首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new dinuclear isophthalato-bridged copper(II) complexes [Cu2(ntb)2(μ-ipt)](ClO4)2·4CH3OH·0.33H2O (1), [Cu2(bbma)2(μ-ipt)(NO3)(CH3OH)]NO3·CH3OH (2) and one mononuclear complex [Cu(bbma)(ipt)(CH3OH)0.67(H2O)0.33]·2CH3OH (3) containing tetradentate and tridentate poly-benzimidazole ligands were synthesized, where ntb is tris(2-benzimidazolylmethyl)amine, bbma is bis(benzimidazol-2-yl-methyl)amine and ipt is isophthalate dianion. All of the complexes were characterized by elemental analysis, IR spectra and X-ray crystallography. The structures of complexes 1 and 2 consist of μ-ipt bridging two Cu(II) centers in a bis(monodentate) bonding fashion. The coordination geometry around the Cu(II) ions of both compounds has a distorted square pyramidal geometry. The Cu···Cu distances are 9.142 and 10.435 Å for 1 and 2, respectively. Complex 3 has a distorted square pyramidal geometry achieved by the three N-atoms of the bbma ligand, one isophthalate-oxygen atom and one oxygen atom from a coordinated methanol molecule. The magnetic susceptibility measurements at variable temperature over the 2-300 K range for complexes 1 and 2 are reported, with J values to be −0.013 and −0.32 cm−1, respectively. The results show that the two complexes exhibit very weak antiferromagnetic interactions between the dinuclear copper(II) centers.  相似文献   

2.
The dinuclear and trinuclear copper(II) complexes [Cu2(L)(OH)(ClO4)(phen)(H2O)]ClO4 · [Cu2(L)(OH)(ClO4)2(phen)(CH3OH)] (1) and [Cu3(L)2(OH)2(H2O)2](NO3)2 (2) (HL=2-[2-(α-pyridyl)ethyl]imino-3-butanone oxime and phen=1,10-phenanthroline) were prepared and their crystal structures have been determined by X-ray crystallography. Complex 1 is composed of [Cu2(L)(OH)(ClO4)(phen)(H2O)]ClO4 (1a) and [Cu2(L)(OH)(ClO4)2(phen)(CH3OH)] (1b). In 1a and 1b, one oximato of L and one hydroxo group bridge two copper(II) ions. The linear trinuclear cation [Cu3(L)2(OH)2(H2O)2]2+ in 2 is centrosymmetric, and one oximato and one hydroxo group bridge the central and terminal copper(II) ions. The strong antiferromagnetic interactions within the dinuclear and trinuclear complexes 1 and 2 have been observed (2J=∼−900 cm−1 for 1 and 2, respectively, H=−2JS1·S2).  相似文献   

3.
The complexes of Cu(I), Cu(II), Ni(II), Zn(II) and Co(II) with a new polypyridyl ligand, 2,3-bis(2-pyridyl)-5,8-dimethoxyquinoxaline (L), have been synthesized and characterized. The crystal structures of these complexes have been elucidated by X-ray diffraction analyses and three types of coordination modes for L were found to exist in them. In the dinuclear complex [Cu(I)L(CH3CN)]2·(ClO4)2 (1), L acts as a tridentate ligand with two Cu(I) centers bridged by two L ligands to form a box-like dimeric structure, in which each Cu(I) ion is penta-coordinated with three nitrogen atoms and a methoxyl oxygen atom of two L ligands, and an acetonitrile. In [Cu(II)L(NO3)2]·CH3CN 2, the Cu(II) center is coordinated to the two nitrogen atoms of the two pyridine rings of L which acts as a bidentate ligand. The structures of [Ni(II)L(NO3)(H2O)2]·2CH3CN·NO3 (3), [Zn(II)L(NO3)2 (H2O)]·2CH3CN (4) and [Co(II)LCl2(H2O)] (5) are similar to each other in which L acts as a tridentate ligand by using its half side, and the metal centers are coordinated to a methoxyl oxygen atom and two bipyridine nitrogen atoms of L in the same side. The formation of infinite quasi-one-dimensional chains (1, 4 and 5) or a quasi-two-dimensional sheet (2) assisted by the intra- or intermolecular face-to-face aryl stacking interactions and hydrogen bonds may have stabilized the crystals of these complexes. Luminescence studies showed that 1 exhibits broad, structureless emissions at 420 nm in the solid state and at 450 nm in frozen alcohol frozen glasses at 77 K. Cyclic voltammetric studies of 1 show the presence of an irreversible metal-centered reduction wave at approximately −0.973 V versus Fc+/0 and a quasi-reversible ligand-centered reduction couple at approximately −1.996 V versus Fc+/0. The solution behaviors of these complexes have been further studied by UV-Vis and ESR techniques.  相似文献   

4.
Two novel dinuclear nickel(II) complexes [Ni2(ntb)2(μ-tp)(H2O)1.61(CH3OH)0.39](NO3)2·5.13CH3OH·2.25H2O (1) and [Ni2(ntb)2(μ-fum)(H2O)(CH3OH)](NO3)2·6CH3OH·H2O (2) (tp = terephthalate dianion, fum = fumarate dianion, ntb = tris(2-benzimidazolylmethyl)amine) containing tetradentate poly-benzimidazole ligand were synthesized and structurally characterized by IR spectra, UV-Vis, elemental analysis and X-ray crystallography. The Ni(II) ions in 1 and 2 have distorted octahedral geometry with four nitrogen atoms of ntb, one oxygen atom of water and one oxygen atom supplied by the carboxylate group of the bridged dicarboxylato ligand. Complexes 1 and 2 consist of terephthalato- and fumarato-bridged dinickel(II) centers in bis(monodentate) bonding fashion. The Ni?Ni distances are 11.333 Å for 1 and 8.966 Å for 2. The magnetic susceptibility measurements at variable temperature show that two complexes exhibit weak antiferromagnetic interactions between nickel(II) ions with J values of −0.25 cm−1 and −0.36 cm−1, respectively.  相似文献   

5.
The syntheses and crystal structures of two new hexanuclear complexes are reported: [{(LCuII(ONO2))(LCuII(H2O))NdIII}2(μ-C2O4)](NO3)2 · 6H2O (1) and [{(LNiII(H2O))(N(CN)2)}2PrIII}2(ONO2)](OH) · 2H2O · 3CH3CN (2) (L is the dianion of the Schiff-base resulted from the 2:1 condensation of 3-methoxysalyciladehyde with 1,3-propanediamine). Compounds 1 and 2 were obtained by connecting heterotrinuclear cationic complexes [{LMII}2LnIII]3+ with oxalato or nitrato linkers. The structure of the complex cation in 1 shows two almost linear trinuclear [Cu2Nd] moieties which are linked by a bis-chelating oxalato bridge between the neodymium ions. The hexanuclear cationic moiety in 2 is built up of two heterotrinuclear [Ni2Pr] units that are linked by a nitrato group bridging two praseodymium(III) ions. The spectroscopic (FTIR, UV-Vis) and magnetic properties of 1 and 2 have been investigated.  相似文献   

6.
A molecular rectangle [Cu{CuL1(NO3)}(H2O)(NO3)]2 (1) and two infinite molecular rectangle strands {[Cu{CuL1(NO3)}2] · 2H2O} (2) and [Cu{CuL2(ClO4)}2] (3) were prepared by reaction of “naked” Cu(II) ions with macrocyclic complex ligands CuL1 for 1 and 2 and CuL2 for 3 in metal-to-ligand molar ratios of 1:1, 1:2 and 1:2, respectively. L1 and L2 denote the dianions of diethyl 5,6,7,8,15,16-hexahydro-6,7-dioxodibenzo[1,4,8,11]tetraazacyclotetradecine-13,18-dicarboxylate and diethyl 5,6,7,8,15,16-hexahydro-15-methyl-6,7-dioxodibenzo[1,4,8,11]tetraazacyclotetradecine-13,18-dicarboxylate, respectively. The structures of 1-3 were determined by X-ray single-crystal analyses. CuL1 in 1 and 2 and CuL2 in 3 act as angular linkers with a monodentate coordination top and a bidentate one between two Cu(II) nodes to enclose the molecular rectangle of 1 and the rectangular subunits of 2 and 3. The angular shape, the monodentate top plus bidentate top coordination mode and the self-complementarity for π?π interactions of the macrocyclic complex linkers, the ratio between the reactants and the octahedral coordination geometry of the naked Cu(II) ions jointly determined the interesting structures of metallocyclophane 1 and 1D double chain coordination polymers 2 and 3. The cavities of the rectangular molecules of 1 are arranged into infinite strands so that parallel channels occur in the crystal. The molecules of 2 and 3 all pack parallel in the crystals.  相似文献   

7.
Coordination polymers Cu(l-Pro)(ClO4)(H2O)2 (1) and Cu3(Gly)4(H2O)2(NO3)2 (2) were synthesized and characterized structurally. Compound 1 possesses the structure of 1D chain, where Cu(II) ions are linked by carboxyl-group in syn-anti conformation in equatorial-equatorial mode. Compound 2 is polymeric chain, consisting from trinuclear blocks Cu3(Gly)4(H2O)22+. In each of these units Cu(II) ions are linked by carboxyl-group in the same way as in 1, while trinuclear units Cu3(Gly)4(H2O)22+ are linked by NO3 ions, acting as the bridges between Cu(II) ions of neighboring trinuclear units. Circular dichroism properties of 1 were studied in solid state and solution. Magnetic measurements revealed that there were ferromagnetic exchange interactions between Cu(II) ions in 1 (J = +1.22(1) cm-1 for Hamiltonian ) and 2 (J = +1.17(2) cm-1 for Hamiltonian ).  相似文献   

8.
Four novel nicotinato-copper(II) complexes containing polybenzimidazole and polyamine ligands were synthesized with formula [Cu2(bbma)2(nic)2](ClO4)2·CH3OH·0.5H2O (1), [Cu2(dien)2(nic)2](ClO4)2·2CH3OH (2), [Cu(ntb)(nic)]ClO4·H2O (3) and [Cu(tren)(nic)]BPh4·CH3OH·H2O (4), in which bbma is bis(benzimidazol-2-yl-methyl)amine, dien is diethylenetriamine, ntb is tris(2-benzimidazolylmethyl)amine, tren is tris(2-aminoethyl)amine and nic is nicotinate anion. All of the complexes were characterized by elemental analysis, IR and X-ray diffraction analysis. Complexes 1 and 2 contain centrosymmetric dinuclear entity with the two Cu(II) atoms bridged by two nicotinate anions in an anti-parallel mode. The Cu···Cu separation is 7.109 Å for 1 and 6.979 Å for 2. Complexes 3 and 4 are mononuclear with nicotinate coordinated to Cu(II) ion by the carboxylate O atom in 3 and the pyridine N atom in 4. All of the complexes exhibit abundant hydrogen bonds to form 1D chain for 1, 3, 4 and 2D network for 2. Magnetic susceptibility measurements over the 2-300 K range reveal very weak ferromagnetic interaction between the two Cu(II) ions in 1 and antiferromagnetic interaction in 2 mediated by nicotinate ligand, with J value to be 0.15 and −0.19 cm−1, respectively.  相似文献   

9.
Four copper(II) complexes containing the reduced Schiff base ligands, namely, N-(2-hydroxybenzyl)-glycinamide (Hsglym) and N-(2-hydroxybenzyl)-l-alaninamide (Hsalam) have been synthesized and characterized. The crystal structures of [Cu2(sglym)2Cl2] (1), [Cu2(salam)2(NO3)2] · H2O (3), [Cu2(salam)2(NO3)(H2O)](NO3) · 1.5H2O (4), [Cu2(salam)2](ClO4)2 · 2H2O (5) show that the Cu(II) atoms are bridged by two phenolato oxygen atoms in the dimers. The sglym ligand bonded to Cu(II) in facial manner while salam ligand prefers to bind to Cu(II) in meridonal geometry. Variable temperature magnetic studies of 3 showed it is antiferromagnetic. These Cu(II) complexes and [Cu2(sglym)2(NO3)2] (2), exhibit very small catecholase activity as compared to the corresponding complexes containing acid functional groups.  相似文献   

10.
Three distinct coordination complexes, viz. {[Cu(μ-L)2] · (H2O)4}n (1), [Ni(L)2(CH3OH)2] (2), and [Zn(L)2(H2O)2] · (H2O)2 (3), have been prepared by the reactions of metal nitrates with isoquinoline-3-carboxylic acid (HL). X-ray single-crystal diffraction suggests that 1 is a 1D chain coordination polymer in which the CuII ions are connected by carboxylates, whereas complexes 2 and 3 represent discrete mononuclear species. In all the cases, the coordination entities are further organized via hydrogen-bonding interactions to generate multifarious supramolecular networks. Remarkably, a well-resolved 1D water morphology is observed for the first time in the crystalline lattice of 1 along [1 0 0], which consists of edge-sharing tetrameric subunits and stabilized by the metal-organic host surroundings.  相似文献   

11.
The manganese complexes [MnII(Hbmimpm)2(NO3)](NO3) · Et2O (1), [MnIII(bmimpm)2(OAc)] · 2CH2Cl2(2), and [MnIII(bmiapm)2(OAc)] · MeOH · H2O · CH2Cl2(3) containing the new ligands Bis(1-methylimidazol-2-yl)-(4-methoxyphen-1-yl)methanol (Hbmimpm) and Bis[(1-methylimidazol-2-yl)](2-aminophenyl)methanol (Hbmiapm) were synthesized. They are good structural models for the reduced (1) and oxidized (2, 3) form of manganese superoxide dismutase. All complexes were characterized by spectroscopic methods and X-ray structure analysis. Compounds 1 and 2 crystallize in the monoclinic space group P21/c whereas complex 3 crystallizes in the monoclinic space group P21/n. The coordination sphere around the manganese cores is distorted octahedral with two corresponding tridentate ligands representing the protein ligands and one nitrate (1) or acetate (2, 3) ion occupying two cis positions. Similar to the enzyme the Mn(III) complex 2 reacts with sodium azide. The obtained microcrystalline azide adduct was characterized by UV-Vis and IR spectroscopy.  相似文献   

12.
The new mononuclear bis(oxamato) complex [n-Bu4N]2[Cu(obbo)] (1) (obbo=o-benzyl-bis(oxamato)) has been synthesized as a precursor for trinuclear oxamato-bridged transition metal complexes. Starting from 1 the homotrinuclear complexes [Cu3(obbo)(pmdta)2(NO3)](NO3)·CH2Cl2·H2O (2) and [Cu3(obbo)(tmeda)2(NO3)2(dmf)] (3) have been prepared, where pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine, tmeda = N,N,N′,N′-tetramethylethylenediamine and dmf = dimethylformamide. The crystal structures of 1-3 were solved. The magnetic properties of 2 and 3 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter values of −111 cm−1 (2) and −363 cm−1 (3) were obtained.  相似文献   

13.
A series of bifunctional chelates of the type dipicolylamino-alkylcarboxylate (NC5H4CH2)2N(CH2)nCO2H (n = 1-4; HL1-HL4, respectively) has been prepared. Reactions of the ligands in aqueous methanol/N,N-dimethylformamide with the appropriate Cu(II) salts yielded the compounds [CuL1](NO3)·H2O (1·H2O), [CuL2(H2O)]BF4·H2O (2·H2O), [Cu(HL3)(SO4)]2 (3) and [CuL4(NO3)]·MeOH (4·MeOH). While compounds 1, 2 and 4 are one-dimensional, the detailed connectivities within the chains are quite distinct, depending on factors such as alkyl chain length and ligation of aqua ligands or anionic components. In contrast to 1, 2 and 4, the structure of 3 is molecular, a binuclear assembly of edge-sharing Cu(II) ‘4+2’ distorted octahedra. The Cd(II) species, [{CdL2}2(SO4)]·4H2O (5·4H2O), prepared from HL2 and CdSO4·nH2O in aqueous methanol/N,N-dimethylformamide, is two-dimensional, with a network constructed from binuclear units of seven coordinate Cd(II), , linked through bridging SO42− groups to produce an assembly of linked hexagonal rings [{CdL2}2(SO4)]6.  相似文献   

14.
Three new homopolynuclear complexes with azido bridges have been obtained by using [Cu(AA)(BB)]+ building-blocks (AA = acetylacetonate; BB = 1,10-phenanthroline or 2,2′-bipyridine). The reaction between [Cu(acac)(phen)(H2O)](ClO4) and NaN3 leads to a mixture of two compounds: a binuclear complex, [{Cu(acac)(phen)}21,3-N3)](ClO4) · 2H2O (1), and a linear tetranuclear one, [{Cu(acac)(phen)(ClO4)}2{Cu(phen)(μ1,1-N3)2}2] (2). The reaction between [Cu(acac)(bipy)(H2O)](ClO4) and NaN3 affords also a mixture of two compounds: [{Cu(acac)(bipy)}21,3-N3)]3(ClO4)3 · 3.75H2O (3) and [Cu(acac)(bipy)(N3)][Cu(acac)(bipy)(H2O)](ClO4) (4). The X-ray crystal structures of compounds 1-4 have been solved (for compound 4 the crystal structure was previously reported). In compounds 1 and 3, two {Cu(AA)(BB)} fragments are bridged by the azido anion in an end-to-end fashion. Two isomers, cis and trans with respect to azido bridge, were found in crystal 3. The structure of compound 2 consists of two Cu(II) central cations bridged by two μ1,1-azido ligands, each of them being also connected to a {Cu(acac)(phen)} fragment through another μ1,1-azido ligand. The cryomagnetic properties of the compounds 1 and 2 have been investigated and discussed. The magnetic behaviour of compound 1 shows the absence of any interactions between the metallic ions. In the tetranuclear complex 2, the magnetic interactions between the external and central copper(II) ions(J1), and between the central metallic ions (J2) were found ferromagnetic (J1 = 0.36 cm−1, J2 = 7.20 cm−1).  相似文献   

15.
By the design of ligand 1,1-(1,5-pentamethylene)bis-1H-benzimidazole (pbbm), we have synthesized polymers {[Co(NO3)(pbbm)2]NO3 · 1/2H2O}n (1), {[CdCl(pbbm)2]Cl · CH3OH}n (2) and {[Cu(Ac)2(pbbm)] · CH3OH}n (3), and characterized their structures by single crystal X-ray diffraction as well as thermoanalysis. In polymers 1 and 2, one of the anions coordinates to the central ion, the other is located in the environment. Two pbbm ligands coordinate simultaneously to two metal centers generating one-dimensional cup-like helical chains. To our best knowledge, this cup-like structure has never been observed in the reported polymers. In polymer 3, each Cu atom is five-coordinate by two nitrogen atoms from two pbbm ligands, and three oxygen atoms from one monodentate acetate anion and one chelating acetate anion leading to one-dimensional wave-like linear chain. In addition, the DTA and TG results of the three polymers are in agreement with the crystal structures.  相似文献   

16.
Preparation, crystal structures and magnetic properties of new heterodinuclear CuIIGdIII (1) and CuIITbIII (2) complexes [CuLn(L)(NO3)2(H2O)3MeOH]NO3·MeOH (where Ln = Gd, Tb) with the hexadentate Schiff-base compartmental ligand N,N′-bis(5-bromo-3-methoxysalicylidene)propylene-1,3-diamine (H2L = C19H20N2O4Br2) (0) have been described. Crystal structure analysis of 1 and 2 revealed that they are isostructural and form discrete dinuclear units with dihedral angle between the O1Cu1O2 and O1Gd1/Tb1O2 planes equal to 2.5(1)° and 2.6(1)°, respectively. The variable-temperature and variable-field magnetic measurements indicate that the metal centers in 1 and 2 are ferromagnetically coupled (J = 7.89 cm−1 for 1). Crystal and molecular structure of the Schiff base ligand (0) has been also reported. The complex formation changes the conformation of Schiff base ligand molecule.  相似文献   

17.
Room temperature reaction of Cu(NO3)2 · 6H2O and pyrazine-2,3,5,6-tetracarboxylic acid (ptecH4) in the presence of pyridine (py) in water-methanol (1:1) mixture results in the formation of {[Cu2(ptec) · (py)2 · (H2O)3] · 4H2O}n (1). With pyridine-2,4,6-tricarboxylic acid (pytcH3) and Cu(NO3)2 · 6H2O, crystals of {[Cu(pytc)] · 1/2[Cu(H2O)6] · H2O}n (2) could be obtained hydrothermally at 180 °C. The structure of 1 consists of 2D polymeric sheets. These sheets are stacked on top of one another due to strong C-H?π interactions forming an overall 3D structure. The structure of 2, on the other hand, consists of twin-chain coordination polymers. The void spaces between two polymeric chains are occupied by [Cu(H2O)6]2+ ions which are H-bonded to the polymeric chains. The variable temperature magnetic measurements for 1 and 2 show weak antiferromagnetic interaction between Cu(II) centers. The EPR spectra of the compounds are consistent with their structures.  相似文献   

18.
In this work we report on the synthesis, crystal structure, and physicochemical characterization of the novel dinuclear [FeIIICdII(L)(μ-OAc)2]ClO4·0.5H2O (1) complex containing the unsymmetrical ligand H2L = 2-bis[{(2-pyridyl-methyl)-aminomethyl}-6-{(2-hydroxy-benzyl)-(2-pyridyl-methyl)}-aminomethyl]-4-methylphenol. Also, with this ligand, the tetranuclear [Fe2IIIHg2II(L)2(OH)2](ClO4)2·2CH3OH (2) and [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) complexes were synthesized and fully characterized. It is demonstrated that the precursor [FeIII2HgII2(L)2(OH)2](ClO4)2·2CH3OH (2) can be converted to (3) by the fixation of atmospheric CO2 since the crystal structure of the tetranuclear organometallic complex [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) with an unprecedented {FeIII(μ-Ophenoxo)2(μ-CO3)FeIII} core was obtained through X-ray crystallography. In the reaction 2 → 3 a nucleophilic attack of a FeIII-bound hydroxo group on the CO2 molecule is proposed. In addition, it is also demonstrated that complex (3) can regenerate complex (2) in aqueous/MeOH/NaOH solution. Magnetochemical studies reveal that the FeIII centers in 3 are antiferromagnetically coupled (J = − 7.2 cm− 1) and that the FeIII-OR-FeIII angle has no noticeable influence in the exchange coupling. Phosphatase-like activity studies in the hydrolysis of the model substrate bis(2,4-dinitrophenyl) phosphate (2,4-bdnpp) by 1 and 2 show Michaelis-Menten behavior with 1 being ~ 2.5 times more active than 2. In combination with kH/kD isotope effects, the kinetic studies suggest a mechanism in which a terminal FeIII-bound hydroxide is the hydrolysis-initiating nucleophilic catalyst for 1 and 2. Based on the crystal structures of 1 and 3, it is assumed that the relatively long FeIII…HgII distance could be responsible for the lower catalytic effectiveness of 2.  相似文献   

19.
The reaction of Ni(ClO4)2·6H2O with 3,5-dichloro-2-hydroxy-benzylaminoacetic acid (H2dchaa), NaN3 and triethylamine in methanol solution or water solution under solvothermal methods leads to the formation of two completely different NiII compounds: [HN(C2H5)3]8·[Ni4(dchaa)4(N3)4]2 (1) and [HN(C2H5)3]2·[Ni3(dchaa)4(H2O)4]2·(H2O)2 (2). The complexes 1 and 2 have been characterized by elemental analyses, IR spectra and single-crystal X-ray diffraction. Structure analyses reveal that complex 1 is a cubane cluster, while the complex 2 is a linear trinuclear cluster. The magnetic investigation shows that complexes 1 and 2 exhibit a ferromagnetic coupling between NiII ions. Ac susceptibilities of 1 and 2 reveal no frequency-dependent out-of-phase signals and the corresponding magnetic properties were discussed.  相似文献   

20.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号