首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six new coordination polymers based on V-shaped linkage 2,5-bis(4-pyridyl)-1,3,4-thiadiazole (bpt) and transition metal ions, [Co(bpt)(pm)0.5(H2O)]n · 3nH2O (1), [Cu2(bpt)(pm)(H2O)4]n (2), [Co(bpt)(pydc)]n · 2nCHCl3 · nH2O (3), [Cu2(bpt)(pydc)2(H2O)2]n (4), [Cu2(bpt)(pydco)2(H2O)2]n · nH2O (5) and [Cd(bpt)(pydco)]n (6) (H4pm = pyromellitic acid, H2pydc = pyridine-2,6-dicarboxylic acid, H2pydco = pyridine-2,6-dicarboxylic acid N-oxide), have been synthesized under the intervention of various polycarboxylate ligands. Complex 1 exhibits a 3-D 4-connected structure with 1-D nanosized open channels encapsulated lots of water molecules. Complex 2 represents a 2-D grid containing two types of rectangular windows. When pydc and pydco instead of pm, complexes 3 and 6 were obtained with highly undulated 2-D layers. The interlayers of 3 are filled with two kinds of solvent molecules, whereas 6 is a double-layered framework without free molecules. Complexes 4 and 5 consist of two distinct 1-D infinite chains held together to form different 2-D supramolecular networks. Importantly, bpt spacer shows changeful conformational geometries and generates complicated crystalline architectures with the introduction of polycarboxylate ligands. Additionally, thermal stability of complexes 1, 3 and 5, fluorescent properties of 6 and X-ray powder diffraction of 1 have also been investigated.  相似文献   

2.
Five structurally diverse complexes, [Cd2(pyip)2(suc)2]n·1.5nH2O (1), [Zn(pyip)(glu)]n (2), [Cd(pyip)(glu)]n (3), [Zn(pyip)2(adip)2]n·2.5nH2O (4), [Cd3(pyip)2(adip)3]n (5) (pyip = 2-(pyridin-3-yl)-1H-imidazo[4,5-f][1,10]phenan-throline, H2suc = succinic acid, H2glu = glutaric acid, H2adip = adipic acid), have been hydrothermally synthesized. Complexes 1 and 4 are ribbon-like chains, in which pyip ligands attach to the both sides of the chain in pairs. Complex 2 is a one dimensional (1D) wave-like chain, while the pyip ligands attach to only one side of the chain. Complexes 3 and 5 are both two dimensional (2D) networks, in which the dicarboxylate ligands connect the dinuclear or trinuclear CdII units into layers with (4, 4) topological network. The structural differences among these complexes show that the organic acids have important influences on the final structures.  相似文献   

3.
Six copper(I) complexes {[Cu2(L1)(PPh3)2I2] · 2CH2Cl2}n (1), {[Cu2(L2)(PPh3)2]BF4}n (2), [Cu2(L3)(PPh3)4I2] · 2CH2Cl2 (3), [Cu2(L4)(PPh3)4I2] (4), [Cu2(L5)(PPh3)2I2] (5) and [Cu2(L6)(PPh3)2I2] (6) have been prepared by reactions of bis(schiff base) ligands: pyridine-4-carbaldehyde azine (L1), 1,2-bis(4′-pyridylmethyleneamino)ethane (L2), pyridine-3-carbaldehyde azine (L3), 1,2-bis(3′-pyridylmethyleneamino)ethane (L4), pyridine-2-carbaldehyde azine (L5), 1,2-bis(2′-pyridylmethyleneamino)ethane (L6) with PPh3 and copper(I) salt, respectively. Ligand L1 or L2 links (PPh3)2Cu2(μ-I)2 units to form an infinite coordination polymer chain. Ligand 3 or 4 acts as a monodentate ligand to coordinate two copper(I) atoms yielding a dimer. Ligand 5 or 6 chelates two copper(I) atoms using pyridyl nitrogen and imine nitrogen to form a dimer. Complexes 1-4 exhibit photoluminescence in the solid state at room temperature. The emission has been attributed to be intraligand π-π* transition mixed with MLCT characters.  相似文献   

4.
In this paper, we have presented the synthesis and crystal structures of five coordination polymers, namely, {[Ni2(cysteate)2(bpy)2(H2O)2]·3H2O}n (1), {[Cu2(cysteate)2(bpy)2(H2O)2]·4H2O}n (2), {[Mn2(cysteate)2(bpy)(H2O)4](bpy)·H2O}n (3), {[Zn2(cysteate)2(bpy)(H2O)4](bpy)·H2O}n (4), {[Cd(cysteate)(bpy)(H2O)]·4H2O}n (5), using homochiral l-cysteate and 4,4′-bipyridine (bpy) as mixed ligands, reacted with Ni(II), Cu(II), Mn(II), Zn(II) and Cd(II) ions, respectively. When different metal centers being used, l-cysteate gave rise to three different architectures based on coordination polymeric chains: (1) a helical chain, which is further connected by bpy pillars to generate a racemic twofold 3D (42.84)-lvt net in 1 and 2; (2) a zigzag chain, which is further linked by bpy pillars into a homochiral 2D brick-wall structure in 3 and 4; (3) a zigzag chain, which is further linked by bpy pillars into a homochiral 2D 44 grid network in 5. These results indicate that the metal-directed M(II)-cysteate chain has an important effect on the structural diversification of such complexes.  相似文献   

5.
The synthesis of palladacyclopentadiene derivatives with the mixed-donor bidentate ligands o-Ph2PC6H4CHNR (NP) has been achieved. The new complexes of general formula [Pd{C4(COOMe)4}(o-Ph2PC6H4CHNR)] [R=Me (1), Et (2), iPr (3), tBu (4), NHMe (5)] have been prepared by reaction between the precursor [Pd{C4(COOMe)4}]n and the corresponding iminophosphine. The polymer complex [Pd{C4(COOMe)4}]n also reacts with pyridazine (C4H4N2) to give the insoluble dinuclear complex [Pd{C4(COOMe)4}(μ-C4H4N2)]2 (6), which has been successfully employed as precursor in the synthesis of pyridazine-based palladacyclopentadiene complexes. The reaction of 6 with tertiary phosphines yielded complexes containing an N,P-donor setting of formula [Pd{C4(COOMe)4}(C4H4N2)(L)] (L=PPh3 (7), PPh2Me (8), P(p-MeOC6H4)3 (9), P(p-FC6H4)3 (10)). The new complexes were characterized by partial elemental analyses and spectroscopic methods (IR, 1H, 19F and 31P NMR). The molecular structure of complex 3 has been determined by a single-crystal diffraction study, showing that the iminophosphine acts as chelating ligand with coordination around the palladium atom slightly distorted from the square-planar geometry.  相似文献   

6.
Schiff bases of 2-hydroxybenzophenone (HBP) (C6H5)(2-HOC6H4)CN(CH2)nEAr (L1/L2: E = S, Ar = Ph, n = 2/3; L3/L4: E = Se, Ar = Ph, n = 2/3; L5/L6: E = Te, Ar = 4-MeOC6H4, n = 2/3) and their complexes [PdCl(L-H)] (L = L1L6; 1, 2, 3, 5, 7, 11), [PtCl(L3-H/L5-H)] (4/8), [PtCl2(L4/L6)2] (6/12), [(p-cymene)RuCl(L5/L6)]Cl (9/13) and [HgBr2(L5/L6)2] (10/14) have been synthesized and characterized by proton, carbon-13, selenium-77 and tellurium-125 NMR, IR and mass spectra. Single crystal structures of L1, 1, 3, 4, 5 and 7 were solved. The Pd-E bond distances (Å): 2.2563(6) (E = S), 2.3575(6)−2.392(2) (E = Se); 2.5117(5)−2.5198(5) (E = Te) are near the lower end of the bond length range known for them. The Pt-Se bond length, 2.3470(8) Å, is also closer to the short values reported so far. The Heck and Suzuki reaction were carried out using complexes 1, 3, 5 and 7 as catalysts under aerobic condition. The percentage yields for trans product in Heck reaction were found upto 85%.  相似文献   

7.
Four novel topological nets of lanthanide metal-organic frameworks: [Sm2(op)3(H2O)]n (1), {Ln2(op)2(ox)(H2O)4] · H2O}n (Ln = La, 2; Sm, 3), {[La2(mp)2(ox)(H2O)4] · 2H2O}n (4), [La2(op)2(mp)(H2O)4]n (5) (op = o-phthalate, mp = m-phthalate, and ox = oxalate), have been hydrothermally synthesized and characterized. Compound 1 exhibits novel (3,4,5,6)-connected five-nodal two-dimensional net, compound 2 and 3 show the (3,4)-connected V2O5 topologies, compound 4 has the (4,5)-connected topological net, and compound 5 shows the (4,5)-connected four-nodal three-dimensional network. Photoluminescent analyses of 1 and 3 show strong blue emission in the solid state at room temperature.  相似文献   

8.
Four new complexes, {[Mn(imH)2(pdc)]·H2O}n (1), [Zn2(pdc)2(H2O)5]·2H2O (2), [Zn(imH)2(pdc)]·H2O (3), {[Zn2(pdc)2(bpy)(H2O)2]·5H2O}n (4) [imH = imidazole pdc = pyridine 2,6-dicarboxylate, bpy = 4,4′-bipyridine] have been synthesized under hydrothermal conditions and structurally characterized by elemental analysis, IR, PXRD, single-crystal X-ray diffraction and thermogravimetric analyses. All the four complexes display a three-dimensional (3D) open framework with one-dimensional (1D) channels that are filled with lattice water molecules. Particularly, in 4, the lattice water molecules form an infinite water chain. Both 1 and 4 consist of 1D polymeric chains. While 2 contains a dinuclear Zn(II) unit, and 3 is a mononuclear complex. Further, the result of thermal analysis of 1 and 2 shows the robustness of the overall supramolecular three-dimensional architecture. Complexes 1, 3, and 4 exhibit strong fluorescent emissions in the solid state at room temperature and could be significant in the field of photoactive materials.  相似文献   

9.
Seven copper complexes [Cu(L1)I2] (1), [Cu2(L1)2I2]2[Cu2(μ-I)2I2] (2), [Cu(L2)I2] (3), [Cu2(L2)(μ-I)I(PPh3)] (4), [Cu4(L2)2(μ-I)2I2] (5), {[Cu(L2)I]2[Cu2(μ-I)2I2]}n (6) and [Cu2(L2)(μ-I)2]n (7) have been prepared by reactions of ligands: 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine (L1) and 4′-(3-pyridyl)-2,2′:6′,2″-terpyridine (L2) with CuI in hydrothermal conditions, respectively. By alternating the oxidations states of the metal centers, increasing stoichiometric metal/ligand ratio and introducing a second ligand, the compounds, were successfully developed from mononuclear (1 and 3) to multinuclear (2, 4 and 5) and polymers (6 and 7). The synthesis of these compounds may provide an approach for the construction of coordination compounds of 4′-pyridyl terpyridine with different nuclearity.  相似文献   

10.
New trinuclear iron(III) furoates with the general formula [Fe3O(α-fur)6(R-OH)3]X, where α-fur C4H3OCOO, R = CH3 (1), C2H5 (2), n-C3H7 (3), n-C4H9 (4), X = NO3 (1-4); [Fe3O(α-Fur)6(DMF)(CH3OH)2]NO3 (5); [Fe3O(α-Fur)6(H2O)(CH3OH)2]Cl (6); [Fe2MO(α-Fur)6(L)(H2O)2], where L = THF (7-9), DMF (10-12), M = Mn2+ (7, 10), Co2+ (8, 11), Ni2+ (9, 12) and [Fe2MO(α-Fur)6(3Cl-Py)3], where M = Mn2+ (13), Co2+ (14), Ni2+ (15); have been prepared and investigated by Mössbauer and IR spectroscopy. The X-ray crystal structure for the 1·2CH3OH complex indicates that it crystallizes in the monoclinic crystal system (P21/n) and has a structure typical of μ3-O-bridged trinuclear iron(III) compounds. Coordination compounds 1, 4, 7, 8 can be used as regulators of the biochemical composition of cyanobacterium Spirulina platensis biomass. The supplementation of these compounds, in concentrations exceeding 5-10 mg/l, increases the content of iron, amino acids, peptides and carbohydrates in Spirulina.  相似文献   

11.
Reactions of 2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L1), 2-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L2), 2-(3,5-di-tert-butylpyrazol-1-ylmethyl)pyridine (L3) and 2-(3-p-tolylpyrazol-1-ylmethyl)pyridine (L4) with K2[PtCl4] in a mixture of ethanol and water formed the dichloro platinum complexes [PtCl2(L1)] (1), [PtCl2(L2)] (2), [PtCl2(L3)] (3) and [PtCl2(L4)] (4). Complex 1, [PtCl2(L1)], could also be prepared in a mixture of acetone and water. Performing the reactions of L2 and L3 in a mixture of acetone and water, however, led to C-H activation of acetone under mild conditions to form the neutral acetonyl complexes [Pt(CH2COCH3)Cl(L2)] (2a) and [Pt(CH2COCH3)Cl(L3)] (3a). The same ligands reacted with HAuCl4 · 4H2O in a mixture of ethanol and water to form the gold salts [AuCl2(L1)][AuCl4] (5) [AuCl2(L2)][Cl] (6) [AuCl2(L3)][Cl] (7) and [AuCl2(L4)][AuCl4] (8); however, with the pyrazolyl unit in the para position of the pyridinyl ring in 4-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L5), 4-(3,5-diphenylpyrazol-1-ylmethyl)pyridine (L6) neutral gold complexes [AuCl3(L5)] (9) and [AuCl2(L6)] (10) were formed; signifying the role the position of the pyrazolyl group plays in product formation in the gold reactions. X-ray crystallographic structural determination of L6, 2, 33a, 8 and 10 were very important in confirming the structures of these compounds; particularly for 3a and 8 where the presence of the acetonyl group confirmed C-H activation and for 8 where the counter ion is . Cytotoxicity studies of L2, L4 and complexes 1-10 against HeLa cells showed the Au complexes were much less active than the Pt complexes.  相似文献   

12.
Three novel complexes [Mn(atza)2(H2O)4] (1), [Mn(nptza)2(CH3OH)4] (2), and [Mn(a4-ptz)2(H2O)2]n · 2nH2O] (3) [atza = 5-aminotetrazole-1-acetato, nptza = 5-[(4-nitryl)phenyl] tetrazole-1-acetato, a4-ptz = 5-[N-acetato(4-pyridyl)] tetrazole] containing carboxylate-tetrazolate ligands have been synthesized and characterized by element analysis. X-ray crystallography shows that complexes 1 and 2 both contain mononuclear structure. The complex 3 is a 1D polymeric chain structure. Compounds 1-3 are self-assembled to form supramolecular structures through hydrogen bonds interactions.  相似文献   

13.
By pH-value adjustment, the reactions of zinc salt, 1,3,5-benzenetricarboxylic acid (H3btc) and 4,4′-bipyridine (bpy) yield three coordination polymers, formulated as [Zn3(btc)2(bpy)(H2O)2]n (1), [Zn(Hbtc)(bpy)(H2O)]n · 3nH2O (2) and [Zn(Hbtc)(bpy)(H2O)]n · 4nH2O (3), respectively. The structure of 1 is a 3D network containing channels filled with bpy ligands. Compound 2 consists of twofold interpenetrating (10,3)-b networks, while compound 3 is a 2D layer structure. The fluorescent studies reveal that they exhibit intense violet luminescence in solid state.  相似文献   

14.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

15.
Using the principle of crystal engineering, six metal-organic coordination polymers, [Cd(bdc)(3-pytpy)]n · 2nH2O (1), [Cd(bdc)0.5(3-pytpy)]n · n(ClO4) (2), Cd(ndc)0.5(3-pytpy)]n · n(ClO4) (3), [Zn(ndc)(3-pytpy)]n (4), [Cd(bqdc)(3-pytpy)]n (5), and [Zn(pam)(3-pytpy)]n · 2nH2O (6) (H2bdc = benzene-1,4-dicarboxylic acid, H2ndc = naphthalene-2,6-dicarboxylic acid, H2bqdc = 2,2′-biquinoline-4,4′-dicarboxylic acid, H2pam = pamoic acid), were synthesized and structurally characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray diffraction analyses. Compounds 1-6 crystallize in the presence of organic-acid linkers as well as multi-functional N-donor ligand 4′-(3-pyridyl)-2,2′:6′,2′′-terpyridine (3-pytpy). In complexes 1, 4, 5, and 6, the dicarboxylate as bridging ligand connects metal atoms to form the main body of 1D zigzag chains for 1 and 4, nearly linear chain for 5 and helical chain for 6, while 3-pytpy as tridentate chelating ligand is just like lateral arm grafting on both sides of these chains. In complexes 2 and 3, both the dicarboxylate and 3-pytpy as bridging ligands connect metal atoms into 2D polymeric structure for 2 and 1D chain of alternating loops and rods for 3. The weak interactions such as hydrogen bonding and π···π stacking were investigated on the formation of superamolecular structures and the influence of organic acid on the formation of the final structures was discussed. In addition, the photoluminescent properties of 1-6 were also determined.  相似文献   

16.
The silver(I) complexes [Ag{C5H4N(NC)}]n(BF4)n (1), [Ag{C5H4N(NC)}2]n(BF4)n (2), [Ag{C6H4(NC)2}]n(BF4)n (3), and [Ag{C6H4(NC)2}2]n(BF4)n (4) have been synthesized using different Ag:L ratios of 2-isocyanopyridine (or 2-pyridylisocyanide, CNPy-2) or 1,2-phenylenediisocyanide ligands. The polymeric complex 2 has been characterized by X-ray diffraction revealing a polymeric chain structure. Breaking the polymeric structure of [Ag{C6H4(NC)2}]n(BF4)n (3) with acetonitrile, the dimeric complex [Ag{(CN)2C6H4)}(NCMe)2]2(BF4)2 (5) is formed, which has been also characterized by X-ray diffraction.  相似文献   

17.
The complexes [Cu2(o-NO2-C6H4COO)4(PNO)2] (1), [Cu2(C6H5COO)4(2,2′-BPNO)]n (2), [Cu2(C6H5COO)4(4,4′-BPNO)]n (3), [Cu(p-OH-C6H4COO)2(4,4′-BPNO)2·H2O]n (4), (where PNO = pyridine N-oxide, 2,2′-BPNO = 2,2′-bipyridyl-N,N′-dioxide, 4,4′-BPNO = 4,4′-bipyridyl-N,N′-dioxide) are prepared and characterized and their magnetic properties are studied as a function of temperature. Complex 1 is a discrete dinuclear complex while complexes 2-4 are polymeric of which 2 and 3 have paddle wheel repeating units. Magnetic susceptibility measurements from polycrystalline samples of 1-4 revealed strong antiferromagnetic interactions within the {Cu2}4+ paddle wheel units and no discernible interactions between the units. The complex 5, [Cu(NicoNO)2·2H2O]n·4nH2O, in which the bridging ligand to the adjacent copper(II) ions is nicotinate N-oxide (NicoNO) the transmitted interaction is very weakly antiferromagnetic.  相似文献   

18.
Five MnII-sdba coordination polymers with mono-, di-, tri-, tetra-nuclear cores based on the V-shaped 4,4′-dicarboxybiphenyl sulfone (H2sdba) ligands: [Mn(sdba)(phen)2(H2O)]n·3nH2O (1), [Mn2(sdba)2(μ-H2O)(py)4]n (2), [Mn3(sdba)2(Hsdba)2(2,2′-bipy)2]n (3), [Mn4(sdba)4(4-mepy)2(H2O)4]n·2nH2O (4) and [Mn4(sdba)4(bpp)4(μ-H2O)2]n·0.5nH2O (5) (phen = 1,10-phenanthroline, 2,2′-bipy = 2,2′-bipyridine, 4-mepy = 4-picoline, bpp = 1,3-bi(pyridine-4-yl)propane) were hydrothermally synthesized and structurally characterized. The M-O-C metal clusters in above complexes act as SBUs, and the V-shaped sdba ligands link the SBUs to generate the novel frameworks. In complexes 1 and 3 their 1D chains are linked into the 2D planes through various hydrogen bonding. Complex 2 displays the 3D structure with interpenetrated threefold, while complexes 4 and 5 both exhibit the 3D structures with the tetra-nuclear Mn4 units. The magnetic susceptibility studies in the 2-300 K range for these complexes reveal the existence of anti-ferromagnetic exchange interactions between the MnII ions.  相似文献   

19.
The Schiff base ligands 2-(2,6-diisopropylphenyliminomethyl)phenol H(L1), 5-diethylamino-2-(2,6-diisopropylphenyliminomethyl)phenol H(L2), 2,4-di-tert-butyl-6-(2,6-diisopropylphenyliminomethyl)phenol H(L3), 3-(2,6-diisopropylphenyliminomethyl)naphthalen-2-ol H(L4) and 4-(2,6-diisopropylphenyliminomethyl)-5-hydroxymethyl-2-methylpyridin-3-ol H(L5) have been synthesized by the condensation, respectively, of salicylaldehyde, 4-(diethylamino)salicylaldehyde, 3,5-di-tert-butylsalicylaldehyde, 2-hydroxy-1-napthaldehyde and pyridoxal with 2,6-diisopropylaniline. The copper(II) bis-ligand complexes [Cu(L1)2] 1, [Cu(L2)2] 2, [Cu(L3)2] 3, [Cu(L4)2] 4 and [Cu(L5)2] · CH3OH 5 of these ligands have been isolated and characterized. The X-ray crystal structures of two of the complexes [Cu(L1)2] 1 and [Cu(L5)2] · CH3OH 5 have been successfully determined, and the centrosymmetric complexes possess a CuN2O2 chromophore with square planar coordination geometry. The frozen solution EPR spectra of the complexes reveal a square-based CuN2O2 chromophore, and the values of g and g/A index reveal enhanced electron delocalization by incorporating the strongly electron-releasing -NEt2 group (2) and fusing a benzene ring on sal-ring (4). The Cu(II)/Cu(I) redox potentials of the Cu(II) complexes reveal that the incorporation of electron-releasing -NEt2 group and fusion of a benzene ring lead to enhanced stabilization of Cu(II) oxidation state supporting the EPR spectral results. The hydrogen bonding interactions between the two molecules present in the unit cell of 5a generate an interesting two-dimensional hydrogen-bonded network topology.  相似文献   

20.
Four new cadmium(II) and zinc(II) coordination polymers {[Zn(btrp)(SIP)][Zn0.5(H2O)3]}n (1), {[Cd1.5(btrp)(SIP)(H2O)2]·2H2O}n (2), {[Cd1.5(btrb)(SIP)(H2O)3]·2H2O}n (3), {[Zn1.5(btrb)1.5(SIP)(H2O)2]·2H2O}n (4) (btrp = 1,3-bis(1,2,4-triazol-1-yl)propane, btrb = 1,3-bis(1,2,4-triazol-1-yl)butane, NaH2SIP = 5-sulfoisophthalic acid monosodium salt) have been synthesized under hydrothermal conditions and structurally characterized. Compound 1 possesses an infinite 1D ladder-like chain structure with [Zn(H2O)6]2+ trapped in the pores, which is further interconnected by π?π interactions to lead to a 2D supramolecular architecture. Compounds 2 and 3 features two similar 2D layer structures, and the resulting 2D structures are interconnected by hydrogen-bond interactions to lead to 3D supramolecular architectures. Compound 4 is a 2D parallel ladder structure, and through the interpenetrating btrb ligand, it constructs into 3D architectures. Luminescence analyses were performed on all the four compounds, which show strong fluorescent emissions in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号