cu(II), 2) were synthesized and characterized by X-ray crystallography. Compound 1 possessed porous structure due to peculiarities of crystal packing, whereas 2 formed infinite zig-zag chains with dense non-porous packing. It was shown that 1 absorbed 0.013 cm3/g of methanol vapor in two steps. Complex 1 was diamagnetic; for 2, the dependency of χ versus T could be interpreted by Bleaney-Bowers expression in 20-300 K temperature range (J = −6.8 cm−1, g = 2.07).  相似文献   

5.
The synthesis of iron(II), cobalt(II) and nickel(II) complexes supported by chelating borate ligands containing one pyrazole and two thioethers, phenyl(pyrazolyl)bis((alkylthio)methyl)borates, [Ph(pz)BtR], is described. The six-coordinate complexes [Ph(pz)Bt]2M, M = Fe (1Fe), Co (1Co) and Ni (1Ni), form exclusively the cis isomers as confirmed by X-ray diffraction analyses. Whereas 1Co and 1Ni are high spin, 1Fe exhibits a room temperature magnetic moment, μeff = 4.1 μB, consistent with spin-crossover behavior. Quantitative analysis of the electronic spectrum of 2Ni leads to a value of Dq = 1086 cm−1, reflective of a ligand field strength somewhat weaker than those imposed by the related tridentate borate ligands Tp or PhTt. Replacement of the methylthioether substituent with the sterically more demanding tert-butylthioether leads to the isolation of [Ph(pz)BttBu]MX, M = Co, X = Cl (2Co); M = Ni, X = Cl (2Ni) or acac (3). The solid state structures of 2Co and 2Ni are chloride-bridged dimers. Additional high-spin cobalt(II) complexes, accessible under distinct preparative conditions, [κ2-Ph(pzH)BttBu] CoCl2·THF (4) and [κ2-Ph(pz)BttBu]2Co (5), have been fully characterized.  相似文献   

6.
Reactions of 1,1′-(1,4-butanediyl)bis-1H-benzimidazole (bbbm) with Cd(II), Ni(II), or Co(II) afford three organic-metal polymers: {[Cd(bbbm)(SO4)(H2O)2]CH3OH}n (1), {[Ni(bbbm)2(H2O)2](NO3)2 · 2CH3OH · 6H2O}n (2) and {[Co(bbbm)2(H2O)2](NO3)2 · 2CH3OH · 6H2O}n (3). In 1, bbbm and coordinate to Cd(II) simultaneously leading to a 3-D structure. In 2 and 3, each bridging bbbm ligand links two Ni(II) or Co(II) ions forming the 2-D layered structure with (4, 4) grid units. Each (4, 4) grid unit is a 44-membered ring and constructed by four bbbm ligands acting as four sides and four Ni(II) or Co(II) ions representing four corners. Their third-order nonlinear optical (NLO) properties in DMF solution have been studied by Z-scan technique. The results show that the DMF solution of 2 possesses both the large third-order NLO absorptive and strong refractive behaviors; and 3’s shows large NLO absorptive effect and weak NLO refractive behavior. A reasonably good fit between the experimental data and the theoretical curve suggests that the experimentally obtained NLO effects are effective third-order in nature.  相似文献   

7.
Two new complex salts of the form (Bu4N)2[Ni(L)2] (1) and (Ph4P)2[Ni(L)2] (2) and four heteroleptic complexes cis-M(PPh3)2(L) [M = Ni(II) (3), Pd(II) (4), L = 4-CH3OC6H4SO2NCS2] and cis-M(PPh3)2(L′) [ M = Pd(II) (5), Pt(II) (6), L′ = C6H5SO2NCS2] were prepared and characterized by elemental analyses, IR, 1H, 13C and 31P NMR and UV-Vis spectra, solution and solid phase conductivity measurements and X-ray crystallography. A minor product trans-Pd(PPh3)2(SH)2, 4a was also obtained with the synthesis of 4. The NiS4 and MP2S2 core in the complex salts and heteroleptic complexes are in the distorted square-plane whereas in the trans complex, 4a the centrosymmetric PdS2P2 core is perforce square planar. X-ray crystallography revealed the proximity of the ortho phenyl proton of the PPh3 ligand to Pd(II) showing rare intramolecular C-H?Pd anagostic binding interactions in the palladium cis-5 and trans-4a complexes. The complex salts with σrt values ∼10−5 S cm−1 show semi-conductor behaviors. The palladium and platinum complexes show photoluminescence properties in solution at room temperature.  相似文献   

8.
A series of heterobimetallic polymeric complexes of manganese, cobalt, zinc, cadmium and nickel, [M(Mo2O5L2)(MeOH)2(H2O)2]n·nH2O {M = Mn (2), n = 1, Co (3), n = 0, Zn (4), n = 1 and Cd (5), n = 1} and [Ni(Mo2O5L2)(MeOH)(H2O)3]n·2H2O·MeOH (6) have been synthesized form the reaction of [{Na4(H2O)4(μ-H2O)2} ⊂ (Mo2O5L2)2] (1) {LH2 = 2-(3,5-di-tert-butyl-2-hydroxybenzylamino)acetic acid} with the corresponding metal salts. The complexes have been structurally characterized. The Complexes, 3 and 6 undergo thermal decomposition to afford mixed oxides of the type, MMoO4·MoO3 {M = Co or Ni}.  相似文献   

9.
Reaction between the dinuclear model hydrolases [M2(μ-OAc)2(OAc)2(μ-H2O)(tmen)2]; M = Ni (1); M = Co (2) and trimethylsilyltrifluoromethanesulphonate (TMS-OTf) under identical reaction conditions gives the mononuclear complex [Ni(OAc)(H2O)2(tmen)][OTf] · H2O (3) in the case of nickel and the dinuclear complex [Co2(μ-OAc)2(μ-H2O)2(tmen)2][OTf]2 (4) in the case of cobalt.Reaction of (3) with urea gives the previously reported [Ni(OAc)(urea)2(tmen)][OTf] (5), whereas (4) gives [Co2(OAc)3(urea)(tmen)2][OTf] (6) previously obtained by direct reaction of (2) with urea. Both (3) and (4) react with monohydroxamic acids (RHA) to give the dihydroxamate bridged dinuclear complexes [M2(μ-OAc)(μ-RA)2(tmen)2][OTf]; M = Ni (7); M = Co (8) previously obtained by the reaction of (1) and (2) with RHA, illustrating the greater ability of hydroxamic acids to stabilize dinuclear complexes over that of urea by means of their bridging mode, and offering a possible explanation for the inhibiting effect of hydroxamic acids by means of their displacing bridging urea in a possible intermediate invoked in the action of urease.  相似文献   

10.
The P,P′diphenylmethylenediphosphinic acid (H2pcp) reacts with Co(ClO4)2 · 6H2O and 4,4′-bipyridine to give a mixture of two polymeric isomers of formula [Co(pcp)(bipy)0.5(H2O)2], {red (1) and pink (2)} and the new violet hybrid [Co(Hpcp)2] (3). The pure red and violet species have been obtained by the reaction of H2pcp with Co(CH3COO)2 · 4H2O and bipy or with Co(ClO4)2 · 6H2O, respectively. The analogous reaction of Ni(CH3COO)2 · 4H2O or Ni(ClO4)2 · 6H2O with H2pcp and bipy affords only the [Ni(pcp)(bipy)0.5(H2O)2] species (4). The two cobalt isomers present different structural arrangements. Whereas the red isomer (1) shows an undulated 2D layered structure, the pink one (2) forms an infinite monodimensional strand. Both the architectures extend to higher dimensions through hydrogen bonding interactions. The nickel derivative is isomorphous with the red cobalt isomer. The violet [Co(Hpcp)2] (3), which is isomorphous with the complexes of the reported series [M(Hpcp)2], M = Ca(II), Mg(II), presents a monodimensional polymeric structure. Compounds 1 and 4 show a very similar thermal behaviour, the two water molecules being lost in the temperature range 25-150 and 160-320 °C, respectively. Temperature dependent X-ray powder diffractometry (TDXD) has been performed on compound 1 in order to follow the structural transformations that occur during the heating process.  相似文献   

11.
Four new heterobimetallic coordination polymers, namely, {[Cu(aeoe)M(H2O)3 · 2H2O]2}n (M = Mn(II) (1), Co(II) (2), Ni(II) (3)) and [Cu(aeoe)Ni(H2O)3]2 (4) (H4aeoe = N′-(2-aminoterephthalic acid)-N′′-(ethylenediamine)oxamidato) have been synthesized and characterized structurally. Complexes 1-3 are allomerism and feature 1-D ladder-like chain structure constructed from neutral tetranuclear complex units through the syn-anti carboxylate bridges, whereas complex 4 is a cyclic neutral tetranuclear complex unit. Their magnetic properties are also investigated based on their structures.  相似文献   

12.
Five-coordinate thiolato complexes, [L1M(SMeIm)] (M = Co and Ni) (L1 = hydrotris(3,5-diisopropyl-1-pyrazolyl)borate anion and HSMeIm = 2-mercapto-1-methylimidazole), were synthesized. These complexes were compared with the corresponding Cu(II) and Zn(II) complexes with the same ligands and were also compared with the related four-coordinate complexes [L1M(SC6F5)] (HSC6F5 = pentafluorobenzenthiol). All the complexes were characterized by X-ray crystallography and UV-Vis absorption, IR, 1H NMR, and other spectroscopic techniques. All five-coordinate thiolato complexes, [L1M(SMeIm)] (M = Co, Ni, and Cu), form a distorted square pyramidal structure with a high spin state, and only [L1Zn(SMeIm)] takes a four-coordinate structure with a distorted tetrahedral configuration. The N21-M-S bond angles of the obtained five-coordinate complexes were proportional to the corresponding d value, which comes from between the equatorial basal plane with N4S ligand donor sets and metal ion. These observations and M-S bond distances affect on UV-Vis and far-IR spectral behavior.  相似文献   

13.
Cobalt(III) complexes with new open chain oxime ligands: N,N′-bis(2-hydroxyiminopropionyl)-1,2-aminoethane (H2pen) and N,N′-bis(2-hydroxyiminopropionyl)-1,3-diaminopropane (H2pap) have been investigated. Single crystals of Co(papH−1)(Im2)·CH3OH (1) and Co(papH−1)(MEA)2·1.5H2O (2) (where Im = imidazole, MEA = monoethanolamine) suitable for X-ray crystallography were grown by slow evaporation of methanol/water solutions at room temperature. The molecular structures have been determined using single-crystal X-ray diffraction methods. The potentiometric and spectrophotometric results in aqueous solution reveal that both of the open chain ligands show a very high efficacy in the coordination of Co(II) ions. As it has been indicated, differences between the two oxime ligands in complexing ability may be attributed to the longer -CH2- chain in H2pap and by that a better fit of the relatively large Co(II) ion to the accessible binding site. One of the complex species confirmed under inert atmosphere, namely of type Co(LH−1) (where L = pap or pen), has been shown as the “active” form, capable of dioxygen uptake followed by irreversible oxidation to Co(III).  相似文献   

14.
The variations in the coordination environment of Co(II), Cu(II) and Zn(II) complexes with the neutral, tridentate ligand bis[1-(cyclohexylimino)ethyl]pyridine (BCIP) are reported. Analogous syntheses were carried out utilizing either the M(BF4)2 · xH2O or MCl2 · xH2O metal salts (where M = Co(II), Cu(II) or Zn(II)) with one equivalent of BCIP. When the hydrated metal starting material was used, cationic, octahedral complexes of the type [M(BCIP)2]2+ were isolated as the tetrafluoroborate salt (4, 5). Conversely, when the hydrated chloride metal salt was used as the starting material, only neutral, pentacoordinate [M(BCIP)Cl2] complexes (1-3) formed. All complexes were characterized by X-ray diffraction studies. The three complexes that are five coordinate have distortions due mainly to the pyridine di-imine bite angle. The [Cu(BCIP)Cl2] (2) also exhibits deviations in the Cu(II)-Cl bond distances with values of 2.4242(9) and 2.2505(9) Å, which are not seen in the analogous Zn(II) and Co(II) structures. Similarly, the two six coordinate complexes (5, 6) are also altered by the ligand frame bite angle giving rise to distorted octahedral geometries in each complex. The [Cu(BCIP)2](BF4)2 (6) also exhibits Cu(II)-Nimine bond lengths that are on average 0.14 Å longer than those found in the analogous 5 coordinate complex, [Cu(BCIP)Cl2]. In addition to X-ray analysis, all complexes were also characterized by UV/Vis and IR spectroscopy with 1H NMR spectroscopy being used for the analysis of the Zn(II) analogue (3).  相似文献   

15.
Reaction of manganese(II), iron(II), cobalt(II) and nickel(II) selenocyanate with 4,4′-bipyridine (bipy) in water at room temperature leads to the formation of the ligand-rich 1:2 hydrates [{M(bipy)(NCSe)2(H2O)2}·bipy]n (bipy = 4,4′-bipyridine) with M = Mn (1-Mn), Fe (1-Fe), Co (1-Co) and Ni (1-Ni). In their crystal structures, the metal cations are coordinated by two terminally N-bonded selenocyanato anions, two water molecules, and two bridging bipy ligands in an octahedral coordination mode. These building blocks are connected into linear M-bipy-M chains, which are further linked by hydrogen bonds between the water molecules and non-coordinated bipy ligands into layers. On heating these precursor compounds, they decompose into ligand-rich 1:2 anhydrates [M(NCSe)2(bipy)2]n with M = Mn (2-Mn), Fe (2-Fe), Co (2-Co) and Ni (2-Ni). After water removal the coordination spheres of the metal cations are completed by N-coordination of the bipy ligand which formerly was involved in OH···N hydrogen bonding. On further heating, the manganese(II) compound loses half of its bipy ligands leading to a new ligand-deficient 1:1 intermediate [Mn(NCSe)2(bipy)]n (3-Mn) with μ-1,3-bridging selenocyanato anions. In contrast, all other compounds decompose without the formation of ligand-deficient intermediates. These structural changes are accompanied with a dramatic change in their magnetic properties: Whereas all ligand-rich 1:2 compounds 1-M and 2-M (M = metal) show only Curie-Weiss paramagnetism, in the ligand-deficient 1:1 intermediate 3-Mn an antiferromagnetic long-range ordering at TN = 10.5 K is found. The thermal and magnetic properties are qualitatively compared with those of the related ligand-rich and ligand-deficient selenocyanato and thiocyanato compounds based on bipy, pyrazine and pyrimidine as ligand.  相似文献   

16.
Compounds of the molecular formulae, [LH3](NO3)3 (1), [Fe(LH)2](PF6)4·5H2O (2), [Fe(L)2][Fe(L)(LH)](PF6)5·H2O (3), [Fe(L)2][Fe(L)(LH)](BF4)5·2H2O (4) and [Fe(L)2](Cr2O7)·6H2O (5) have been synthesized using 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine (L). The molecular structures of all the compounds were determined. The Fe(II) complexes are high spin in nature at room temperature and upon cooling a gradual spin-transition is observed. Among 1-5, hydrogen-bonding, π···π, and anion···π interactions as well as water tetramer and pentamer are present in the molecular packing.  相似文献   

17.
The dinuclear terephthalato-bridged nickel(II) complexes [Ni2(cyclen)2(μ-tp)](ClO4)2 (1) [Ni2(trpn)2(μ-tp)(H2O)2](ClO4)2 (2) and [Ni2(3,3,3-tet)2(μ-tp)(H2O)2](ClO4)2 · 2H2O (3), where tp = terephthalate dianion, cyclen = 1,4,7,10-tetraazacyclododecane, trpn = tris(3-aminopropyl)amine and 3,3,3-tet = 1,5,9,13-tetraazatridecane, were synthesized and structurally characterized by X-ray crystallography. Their magnetic susceptibilities were also determined at variable temperatures over the range 2-300 K. The structures of these complexes consist of μ-tp bridging two Ni(II) centers in a bis(bidentate) bonding fashion in 1 and in bis(monodentate) bonding fashion in 2 and 3. The coordination geometry around the Ni(II) ions in these compounds has a distorted octahedral geometry with four nitrogen atoms from the amine ligand (cyclen, trpn or 3,3,3-tet) and two coordinated oxygen atoms supplied by the chelated carboxylate group of the bridged terephthalate ligand in 1, and by one tp-carboxylate-oxygen in 2 and 3. The sixth coordination site in the last two complexes 2 and 3 is achieved via an oxygen atom from a coordinated water molecule. The intradimer Ni…Ni distances in these complexes are 10.740, 11.428 and 11.537 Å for 1, 2 and 3, respectively. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Ni(II) centers. Also, the analysis of the infrared spectral data for the ν(COO) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(bidentate) and bis(monodentate) coordination modes for the bridged terephthalate ligand in 1, 2 and 3, respectively. Despite the different coordination modes of the tp bridging ligand in these complexes, they all exhibit very weak antiferromagnetic coupling. The coupling constants J were found to be −2.2, −0.6 and −1.5 cm3 K mol−1 for the complexes 1, 2 and 3, respectively. The structural and magnetic results of 1-3 are discussed in relation to the other related published μ-terephthalato dinuclear Ni(II) compounds.  相似文献   

18.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

19.
Four different mononuclear octahedral Ni(II) complexes with protonated and deprotonated form of the same ligand have been synthesized by controlling reaction conditions and structurally characterized. The complexes are [Ni(HLl-his)(benzoate)(MeOH)] (1), [Ni(HLl-his)(SCN)(MeOH)] (2), [Ni(HLl-his)2] (3) and [Ni(Ll-his)(imidazole)2] (4) where H2Ll-his is (S)-2-(2-hydroxybenzylamino)-3-(1H-imidazol-4-yl)-propionic acid. The ligand behaves as a monobasic tetradentate ligand in 1 and 2, monobasic tridentate ligand in 3 and dibasic tetradentate ligand in 4. Ni(II) coordinated phenolic proton of the ligand in the complexes 1-2 shows strong intra-molecular H-bonding with benzoate in 1 and lattice water in 2, whereas 3 shows intermolecular H-bonding between uncoordinated phenols with neighbouring carboxylate. The pH titration of the complexes revealed that metal coordination and H-bond in complexes 1 and 2 considerably lowers the acidity of ligand phenol (pKa 6.8 and 7.0 respectively) compared to phenol (pKa 10). The complex 4 does not show any proton loss due to the absence of phenolic proton. All the complexes show extensive H-bonded network in the crystals including narrow (7.8 × 5.2 Å) water filled one dimensional channel in 2.  相似文献   

20.
Five novel heterometallic Ni/Zn coordination compounds [Ni(en)3][ZnCl4] (1), [Ni(en)(Hea)2][ZnCl4] (2), [Ni(dien)2][ZnCl4] (3), [Ni(en)3][ZnCl4] · 2DMSO (4) and [Ni(en)3][Zn(NCS)4] · CH3CN (5), where en = ethylenediamine (ethane-1,2-diamine), Hea = monoethanolamine (2-aminoethanol) and dien = diethylenetriamine (1,4,7-triazaheptane), have been synthesized by means of the open-air reaction of zinc oxide, nickel chloride (or nickel powder), NH4X (X = Cl, NCS) and ligand (en, dien, Hea) in non-aqueous solvents, such as DMSO, DMF, CH3OH and CH3CN. The choice of a counter-anion in the initial ammonium salt as well as selection of the ligand and solvent provides an effortless approach to the controlled assembly of two- or three-dimensional extended networks assisted by hydrogen bonding. Crystallographic investigations reveal that 1, 2 and 5 possess 3D, while 3 and 4 exhibit 2D H-bonded crystal structures. The structures of the compounds exhibit six-coordinated Ni(II) centers and four-coordinated Zn(II) centers in distorted octahedral and tetrahedral geometries, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号