首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[Pd(sac)(terpy)](sac)·4H2O (1), [Pt(sac)(terpy)](sac)·5H2O (2), [PdCl(terpy)](sac)·2H2O (3) and [PtCl(terpy)](sac)·2H2O (4) (sac = saccharinate, and terpy = 2,2′:6′,2″-terpyridine) have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR. In 1 and 2, a tridentate terpy ligand together with an N-coordinated sac ligand form the square-planar geometry around the palladium(II) or platinum(II) ions, while one sac anion remains outside the coordination sphere as a counter-ion. X-ray single crystal studies show that the [M(sac)(terpy)]+ ions in 1 and 2 reside in the centers of a hydrogen bonded honeycomb network formed by the uncoordinated sac ions and the lattice water molecules. Complexes 3 and 4 are isostructural and consist of a [M(Cl)(terpy)]+ cation, a sac anion and two lattice water molecules. The [M(Cl)(terpy)]+ ions interact with each other via M-M and π-π stacking interactions and these π interacted units are assembled to a 2D network by water bridges involving the sac ions and lattice water molecules. Convenient synthetic paths for 1-4 are also presented, and spectral, luminescence and thermal properties were discussed.  相似文献   

2.
Four palladium(II) and platinum(II) complexes of 2,2′-dipyridylamine (dpya) with saccharinate (sac), cis-[Pd(dpya)(sac)2]·H2O (1), cis-[Pt(dpya)(sac)2]·H2O (2), [Pd(dpya)2](sac)2·2H2O (3) and [Pt(dpya)2](sac)2·2H2O (4), have been synthesized and characterized by elemental analysis, IR, NMR, TG-DTA and X-ray diffraction. In 1 and 2, the metal ions are coordinated by two N-bonded sac ligands, and two nitrogen atoms of dpya, resulting in a neutral square-planar coordination sphere, while in 3 and 4, the metal ions are coordinated by two dpya ligands to generate square-planar cationic species, which are stabilized by two sac counter-ions. The mononuclear species of 1 and 2 interact each other through weak intermolecular N-H?O, C-H?O and π?π interactions to form a three-dimensional network, while the ions of 3 and 4 are connected by N-H?N and OW-H?O hydrogen bonds into one-dimensional chains. On heating at 250 °C, the solid cationic complexes of 3 and 4 convert to corresponding anhydrous neutral complexes of 1 and 2 after elimination of a dpya ligand. In addition, all complexes 1-4 are luminescent at room temperature and their emissions seem to be attributed to the MLCT fluorescence.  相似文献   

3.
Two new coordination polymers [Cd(dps)2Cl2] (1) and [Co(dps)2(H2O)2]·(abs)2(H2O)2 (2) (dps = 4, 4′-dipyridylsulfide, Habs = 4-amino benzenesulfonic acid) have been synthesized under similar conditions and characterized by elemental analysis, fluorescence spectra and single crystal X-ray diffraction. Compound 1 displays a dps-bridged 2D puckered, grid-like layer, which is further linked by C-H?Cl hydrogen bonds to form a 3D supramolecular architecture. Compound 2 shows a dps-bridged double-stranded chain structure, which is extended by N-H?O and O-H?O hydrogen bonds generating a 3D network. Solid-state fluorescence results reveal that both complexes can emit strong emission bands, at 467 nm and 518 nm for 1 and 344 nm for 2, respectively. Magnetic measurements show that there are weak antiferromagnetic interactions between the adjacent Co(II) ions in 2.  相似文献   

4.
Using the principle of crystal engineering, six metal-organic coordination polymers, [Cd(bdc)(3-pytpy)]n · 2nH2O (1), [Cd(bdc)0.5(3-pytpy)]n · n(ClO4) (2), Cd(ndc)0.5(3-pytpy)]n · n(ClO4) (3), [Zn(ndc)(3-pytpy)]n (4), [Cd(bqdc)(3-pytpy)]n (5), and [Zn(pam)(3-pytpy)]n · 2nH2O (6) (H2bdc = benzene-1,4-dicarboxylic acid, H2ndc = naphthalene-2,6-dicarboxylic acid, H2bqdc = 2,2′-biquinoline-4,4′-dicarboxylic acid, H2pam = pamoic acid), were synthesized and structurally characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray diffraction analyses. Compounds 1-6 crystallize in the presence of organic-acid linkers as well as multi-functional N-donor ligand 4′-(3-pyridyl)-2,2′:6′,2′′-terpyridine (3-pytpy). In complexes 1, 4, 5, and 6, the dicarboxylate as bridging ligand connects metal atoms to form the main body of 1D zigzag chains for 1 and 4, nearly linear chain for 5 and helical chain for 6, while 3-pytpy as tridentate chelating ligand is just like lateral arm grafting on both sides of these chains. In complexes 2 and 3, both the dicarboxylate and 3-pytpy as bridging ligands connect metal atoms into 2D polymeric structure for 2 and 1D chain of alternating loops and rods for 3. The weak interactions such as hydrogen bonding and π···π stacking were investigated on the formation of superamolecular structures and the influence of organic acid on the formation of the final structures was discussed. In addition, the photoluminescent properties of 1-6 were also determined.  相似文献   

5.
Reactions of AgClO4, Zn(CH3COO)2 · H2O and CuI with the ligand 4,4′-dipyridylsulfide (dps) in 1:1 ratio give rise to coordination polymers 1-3 and 5, the structures of which were characterized by X-ray crystallography. Polymers [Ag2(dps)2](ClO4)2 · MeCN (1) and [Ag2(dps)22-MeCN)(MeCN)](ClO4)2 · MeCN · H2O (2) are pseudo-supramolecular isomers, differing from each other in the coordination geometry of silver atom and the packing pattern. Both 1 and 2 are zigzag coordination polymers bridged by weak Ag?Ag, Ag?S or Ag?NC-CH3 interactions to form double stranded coordination polymers. While [Zn(dps)(CH3COO)2] (3) is a zigzag single stranded coordination polymer, [Zn(dps)2(H2O)2](ClO4)2 · H2O (4) is an unusual mononuclear complex with a box-like structure. Interesting intermolecular hydrogen bonding present in the compounds 3 and 4 leads to 3D hydrogen-bonded network structure.Coordination polymer [Cu2I2(dps)2] (5) is a non-interpenetrating (4,4) net. Photoluminescence properties of the compounds 1-5 have been examined in solid states at room temperature. These compounds have been found to exhibit yellow and blue photoluminescence.  相似文献   

6.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

7.
Bin Hu 《Inorganica chimica acta》2010,363(7):1348-6199
Four transition metal complexes of 3,8-di(thiophen-2′,2″-yl)-1,10-phenanthroline (dtphen), formulated as [Ni(dtphen)2(H2O)2]·(ClO4)2 (1), [Zn(dtphen)2(H2O)]·(ClO4)2 (2) [Cu(dtphen)2(H2O)]·(ClO4)2 (3), [Cu(dtphen)(phen)2]·(ClO4)2 (4) (phen = 1,10-phenanthroline) with different metal-to-ligand ratios, were synthesized and characterized herein. The X-ray single-crystal diffraction studies of 1-4 exhibit that different molecular configurations for the dtphen ligand can be observed where the side thiophene rings adopt the trans/trans, trans/cis, trans/disorder and cis/cis conformations relative to the central 1,10-phenanthroline unit in different compounds. Fluorescence emission spectra of 1-4 in methanol show that the fluorescence emission of 2 is much stronger than the other three metal complexes, which is mainly due to its full d10 electronic configuration of Zn(II) ion.  相似文献   

8.
Four coordination compounds of tetrazolate-5-carboxylate (tzc) with cobalt(II), [Co2(tzc)2(H2O)6]·2H2O (1), [Co2(tzc)2(phen)2(H2O)2]·2H2O (2), [Co2(tzc)2(2,2′-bpy)2(H2O)2]·H2O (3), and [Co(tzc)(4,4′-bpy)] (4), where phen = 1,10-phenanthroline, 2,2′-bpy = 2,2′-bipyridyl, and 4,4′-bpy = 4,4′-bipyridyl, have been synthesized by the hydrothermal methods involving the in situ generation of the ligand from sodium ethyl tetrazolate-5-carboxylate. Compounds 1, 2 and 3 all contain dinuclear molecules in which metal ions are linked by the double N-N bridges from two tzc ligands in the μ2-N1,O1:N2 mode, and the dinuclear molecules are associated into 3D architecture through extensive hydrogen bonding and π-π stacking interactions in various fashions. Compound 4 exhibits a two-dimensional layer structure in which Co(tzc) chains with μ3-N1,O1:O1:N2 tzc are cross-linked by 4,4′-bpy. Magnetic investigations on 1-3 revealed intramolecular ferromagnetic coupling through the double N-N bridges with intermolecular ferromagnetic or antiferromagnetic interactions. The interaction through the mixed N-N and μ2-Ocarboxylate bridges in 4 is antiferromagnetic.  相似文献   

9.
By the reactions of Cu(AcO)2·H2O and Cu(HCOO)2·4H2O with 4,4′-dimethyl-2,2′-bipyridine and 5,5′-dimethyl-2,2′-bipyridine the compounds [Cu(AcO)2(4,4′-Me2-2,2′-bipy)]·1/2H2O (1), [Cu(AcO)2(5,5′-Me2-2,2′-bipy)(H2O)] (2), [Cu(HCOO)(μ-HCOO)(4,4′-Me2-2,2′-bipy)]n·nH2O (3) and [Cu(HCOO)(μ-HCOO)(5,5′-Me2-2,2′-bipy)]n·2nH2O (4) were obtained. In the acetate complexes, 1 and 2, the geometry around copper is distorted octahedral and square pyramidal, respectively. Dimeric units of different geometry are formed in both cases through hydrogen bonds in which non-coordinated (in 1) and coordinated (in 2) water molecules are involved. The structures of 3 and 4 consist of polymeric monodimensional chains of square pyramidal copper units linked by axial-equatorial syn-anti (3) or anti-anti (4) bridging formate groups. Water molecules form hydrogen bonds with formate groups of the same chain in compound 3. In compound 4 the water molecules link the polymeric contiguous chains of complex through hydrogen bonds with oxygen atoms of formate groups and they are also linked between them, forming monodimensional water chains which run parallel to the complex chains. Sheets parallel to the ac plane are formed by alternating chains of water and polymeric complex. Magnetic properties and EPR spectra for these compounds have been studied.  相似文献   

10.
One-dimensional (1-D) helical coordination polymers, [MII(H2O)3(BPDC)]n · nH2O (M = Co (1), Fe (2)), have been prepared by the self-assembly of cobalt(II) and iron(II) ions, respectively, with 2,2′-bipyridyl-3,3′-dicarboxylic acid (H2BPDC) in an aqueous solution. X-ray crystal structures of compounds 1 and 2 show that each metal ion displays a distorted octahedral coordination geometry including three water oxygen atoms, one oxygen atom of the carboxylate of a BPDC2− belonging to the adjacent metal ion and two nitrogen atoms from the BPDC2− acting as a chelating ligand. In 1 and 2, one carboxylate oxygen atom of coordinated BPDC2− binds to the neighboring metal ion, which give rise to 1-D helical coordination polymers. The helical chains of 1 and 2 are linked by the hydrogen bonding interactions between the carboxylate oxygen atom of the BPDC2− ion belonging to a chain and the water molecule of the adjacent helical chain, which lead to 2-D networks extending along the ab plane. The supramolecules 1 and 2 show isomorphous structures regardless of the metal ions.  相似文献   

11.
Four new coordination complexes [Cd(DPBA-3)2(H2O)2](ClO4)2·2H2O (1), [Cd(DPBA-3)(DMF)(NO3)2]·DMF (2), [Cd3(DPBA-3)2(SCN)6]·2DMF·4H2O (3) and [Zn(DPBA-3)(SCN)2] (4) [DPBA-3 = N,N′-di(pyridin-3-yl)pyridine-3,5-dicarboxamide] have been synthesized and characterized by elemental analysis, IR and single crystal X-ray diffraction. Complexes 1, 3 and 4 exhibit three different types of one-dimensional (1D) chain structures constructed by the metal ions and DPBA-3 ligands, and the Cd(II)-DPBA-3 1D chains in 3 are further linked by bridging SCN ligands to afford a three-dimensional (3D) framework. Complex 2 possesses a (6,3) two-dimensional (2D) layer structure. In 1-4, the hydrogen bonds involving the amide groups play important role to stabilize the resultant frameworks. The photoluminescence properties of the DPBA-3 and the complexes were studied in the solid state at room temperature.  相似文献   

12.
The P,P′diphenylmethylenediphosphinic acid (H2pcp) reacts with Co(ClO4)2 · 6H2O and 4,4′-bipyridine to give a mixture of two polymeric isomers of formula [Co(pcp)(bipy)0.5(H2O)2], {red (1) and pink (2)} and the new violet hybrid [Co(Hpcp)2] (3). The pure red and violet species have been obtained by the reaction of H2pcp with Co(CH3COO)2 · 4H2O and bipy or with Co(ClO4)2 · 6H2O, respectively. The analogous reaction of Ni(CH3COO)2 · 4H2O or Ni(ClO4)2 · 6H2O with H2pcp and bipy affords only the [Ni(pcp)(bipy)0.5(H2O)2] species (4). The two cobalt isomers present different structural arrangements. Whereas the red isomer (1) shows an undulated 2D layered structure, the pink one (2) forms an infinite monodimensional strand. Both the architectures extend to higher dimensions through hydrogen bonding interactions. The nickel derivative is isomorphous with the red cobalt isomer. The violet [Co(Hpcp)2] (3), which is isomorphous with the complexes of the reported series [M(Hpcp)2], M = Ca(II), Mg(II), presents a monodimensional polymeric structure. Compounds 1 and 4 show a very similar thermal behaviour, the two water molecules being lost in the temperature range 25-150 and 160-320 °C, respectively. Temperature dependent X-ray powder diffractometry (TDXD) has been performed on compound 1 in order to follow the structural transformations that occur during the heating process.  相似文献   

13.
Two new coordination polymers {[Mn(H2btc)(phen)(H2O)2]H2btc · H2O}n (1) [H3btc = 1,3,5-benzene tricarboxylic acid, phen = phenanthroline] and {[Zn3(btc)2(H2O)8](H2O)4}n (2) have been synthesised and structurally characterised. Both the complexes crystallise as 1D chain, which further propagates through ligand-based hydrogen bonding interactions into a 3D supramolecular architecture. Supramolecular framework of 1 is constructed by [Mn(H2btc)(phen)(H2O)2]+ as well as the constituent materials-uncoordinated H2btc and water molecules. Complex 2 exists as a corrugated chain with both the bridging and terminal Zn2+ ions and each zinc centre is coordinated to four water molecules. Both 1 and 2 are stacked by mutual π-stacking of the ligands and exhibit strong fluorescence emission band at 414 and 400 nm, respectively.  相似文献   

14.
1,10-Phenanthroline hydrogen phthalato manganese(II) dimer [Mn2(Hphth)2(phen)4] · 2Hphth · 6H2O (1), monomeric phenanthroline phthalato manganese(II) monomer [Mn(phth)(phen)2(H2O)] · 2.5H2O (2), 2,2′-bipyridine phthalato manganese(II) polymer [Mn(phth)(bpy)(H2O)2]n (3) and 1,10-phenanthroline maleato polymer [Mn(male)(phen)(H2O)2]n · 2nH2O (4) (H2phth = o-phthalic acid, male = maleic acid, phen = 1,10-phenanthroline and bpy = 2,2′-bipyridine) have been synthesized and characterized spectroscopically and structurally. Each Mn(II) atom in dimeric 1 is octahedrally coordinated by two oxygen atoms of phthalate anions and by two cis-phenanthroline ligands. The hydrogen phthalato anion bridges the Mn(II) ions through the deprotonated carboxyl groups, while the carboxylic acid group remains free. In the monomeric 2, the Mn(II) ion is octahedrally surrounded by four nitrogen atoms from two cis-phen ligands, one carboxyl oxygen from a monodentate phth ion, and one coordinated water molecule. The dimeric phthalato complex 1 can be cleaved into monomer 2 under heating with deprotonation, and the course of the reaction can be qualitatively traced by IR spectra. The phthalate group in the complex 3 binds to two manganese atoms through the vicinal carboxyl-oxygen atoms in syn-syn bridging mode. The Mn(II) atoms are linked by the phthalate group to yield a one-dimensional chain running along the a-axis. The coordination polymer 3 can be obtained from the reaction of dichloro dibipyridine manganese with phthalate under heating. In polymer 4, the manganese atom is six-coordinated by two nitrogen atoms from phen, two oxygen atoms from the coordinated water molecules and two oxygen atoms from two different maleate dianions. Each maleato unit links two neighboring manganese atoms to yield one-dimensional chain along b-axis in bis-monodentate mode. The single-chain polymer 4 prepared at low temperature can be converted to double-chain coordination polymer [Mn(male)(phen)]n · nH2O (5) with dehydration in warm solution.  相似文献   

15.
Four new coordination complexes, NiII(L)2 (1), [CoIII(L)2]ClO4 (2), [Zn(HL)(L)]ClO4 · H2O (3) and [Zn(L)2][Zn(L)(HL)]ClO4 · 7H2O (4) (where L is a monoanion of a Schiff base ligand, N′-[(2-pyridyl)methylene]salicyloylhydrazone (HL) with NNO tridentate donor set), have been synthesised and systematically characterised by elemental analysis, spectroscopic studies and room temperature magnetic susceptibility measurements. Single crystal X-ray diffraction analysis reveals that 1 is a neutral complex, while 2-4 are cationic complexes. Among them, 4 is a rare type of cationic complex with two molecules in the asymmetric unit. The ligand chelates the metal centre with two nitrogen atoms from the pyridine and imino moieties and one oxygen atom coming from its enolic counterpart. All the reported complexes show distorted octahedral geometry around the metal centres, with the two metal-N (imino) bonds being significantly shorter than the two metal-N (Py) bonds.  相似文献   

16.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

17.
Two new Mn(II) coordination polymers with bis(5-tetrazolyl)methane (H2btm), [Mn(btm)(phen)(H2O)] · H2O (1) and [Mn(btm)(2,2′-bpy)] · 1.5H2O (2), have been synthesized and their structures determined by X-ray diffraction. In complex 1, the btm ligands assume the μ2-1,1′:4 coordination mode and interlink Mn(II) ions into infinite one-dimensional chains. The chains are assembled into a three-dimensional architecture via hydrogen bonds and π-π interactions. For 2, Mn(II) ions are connected by btm ligands in the μ3-1,1′:2:3′ mode to produce two-dimensional (6,3) coordination network. Magnetic investigations revealed that interactions through the btm bridges in both 1 and 2 are antiferromagnetic.  相似文献   

18.
The nickel(II) complexes of the compositions [Ni(hmidtc)(bpy)2]ClO4 (I), [Ni(hmidtc)(phen)2]ClO4 (II), [Ni(hmidtc)(phen)2]SCN (III), [Ni(hmidtc)(phen)2]PF6 (IV), [Ni(hmidtc)(phen)2]BPh4 (V), [Ni(hmidtc)(phen)2]AcO·2H2O (VI) and [Ni(hmidtc)(phen)2]Br·H2O (VII), involving a combination of one hexamethyleneimine-dithiocarbamate anion (hmidtc) and two bidentate N,N-donor ligands (2,2′-bipyridine (bpy) for I or 1,10-phenanthroline (phen) for II-VII), have been prepared. The compounds were characterized by elemental analysis, molar conductivity measurements, UV-Vis and IR spectroscopy, magnetochemical measurements and thermal analysis. A single-crystal X-ray analysis of the complex I revealed a distorted octahedral geometry with the nickel(II) ion coordinated by four nitrogen atoms (from two bidentate-coordinated bpy molecules) and two sulfur atoms (from one bidentate-coordinated hmidtc anion), together giving an NiN4S2 donor set.  相似文献   

19.
A series of new binuclear copper (II) and nickel (II) complexes of the macrocyclic ligands bis(1,4,7-triazacyclononan-1-yl)butane (Lbut) and bis(1,4,7-triazacyclononan-1-yl)-m-xylene (Lmx) have been synthesized: [Cu2LbutBr4] (1), [Cu2Lbut(imidazole)2Br2](ClO4)2 (2), [Cu2Lmx(μ-OH)(imidazole)2](ClO4)3 (3), [Cu2Lbut(imidazole)4](ClO4)4 · H2O (4), [Cu2Lmx(imidazole)4](ClO4)4 (5), [Ni2 Lbut(H2O)6](ClO4)4 · 2H2O (6), [Ni2Lbut(imidazole)6](ClO4)4 · 2H2O (7) and [Ni2Lmx (imidazole)4(H2O)2](ClO4)4 · 3H2O (8). Complexes 1, 2, 7 and 8 have been characterized by single crystal X-ray studies. In each of the complexes, the two tridentate 1,4,7-triazacyclononane rings of the ligand facially coordinate to separate metal centres. The distorted square-pyramidal coordination sphere of the copper (II) centres is completed by bromide anions in the case of 1 and/or monodentate imidazole ligands in complexes 2, 4 and 5. Complex 3 has been formulated as a monohydroxo-bridged complex featuring two terminal imidazole ligands. Complexes 6-8 feature distorted octahedral nickel (II) centres with water and/or monodentate imidazole ligands occupying the remaining coordination sites. Within the crystal structures, the ligands adopt trans conformations, with the two metal binding compartments widely separated, perhaps as a consequence of electrostatic repulsion between the cationic metal centres. The imidazole-bearing complexes may be viewed as simple models for the coordinative interaction of the binuclear complexes of bis (tacn) ligands with protein molecules bearing multiple surface-exposed histidine residues.  相似文献   

20.
To determine the influence of metal ion and the auxiliary ligand on the formation of metal-organic frameworks, six new coordination polymers, {[Mn2(bpdc)(bpy)3(H2O)2] · 2ClO4 · H2O}n (1), {[Mn(bpdc)(dpe)] · CH3OH · 2H2O}n (2), {[Cu(bpdc)(H2O)2]}n (3), {[Zn(bpdc)(H2O)2]}n (4), {[Cd(bpdc)(H2O)3] · 2H2O}n (5), and {[Co(bpdc)(H2O)3] · 0.5dpe · H2O}n (6) (H2bpdc = 2,2′-bipyridine-3,3′-dicarboxylic acid, bpy = 2,2′-bipyridine, dpe = 1,2-di(4-pyridyl) ethylene), have been synthesized and characterized. Compound 1 forms 1D helical chain structure containing two unique MnII ions. In 2, the bridging ligand dpe links Mn-bpdc double zigzag chains to generate a layer possesses rectangular cavities. In 3, bpdc2− ligand connects to three metal centers forming a 2D network. Different from the above compounds, 4 displays a 1D double-wavelike chain. Compound 5 features a helical chain. Compound 6 also displays a helical chain with guest molecule dpe existing in the structure. These diverse structures illustrate rational adjustment of metal ions and the second ligand is a good method for the further design of helical compounds with novel structures and properties. In addition, the magnetic properties of 2, 3 and 6, the thermal stabilities and photoluminescence properties of 4 and 5 were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号