首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three indolyl-imine ligands have been synthesized through the condensation of S-benzyldithiocarbazate with indole-2-carbaldehyde, indole-3-carbaldehyde and indole-7-carbaldehyde. Treatment of these Schiff bases with acetate salts of Ni(II), Zn(II) and Cd(II) in ethanol yielded a series of complexes of 2:1 type (ligand/metal ratio) in which the ligands coordinated to the metal ions as monoanionic NS bidentate chelates. While the 2-imineindole and 3-imineindole formed the expected five-membered chelate rings, the X-ray crystal structure of [Cd(HL3)(py)2], (HL3 = the mono-deprotonated 7-imineindole), revealed an unusual mode of coordination, namely formation of four-membered rings with the metal atom. Reaction of the 7-imineindole with the metal ions in the presence of potassium hydroxide produced complexes of the type [M(L3)(H2O)] in which the Schiff base acts as a dianionic NNS tridentate ligand.  相似文献   

2.
We report the synthesis of the Schiff base ligands, 4-[(4-bromo-phenylimino)-methyl]-benzene-1,2,3-triol (A1), 4-[(3,5-di-tert-butyl-4-hydroxy-phenylimino)-methyl]-benzene-1,2,3-triol (A2), 3-(p-tolylimino-methyl)-benzene-1,2-diol (A3), 3-[(4-bromo-phenylimino)-methyl]-benzene-1,2-diol (A4), and 4-[(3,5-di-tert-butyl-4-hydroxy-phenylimino)-methyl]-benzene-1,3-diol (A5), and their Cd(II) and Cu(II) metal complexes, stability constants and potentiometric studies. The structure of the ligands and their complexes was investigated using elemental analysis, FT-IR, UV-Vis, 1H and 13C NMR, mass spectra, magnetic susceptibility and conductance measurements. In the complexes, all the ligands behave as bidentate ligands, the oxygen in the ortho position and azomethine nitrogen atoms of the ligands coordinate to the metal ions. The keto-enol tautomeric forms of the Schiff base ligands A1-A5 have been investigated in polar and non-polar organic solvents. Antimicrobial activity of the ligands and metal complexes were tested using the disc diffusion method and the strains Bacillus megaterium and Candida tropicalis.Protonation constants of the triol and diol Schiff bases and stability constants of their Cu2+ and Cd2+ complexes were determined by potentiometric titration method in 50% DMSO-water media at 25.00 ± 0.02 °C under nitrogen atmosphere and ionic strength of 0.1 M sodium perchlorate. It has been observed that all the Schiff base ligands titrated here have two protonation constants. The variation of protonation constant of these compounds was interpreted on the basis of structural effects associated with the substituents. The divalent metal ions of Cu2+ and Cd2+ form stable 1:2 complexes with Schiff bases.The Schiff base complexes of cadmium inhibit the intense chemiluminescence reaction in dimethylsulfoxide (DMSO) solution between luminol and dioxygen in the presence of a strong base. This effect is significantly correlated with the stability constants KCdL of the complexes and the protonation constants KOH of the ligands; it also has a nonsignificant association with antibacterial activity.  相似文献   

3.
Schiff bases derived from oxaldiamide/oxalylhydrazine and pyrrol-2-carbaldehyde, or salicylaldehyde respectively, as well as their Zn(II) complexes have been prepared and tested as antibacterial agents. These Schiff bases function as tetradentate ligands, forming octahedral Zn(II) complexes. The ketonic form for the diamide derived Schiff base and the enolic form of the hydrazide derived Schiff base were the preferred tautomers for coordination of the metal ions. The title compounds and their Zn(II) derivatives were evaluated for antibacterial activity against several bacterial strains which easily develop resistance to classical antibiotics, such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Some of them showed promising biological activity in inhibiting the growth of such organisms.  相似文献   

4.
Schiff bases derived from oxaldiamide/oxalylhydrazine and pyrrol-2-carbaldehyde, or salicylaldehyde respectively, as well as their Zn(II) complexes have been prepared and tested as antibacterial agents. These Schiff bases function as tetradentate ligands, forming octahedral Zn(II) complexes. The ketonic form for the diamide derived Schiff base and the enolic form of the hydrazide derived Schiff base were the preferred tautomers for coordination of the metal ions. The title compounds and their Zn(II) derivatives were evaluated for antibacterial activity against several bacterial strains which easily develop resistance to classical antibiotics, such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Some of them showed promising biological activity in inhibiting the growth of such organisms.  相似文献   

5.
Two sets of ligands, set-1 and set-2, have been prepared by mixing 1,3-diaminopentane and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively, and employed for the synthesis of complexes with Ni(II) perchlorate, Ni(II) thiocyanate and Ni(II) chloride. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)2(L = L1 [N3-(1-pyridin-2-yl-ethylidene)-pentane-1,3-diamine] for complex 1 or L2[N3-pyridin-2-ylmethylene-pentane-1,3-diamine] for complex 2) in which the Schiff bases are monocondensed terdentate, whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL(SCN)2] (L = L3[N,N′-bis-(1-pyridin-2-yl-ethylidine)-pentane-1,3-diamine] for complex 3 or L4 [N,N′-bis(pyridin-2-ylmethyline)-pentane-1,3-diamine] for complex 4) irrespective of the sets of ligands used. Complexes 5 {[NiL3(N3)2]} and 6 {[NiL4(N3)2]} are prepared by adding sodium azide to the methanol solution of complexes 1 and 2. Addition of Ni(II) chloride to the set-1 or set-2 ligands produces [Ni(pn)2]Cl2, 7, as the major product, where pn = 1,3-diaminopentane. Formation of the complexes has been explained by the activation of the imine bond by the counter anion and thereby favouring the hydrolysis of the Schiff base. All the complexes have been characterized by elemental analyses and spectral data. Single crystal X-ray diffraction studies confirm the structures of three representative members, 1, 4 and 7; all of them have distorted octahedral geometry around Ni(II). The bis-complex of terdentate ligands, 1, is the mer isomer, and complexes 4 and 7 possess trans geometry.  相似文献   

6.
In order to investigate the influence of ligand distortion on metal centers of porphyrin complexes, distorted vanadyl porphyrin complexes, VO(OPP) (OPP = 2,3,5,10,12,13,15,20-octaphenylporphinato) and VO(DPP) (DPP = 2,3,5,7,8,10,12,13,15,17,18,20-dodecaphenylporphinato), have been prepared. In the crystal structures, VO(OPP) and VO(DPP) had a ruffled structure and a saddle-shaped structure, respectively. In addition, these complexes exhibited red shift and broadening of the absorption bands in the UV-Vis spectra and significant negative shifts of oxidation potentials of the porphyrin ligands in the cyclic voltammograms compared with those of the planar VO(TPP) (TPP = tetraphenylporphinato). These results indicate that the OPP and DPP complexes have the distorted structures both in solids and in solutions. The VO bond characters of VO(TPP), VO(OPP), and VO(DPP) do not show the significant difference in their crystal structures and resonance Raman spectra. This suggests that the distortion of porphyrin ligand little affects the Lewis acidity of the metal center. The non-planar porphyrin distortion gives the change of HOMO-LUMO gap.  相似文献   

7.
Nicotinic acid derived Schiff bases and their transition metal [cobalt(II), nickel(II) and zinc(II)] complexes have been prepared and characterized by physical, spectral and analytical data. The Schiff bases act as deprotonated tridentate ligands for the complexation of the above mentioned metal ions. These complexes, possessing the general formula [M(L)2] [where M = Co(II), Ni(II) and Zn(II) and L = HL1-HL4] showed an octahedral geometry of the metal ions. For determining the effect of metal ions upon chelation, the Schiff bases and their complexes have been screened for antibacterial activity against several pathogenic strains of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The new metal derivatives reported here were more bactericidal against one or more bacterial species as compared to the uncomplexed Schiff bases.  相似文献   

8.
Two novel monomeric [C18H17Cl3N2O2Fe] (1) and dimeric [C38H36N4O4Cl6Fe2] (2) Fe(III) tetradentate Schiff base complexes have been synthesized and their crystal structures have been determined by single crystal X-ray diffraction analysis. In complex (1) the Schiff base ligand coordinates toward one iron atom in a tetradentate mode and each iron atom is five coordinated with the coordination geometry around iron atom which can be described as a distorted square pyramid. The presence of a short (2.89 Å) non-bonding interatomic Fe···O distances between adjacent monomeric Fe(III) complexes results in the formation of a dimer. Structural analysis of compound (2) shows that the structure is a centrosymmetric dimer in which the six coordinated Fe(III) atoms are linked by μ-phenoxo bridges from one of the phenolic oxygen atoms of each Schiff base ligand to the opposite metal center. The variable-temperature (2-300 K) magnetic susceptibility (χ) data of these two compounds have been investigated. The results show that for both complexes Fe(III) centers are in the high spin configuration (S = 5/2) and indicate antiferromagnetic spin-exchange interaction between Fe(III) ions. The obtained results are briefly discussed using magnetostructural correlations developed for other class of iron(III) complexes.  相似文献   

9.
The new tetradentate unsymmetrical N2O2 Schiff base ligands and VO(IV) complexes were synthesised and characterized by using IR, UV-Vis and elemental analysis. The electrochemical properties of the vanadyl complexes were investigated by means of cyclic voltammetry. The oxidation potentials are increased by increasing the electron-withdrawing properties of functional groups of the Schiff base ligands according to the trend of MeO < H < Br < NO2. The thermogravimetry (TG) and differential thermoanalysis (DTA) of the VO(IV) complexes were carried out in the range of 20-700 °C. The complexes were decomposed in two stages. Also decomposition of synthesised complexes is related to the Schiff base characteristics. The thermal decomposition of the studied reactions was first order.  相似文献   

10.
The synthesis and crystal structure of a new tetrathiafulvalene (TTF) derivative with an acetylacetone substituent are reported (3-(dimethylthio-TTF-thio)-2,4-pentane-dione, DMT-TTF-acac (1)). Compound 1 consists of a TTF plane and an acac plane, which are bridged by a sulfur atom. The bond distances and angles of 1 clearly indicate that the acetylacetone group adopts a keto-enol structure with an O-H?O intramolecular hydrogen bond. As usually observed for TTF derivatives, compound 1 exhibits two-step reversible redox waves on CV measurement, which are sensible to the metal ions being added. The stronger the metal coordination is, the larger the potential shift would be. Two complexes of 1, [M(DMT-TTF-acac)2] M = Mn(II) and Cu(II), have been prepared and they are very stable even in the state in which the ligands are oxidized. The iodine-doped compound of Mn(II) is a new organic-inorganic system consisting of paramagnetic metal ions and organic radicals.  相似文献   

11.
A series of oxovanadium(IV) symmetrical tetradentate Schiff base complexes have been isolated from the reaction of VOSO4 with Schiff bases obtained from the condensation of 2-hydroxybenzophenone or 2-hydroxy-5-chlorosalicylaldehyde with various aliphatic diamines. The compounds were characterized by elemental analyses, 1H NMR, infrared, electron paramagnetic resonance, electronic spectral, cyclic voltammetry and room temperature magnetic susceptibility measurements. The solution EPR spectra are consistent with square pyramidal complexes with C4v symmetry. The IR spectra confirmed that the complexes are all monomeric except for [VO(Clsal)2tn] which polymerizes via OV?VO linkages. The electronic spectra indicate a square pyramidal geometry in both non-coordinating and coordinating solvents except for [VO(bp2-pn)] which appears to be octahedral in DMSO. The room temperature magnetic moments of 1.7-1.8 B.M. are normal for V(IV) d1 configuration. Evidence for electrochemical pseudo-reversibility is presented for four of the complexes. In vitro studies revealed that two of the compounds, [VO(bp2-en] and [VO(bp2-tn)MeOH], significantly increased glucose uptake when compared to the basal glucose uptake in transformed and sensitized C1C12 cells, but not at the same level as insulin.  相似文献   

12.
A new series of four biologically active triazole derived Schiff base ligands (L1L4) and their cobalt(II), nickel(II), copper(II) and zinc(II) complexes (116) have been synthesized and characterized. The ligands were prepared by the condensation reaction of 3-amino-5-methylthio-1H-1,2,4-triazole with chloro-, bromo- and nitro-substituted 2-hydroxybenzaldehyde in an equimolar ratio. The antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal species.  相似文献   

13.
《Inorganica chimica acta》1986,116(2):163-169
Optically active Schiff base ligands have been formed by the condensation of various salicylaldehydes with a series of chiral amino alcohols. The Eu(III) derivatives of these ligands were obtained as oligomeric materials, exhibiting an empirical 1:1 metal:ligand stoichiometry. The complexes were found to be somewhat soluble in chloroform, where they existed primarily as trimeric species. The optical activity experienced by the Eu(III) ion was observed to be dominated by the presence of configurational effects, corresponding to a dissymmetric arrangement of Schiff base ligands about the Eu(III) ion.  相似文献   

14.
Complexes of three Cd(II)-containing macrocyclic Schiff base complexes containing a phenanthroline ligand (L) of the type [CdLn(Cl)]+ (n=2,3,4), have been prepared via [1+1] cyclocondensation of 2,9-dicarboxaldehyde-1,10-phenanthroline and a number of linear triamines via a metal-templated reaction and coordination features have been examined. The ligands, L, are 16-, 17-, and 18-membered pentaaza macrocycles and all the complexes incorporate a 1,10-phenanthroline unit as an integral part of their cyclic structure. The complexes have been characterized by a variety of methods including IR, 1H, 13C, DEPT, COSY(H,H) and HMQC(H,C) NMR studies and MALDI mass spectrometry. The polymeric structure of was determined by X-ray crystallography, which showed that the complex cation consisted of a pentagonal bipyramidally coordinated Cd(II) ion. The seven-coordinated Cd(II) ion is ligated by the five nitrogen atoms of the macrocycle in the equatorial plane and has two bridging chloride ligands in the axial positions resulting in a ribbon of such complex ions. Supporting ab initio HF-MO calculations have been undertaken using the standard 3-21G and 6-31G basis sets.  相似文献   

15.
The emergence of multi-drug resistant pathogens in infectious disease conditions accentuates the need for the design of new classes of antimicrobial agents that could defeat the multidrug resistance problems. As a new class of molecules, the Heterocyclic Schiff base is of considerable interest, owing to their preparative accessibility, structural flexibilities, versatile metal chelating properties, and inherent biological activities. In the present study, CAM-B3LYP/LANL2DZ and M062X/DEF2-TZVP level of density functional method is used to explore the complexation of chalcone based Schiff base derivatives by Co2+, Ni2+, Cu2+, and Zn2+ metal ions. The HL(1-3)-Co2+, HL(1-3)-Ni2+ and HL(1-3)-Zn2+ complexes formed the distorted tetrahedral geometry. Whereas, the HL(1-3)-Cu2+ complexes prefers distorted square-planar geometry. The BSSE corrected interaction energies of the studied complexes reveals that Cu2+ ion forms the most stable complexes with all three chalcone based Schiff bases. Of the three Schiff bases studied, the HL2 Schiff base acts as a potent chelating agent and forms the active metal complexes than the HL1 and HL3 Schiff bases. Further, the strength of the interaction follows the order as Cu2+?>?Ni2+?>?Co2+?>?Zn2+. The QTAIM analysis reveals that the interaction between the metal ions and coordinating ligand atoms are electrostatic dominant. The metal interaction increases the π-delocalisation of electrons over the entire chelate. Hence, the antimicrobial activity of the metal complexes is more effective than the free Schiff bases. Moreover, the HL(1-3)-Cu2+ complexes shows higher antimicrobial activities than the other complexes studied.  相似文献   

16.
New potentially heptadentate compartmental ligands have been prepared by reaction of o-acetoacetylphenol or 3-formylsalycilic acid with diethylenetriamine or bis-3-aminopropyl-phenylphosphine.These Schiff bases contain an inner O2N2X (X = N, P) and an outer O2O2 coordination site which can bond, in close proximity, two similar or dissimilar metal ions.With some metal salts (nickel(II), copper(II) and uranyl(VI) acetates) mononuclear, homo- and heterodinuclear complexes have been synthesized. The spectroscopic, magnetic and electrochemical properties of these complexes have been studied. The catalytic activity of a binuclear copper(II) complex towards the oxidation of 3,5-di-t-butylcatechol to the corresponding quinone was also investigated.  相似文献   

17.
Using the precursor compound 3,4:10,11-dibenzo-1,13[N,N′-bis{(3-formyl-2-hydroxy-5-methyl)benzyl}diaza]-5,9-dioxocyclopentadecane, a series of macrobicyclic heterobinuclear Ni(II)Zn(II) complexes have been synthesized from the corresponding mononuclear nickel(II) complexes via a template method by Schiff’s base condensation. Electrochemical and kinetic studies of the complexes have been carried out on the basis of macrocyclic ring size. Cyclic voltammetry and controlled electrolysis studies indicate that the nickel(II) metal ion in the heterobinuclear complexes undergo quasireversible one electron reduction and oxidation, whereas the zinc(II) metal ion does not undergo any reduction and oxidation. All the heterobinuclear Ni(II)Zn(II) complexes are ESR inactive and diamagnetic in nature. The kinetics of hydrolysis of 4-nitrophenyl phosphate explores that the catalytic activities of the complexes are found to increase with macrocyclic ring size of the complexes. As the macrocyclic ring size increases, the spectral, electrochemical and catalytic studies of the complexes show variation due to distortion in the geometry of metal centre.  相似文献   

18.
A mesogenic Schiff base, N,N′-di-(4-hexadecyloxysalicylidene)diaminoethane, H2dhdsde (abbreviated as H2L1) that exhibit smectic-C (SmC) mesophase, was synthesized and its structure studied by elemental analyses, mass, NMR & IR spectra and single crystal XRD (triclinic space group with Z = 1) techniques. Bi-dentate bonding of the Schiff base in the mesogenic LaIII complex was implied on the basis of IR & NMR spectral data. As per the spectral studies of the complexes, the Zwitterionic species of the ligand (H2L1) coordinates to LnIII ion through two phenolate oxygens rendering the overall geometry around the metal ion to distorted square antiprism (Ln = La, Pr, Nd, Sm, Eu) and monocapped octahedron (Ln = Gd, Tb, Dy, Ho).  相似文献   

19.
Three new one-dimensional copper coordination polymers have been prepared and fully characterized by single-crystal X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and magnetic susceptibility measurements. The structure of [Cu(CN)2(bpy)] (1) (bpy = 2,2-bipyridyl) (monoclinic P21/c, a = 8.9761(7) Å, b = 16.731(1) Å, c = 8.0224(6) Å, β = 114.437(1)°) consists of Cu(II) metal centers coordinated by three cyanide ligands and chelated by one bpy to form the monomers Cu(CN)3(bpy) with distorted square pyramidal geometry. Each monomer shares two cyanide ligands with two adjacent monomers to form infinite -Cu(II)-CN-Cu(II)-CN-Cu zigzag chains along the c-axis. The one-dimensional structure of [Cu(CN)(bpy)] (2) (hexagonal P32, a = 14.4883(6) Å, b = 12.921(1) Å) is built of tetrahedral Cu(CN)2bpy metal complexes in which Cu(I) metal centers are coordinated by one nitrogen and one carbon from two different CN ligands, and two nitrogens from one bpy. The two CN ligands act as bridging ligands between adjacent monomers to form helical chains along the 32 screw axis. The crystal structure of [Cu2Cl(CN)(bpy)] (3) (orthorhombic Pbca, a = 17.853(2) Å, b = 6.9724 (9) Å, c = 18.7357 (9) Å) consists of two monomers, CuCl2(CN) and Cu(bpy)(CN) that share a cyanide ligand to form Cu2Cl2(CN)(bpy) dimers. The dimers link to each other by sharing Cl ligands leading to the formation of infinite Cu-Cl-Cu chain decorated by the complex Cu(CN)(bpy). Variable-temperature magnetic measurement shows an overall ferromagnetic behavior for compound 1. The magnetic pathway of compound 1 is through the cyanide bridge connecting apical and equatorial positions of adjacent copper (II) ions.  相似文献   

20.
Novel palladium(II) complexes with salen-type ligands based on 3-methylsalicyladehyde and a set of aliphatic diamines (C1 to C4) have been synthesised and characterized by spectroscopic techniques (UV-Vis and FTIR), Density Functional Theory (DFT) calculations and single-crystal X-ray diffraction for C1 and C4. X-ray diffraction analysis of these complexes was focused on coordination sphere and supramolecular arrangements. In the two compounds, the molecules form dimers, being the most relevant intermolecular interactions the hydrogen bonds of the type C-H?O, C-H?π and π?π stacking interactions between the six-membered metallocycles.Electronic spectra of all Pd(II) complexes are dominated by charge transfer and intraligand bands at λ < 400 nm. DFT calculations showed that the HOMO is ligand-dominated, with the metal contribution being ∼18% for all complexes. This suggests that the structural/electronic differences between the ligands do not influence significantly the participation of metal orbitals in HOMO. All the complexes exhibit dipole moments with the same direction, from the aldehyde moiety towards the imine bridge with C2 and C3 showing quite similar values, μC2 = 5.49 and μC3 = 5.54 D, whereas complexes C1 and C4 show slightly higher values: μC1 = 5.79 and μC4 = 6.17 D. The magnitude of bond lengths and angles predicted by DFT calculations are comparable to those determined by X-ray crystallography.The experimental vibrational frequencies of the Pd(II) complexes were correlated with the values estimated by DFT calculations. The good agreement between the experimental and theoretical vibrational data allowed the assignment of relevant IR bands to molecular vibration modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号