首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclin dependent kinases (CDKs) are key regulators of the cell cycle progression and therefore constitute excellent targets for the design of anticancer agents. Most of the inhibitors identified to date inhibit kinase activity by interfering with the ATP-binding site of CDKs. We recently proposed that the protein/protein interface and conformational changes required in the molecular mechanism of CDK2-cyclin A activation were potential targets for the design of specific inhibitors of cell cycle progression. To this aim, we have designed and characterized a small peptide, termed C4, derived from amino acids 285-306 in the alpha5 helix of cyclin A. We demonstrate that this peptide does not interfere with complex formation but forms stable complexes with CDK2-cyclin A. The C4 peptide significantly inhibits kinase activity of complexes harboring CDK2 in a competitive fashion with respect to substrates but does not behave as an ATP antagonist. Moreover, when coupled with the protein transduction domain of Tat, the C4 peptide blocks the proliferation of tumor cell lines, thereby constituting a potent lead for the development of specific CDK-cyclin inhibitors.  相似文献   

2.
Vanadium compounds are promising agents in the therapeutic treatment of diabetes mellitus, but their mechanism of action has not been fully elucidated. The current work investigated the effects of vanadyl acetylacetonate, VO(acac)2, on peroxisome-proliferator-activated receptor γ (PPARγ) and adiponectin, which are important targets of antidiabetic drugs. The experimental results revealed that vanadyl complexes increased the expression and multimerization of adiponectin in differentiated rat adipocytes. VO(acac)2 caused activation of p38 mitogen-activated protein kinase (MAPK) and AMP-activated protein kinase (AMPK) and elevation of PPARγ levels. The specific inhibitors SB203580 (p38 MAPK inhibitor) and T0070907 (PPARγ inhibitor) decreased the expression of adiponectin; however, compound C (AMPK inhibitor) did not significantly reduce the expression of adiponectin. In addition, vanadyl complexes induced protein–protein interaction between PPARγ and a vanadium-binding chaperone, heat shock protein 60 kDa. Overall, our results suggest that vanadyl complexes may upregulate PPARγ by suppressing PPARγ degradation, and thus stimulate adiponectin expression and multimerization. The present work has provided new insights into the mechanism of the antidiabetic actions of vanadium compounds.  相似文献   

3.
During the course of our research efforts to develop potent and selective AKT inhibitors, we discovered enatiomerically pure substituted dihydropyridopyrimidinones (DHP) as potent inhibitors of protein kinase B/AKT with excellent selectivity against ROCK2. A key challenge in this program was the poor physicochemical properties of the initial lead compound 5. Integration of structure-based drug design and physical properties-based design resulted in replacement of a highly hydrophobic poly fluorinated aryl ring by a simple trifluoromethyl that led to identification of compound 6 with much improved physicochemical properties. Subsequent SAR studies led to the synthesis of new pyran analog 7 with improved cell potency. Further optimization of pharmacokintetics properties by increasing permeability with appropriate fluorinated alkyl led to compound 8 as a potent, selective AKT inhibitors that blocks the phosphorylation of GSK3β in vivo and had robust, dose and concentration dependent efficacy in the U87MG tumor xenograft model.  相似文献   

4.
The preparation of cationic rhodium complexes of the types [RhL(IQNO)2]ClO4 (L  COD, COT and NBD) and [Rh(COD)(IQNO)L′]ClO4 (L′ = 4-NH2py, 4-NMe2py and PPh3) and the reactions of [Rh(COD)(IQNO)2]ClO4 with N- and P-donor ligands are described.  相似文献   

5.
A role for protein phosphorylation in the process of neurite outgrowth has been inferred from many studies of the effects of protein kinase inhibitors and activators on cultured neurotumor cells and primary neuronal cells from developing brain or ganglia. Here we re-examine this issue, using a culture system derived from a fully differentiated neuronal system undergoing axonal regeneration—the explanted goldfish retina following optic nerve crush. Of the relatively non-selective protein kinase inhibitors employed, H7, staurosporine and K252a were found to block neurite outgrowth, whereas HA1004 had no effect, a result which appears to rule out a critical role for protein kinase A. The more selective protein kinase C inhibitors, sphingosine, calphostin C and Ro-31-8220 were all inhibitory, as was prolonged treatment with phorbol ester and the protein phosphatase inhibitor okadaic acid. These results are in support of a role for protein kinase C in axonal regrowth.  相似文献   

6.
Abstract

The aim of this study is to propose an improved computational methodology, which is called Compressed Images for Affinity Prediction-2 (CIFAP-2) to predict binding affinities of structurally related protein–ligand complexes. CIFAP-2 method is established based on a protein–ligand model from which computational affinity information is obtained by utilizing 2D electrostatic potential images determined for the binding site of protein–ligand complexes. The quality of the prediction of the CIFAP-2 algorithm was tested using partial least squares regression (PLSR) as well as support vector regression (SVR) and adaptive neuro-fuzzy ?nference system (ANFIS), which are highly promising prediction methods in drug design. CIFAP-2 was applied on a protein–ligand complex system involving Caspase 3 (CASP3) and its 35 inhibitors possessing a common isatin sulfonamide pharmacophore. As a result, PLSR affinity prediction for the CASP3–ligand complexes gave rise to the most consistent information with reported empirical binding affinities (pIC50) of the CASP3 inhibitors.  相似文献   

7.
8.
This study provides a comprehensive computational procedure for the discovery of novel urea-based antineoplastic kinase inhibitors while focusing on diversification of both chemotype and selectivity pattern. It presents a systematic structural analysis of the different binding motifs of urea-based kinase inhibitors and the corresponding configurations of the kinase enzymes. The computational model depends on simultaneous application of two protocols. The first protocol applies multiple consecutive validated virtual screening filters including SMARTS, support vector-machine model (ROC = 0.98), Bayesian model (ROC = 0.86) and structure-based pharmacophore filters based on urea-based kinase inhibitors complexes retrieved from literature. This is followed by hits profiling against different extended electron distribution (XED) based field templates representing different kinase targets. The second protocol enables cancericidal activity verification by using the algorithm of feature trees (Ftrees) similarity searching against NCI database. Being a proof-of-concept study, this combined procedure was experimentally validated by its utilization in developing a novel series of urea-based derivatives of strong anticancer activity. This new series is based on 3-benzylbenzo[d]thiazol-2(3H)-one scaffold which has interesting chemical feasibility and wide diversification capability. Antineoplastic activity of this series was assayed in vitro against NCI 60 tumor-cell lines showing very strong inhibition of GI50 as low as 0.9 uM. Additionally, its mechanism was unleashed using KINEX™ protein kinase microarray-based small molecule inhibitor profiling platform and cell cycle analysis showing a peculiar selectivity pattern against Zap70, c-src, Mink1, csk and MeKK2 kinases. Interestingly, it showed activity on syk kinase confirming the recent studies finding of the high activity of diphenyl urea containing compounds against this kinase. Allover, the new series, which is based on a new kinase scaffold with interesting chemical diversification capabilities, showed that it exhibits its “emergent” properties by perturbing multiple unexplored kinase pathways.  相似文献   

9.
Protein structure determination of soluble globular protein domains has developed into an efficient routine technology which can now be applied to generate and analyze structures of entire human protein families. In the kinase area, several kinase families still lack comprehensive structural analysis. Nevertheless, Structural Genomics (SG) efforts contributed more than 40 kinase catalytic domain structures during the past 4 years providing a rich resource of information for large scale comparisons of kinase active sites. Moreover, many of the released structures are inhibitor complexes that offer chemical starting points for development of selective and potent inhibitors. Here we discuss the currently available structural data and strategies that can be utilized for the development of highly selective inhibitors.  相似文献   

10.
A series of systematically modified vanadyl-β-diketone complexes, VO(β-diketone)2, bearing substituent groups with different electron inductive properties were synthesized and evaluated as inhibitors against calf-intestine alkaline phosphatase (APase). A combination of biochemical and quantum mechanical techniques were employed to identify structure-activity relationships relevant for rational design of phosphatase inhibitors. Kinetic parameters and activation free energy, enthalpy, and entropy for calf-intestine APase-catalyzed dephosphorylation of para-nitrophenylphosphate were also determined along with the inhibition constants (Ki) for the VO(β-diketone)2 complexes. Increased positive charge on the vanadyl group increases the inhibition potency of the complex while the absence of an available coordination site on the complex decreases its inhibition potency. These findings correlate well with the results of ab initio electron density calculations for the complexes.  相似文献   

11.
12.
The phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that regulate the cellular signal transduction pathways involved in cell growth, proliferation, survival, apoptosis, and adhesion. Deregulation of these pathways are common in oncogenesis, and they are known to be altered in other metabolic disorders as well. Despite its huge potential as an attractive target in these diseases, there is an unmet need for the development of a successful inhibitor. Unlike protein kinase inhibitors, screening for lipid kinase inhibitors has been challenging. Here we report, for the first time, the development of a radioactive lipid kinase screening platform using a phosphocellulose plate that involves transfer of radiolabeled [γ-32P]ATP to phosphatidylinositol 4,5-phosphate forming phosphatidylinositol 3,4,5-phosphate, captured on the phosphocellulose plate. Enzyme kinetics and inhibitory properties were established in the plate format using standard inhibitors, such as LY294002, TGX-221, and wortmannin, having different potencies toward PI3K isoforms. ATP and lipid apparent Km for both were determined and IC50 values generated that matched the historical data. Here we report the use of a phosphocellulose plate for a lipid kinase assay (PI3Kβ as the target) as an excellent platform for the identification of novel chemical entities in PI3K drug discovery.  相似文献   

13.
Knight JD  Qian B  Baker D  Kothary R 《PloS one》2007,2(10):e982
The human proteome is rich with protein kinases, and this richness has made the kinase of crucial importance in initiating and maintaining cell behavior. Elucidating cell signaling networks and manipulating their components to understand and alter behavior require well designed inhibitors. These inhibitors are needed in culture to cause and study network perturbations, and the same compounds can be used as drugs to treat disease. Understanding the structural biology of protein kinases in detail, including their commonalities, differences and modes of substrate interaction, is necessary for designing high quality inhibitors that will be of true use for cell biology and disease therapy. To this end, we here report on a structural analysis of all available active-conformation protein kinases, discussing residue conservation, the novel features of such conservation, unique properties of atypical kinases and variability in the context of substrate binding. We also demonstrate how this information can be used for structure prediction. Our findings will be of use not only in understanding protein kinase function and evolution, but they highlight the flaws inherent in kinase drug design as commonly practiced and dictate an appropriate strategy for the sophisticated design of specific inhibitors for use in the laboratory and disease therapy.  相似文献   

14.
The 3.15-Å-resolution crystal structure of the R enantiomer of the highly bioactive and antiproliferative half-sandwich ruthenium complex DW12 bound to the ATP binding site of glycogen synthase kinase 3β (GSK-3β) is reported and the binding is compared with the GSK-3β binding of staurosporine and other organic inhibitors. The structure reveals a close packing of the organometallic inhibitor in the ATP binding site of GSK-3β via an induced-fit mechanism. The molecular structure of (R)-DW12 with the CO ligand oriented perpendicular to the pyridocarbazole heterocycle allows the complex to stretch the whole distance sandwiched between the faces of the N- and C-terminal lobes and to interact tightly with the flexible glycine-rich loop, which is uncommon for the interaction of GSK-3β with organic inhibitors.  相似文献   

15.
Starch synthesis is an elaborate process employing several isoforms of starch synthases (SSs), starch branching enzymes (SBEs) and debranching enzymes (DBEs). In cereals, some starch biosynthetic enzymes can form heteromeric complexes whose assembly is controlled by protein phosphorylation. Previous studies suggested that SSIIa forms a trimeric complex with SBEIIb, SSI, in which SBEIIb is phosphorylated. This study investigates the post-translational modification of SSIIa, and its interactions with SSI and SBEIIb in maize amyloplast stroma. SSIIa, immunopurified and shown to be free from other soluble starch synthases, was shown to be readily phosphorylated, affecting Vmax but with minor effects on substrate Kd and Km values, resulting in a 12-fold increase in activity compared with the dephosphorylated enzyme. This ATP-dependent stimulation of activity was associated with interaction with SBEIIb, suggesting that the availability of glucan branching limits SSIIa and is enhanced by physical interaction of the two enzymes. Immunoblotting of maize amyloplast extracts following non-denaturing polyacrylamide gel electrophoresis identified multiple bands of SSIIa, the electrophoretic mobilities of which were markedly altered by conditions that affected protein phosphorylation, including protein kinase inhibitors. Separation of heteromeric enzyme complexes by GPC, following alteration of protein phosphorylation states, indicated that such complexes are stable and may partition into larger and smaller complexes. The results suggest a dual role for protein phosphorylation in promoting association and dissociation of SSIIa-containing heteromeric enzyme complexes in the maize amyloplast stroma, providing new insights into the regulation of starch biosynthesis in plants.  相似文献   

16.
The bisubstrate fluorescent probe ARC-583 (Adc-Ahx-(d-Arg)6-d-Lys(5-TAMRA)-NH2) and its application for the characterization of both ATP- and protein/peptide substrate-competitive inhibitors of protein kinases PKA (cyclic AMP-dependent protein kinase) and ROCK (rho kinase) in fluorescence polarization-based assay are described. High affinity of the probe (KD = 0.48 nM toward PKA) enables its application for the characterization of inhibitors with nanomolar and micromolar potency and determination of the active concentration of the kinase in individual experiments as well as in the high-throughput screening format. The probe can be used for the assessment of protein-protein interactions (e.g., between regulatory and catalytic subunits of PKA) and as a cyclic AMP biosensor.  相似文献   

17.
Selective degradation of cyclins, inhibitors of cyclin-dependent kinases and anaphase inhibitors is responsible for several major cell cycle transitions. The degradation of these cell cycle regulators is controlled by the action of ubiquitin—protein-ligase complexes, which target the regulators for degradation by the 26S proteasome. Recent results indicate that two types of multisubunit ubiquitin ligase complexes, which are connected to the protein kinase regulatory network of the cell cycle in different ways, are responsible for the specific and programmed degradation of many cell cycle regulators.  相似文献   

18.
The role of glycosidic residues in the inhibitory properties of ruthenium complexes on mitochondrial calcium uptake was determined in mitoplasts.Our results showed that the binding and inhibitory properties of ruthenium amine complexes were modified when mitoplasts were exposed to N-glycosidase F action, but calcium uptake was not altered. N-linked proteins of the mitochondrial inner membrane were identified. We detected an 18-kDa protein that binds labeled Ru360 under control conditions, but failed to bind the inhibitor after deglycosilation. A relationship between this protein and the action of ruthenium amine inhibitors of the mitochondrial uniporter is proposed.  相似文献   

19.
Summary About 25% of total pyruvate kinase activity in human skeletal muscle is associated with the ribonucleoprotein complexes soluble in salt solutions of high ionic strength. These complexes, called form MB, crystallize readily from 48% saturated ammonium sulfate at pH 5.6.Crystalline preparations represent a heterogenous population of ribonucleoprotein complexes displaying a graduated activity and a variable RNA content. Free protein was not detected in the preparations.Fractionation of crystalline complexes in salt solutions of varying ionic strength and pH, followed by gel filtration on Sephadex G-200 led to the separation of two nucleoprotein fractions with very high specific activity. Fractions containing 30% RNA and 85% RNA respectively revealed a specific activity of 660–670 U/mg protein at 25°C.Pyruvate kinase form MA was extracted from muscle homogenate with distilled water, purified to homogeneity and crystallized. It contained less than 0.2% RNA and had a specific activity of 270 U/mg. Active ribonucleoprotein complexes gave in double immunodiffusion test the precipitation bands with the anti-MA sera at the same protein concentration of both antigens, MB and MA.Pyruvate kinase MB with high activity is sensitive to treatment with RNase. Digestion with RNase for 10 min at 25°C diminished the initial specific activity to about one third. Similar residual activity was found in crystalline ribonucleo protein complexes with low RNA content (3.5–20% RNA) which are resistant to further inactivation by RNase.These results implicate the enhancement and control of pyruvate kinase activity by RNA bound to the enzyme.This work was supported by a grant from the Biochemical and Biophysical Committee of Polish Academy of Sciences.  相似文献   

20.
A novel series of highly selective JNK inhibitors based on the 4-quinolone scaffold was designed and synthesized. Structure based drug design was utilized to guide the compound design as well as improvements in the physicochemical properties of the series. Compound (13c) has an IC50 of 62/170 nM for JNK1/2, excellent kinase selectivity and impressive efficacy in a rodent asthma model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号