首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Four novel topological nets of lanthanide metal-organic frameworks: [Sm2(op)3(H2O)]n (1), {Ln2(op)2(ox)(H2O)4] · H2O}n (Ln = La, 2; Sm, 3), {[La2(mp)2(ox)(H2O)4] · 2H2O}n (4), [La2(op)2(mp)(H2O)4]n (5) (op = o-phthalate, mp = m-phthalate, and ox = oxalate), have been hydrothermally synthesized and characterized. Compound 1 exhibits novel (3,4,5,6)-connected five-nodal two-dimensional net, compound 2 and 3 show the (3,4)-connected V2O5 topologies, compound 4 has the (4,5)-connected topological net, and compound 5 shows the (4,5)-connected four-nodal three-dimensional network. Photoluminescent analyses of 1 and 3 show strong blue emission in the solid state at room temperature.  相似文献   

2.
Ten transition metal coordination complexes [Cu2(phen)(p-tpha)(μ-O)]n1, [Cu(m-tpha)(imH)2]n2, [Ni(5-Haipa)2(H2O)2]n3, [Ni(phen)2(H2O)2]·btc·[Ni(H2O)6]0.5·9H2O 4, [Co(2,5-pdc)(H2O)2]n·nH2O 5, [Co2(2,5-pdc)2(H2O)6]n·2nH2O 6, [Fe(2,5-Hpdc)2(H2O)2]·H2O 7, [Co(C6H4NO2)3]·H2O 8, [Fe22-btec)(μ2-H2btec)(bipy)2(H2O)2]n9, [Mn(phen)(2,5-pdc)(H2O)2]·H2O 10 (H4btec = 1,2,4,5-benzenetetracarboxylic acid, phen = 1,10-phenanthroline, 2,5-H2pdc = 2,5-pyridine-dicarboxylic acid, p-tpha = p-phthalic acid, m-tpha = m-phthalic acid, bipy = 2,2′-bipyridine, 5-H2aipa = 5-aminoisophthalic acid, imH = imidazole, H3btc = 1,3,5-benzenetricarboxylic acid) were synthesized through hydrothermal method. They were characterized by UV-Vis absorption spectra, single-crystal X-ray diffraction and surface photovoltage spectra (SPS). Structural analysis indicated that the complexes 1, 2, 3, 5, 6 and 9 were linked into infinite structures bridged by organic acid ligands. The other four complexes were molecular complexes and further connected to 2D or 3D structures by the hydrogen bonds. The SPS of complexes 1-10 indicate that there are positive response bands in the range of 300-800 nm showing different levels of photo-electric conversion properties. The intensity, position, shape and the number of the response bands in SPS are obviously different since the structure, species, valence, dn electrons configuration and coordinated environment of the center metals are different. There are good relationships between SPS and UV-Vis spectra.  相似文献   

3.
Six new coordination polymers based on V-shaped linkage 2,5-bis(4-pyridyl)-1,3,4-thiadiazole (bpt) and transition metal ions, [Co(bpt)(pm)0.5(H2O)]n · 3nH2O (1), [Cu2(bpt)(pm)(H2O)4]n (2), [Co(bpt)(pydc)]n · 2nCHCl3 · nH2O (3), [Cu2(bpt)(pydc)2(H2O)2]n (4), [Cu2(bpt)(pydco)2(H2O)2]n · nH2O (5) and [Cd(bpt)(pydco)]n (6) (H4pm = pyromellitic acid, H2pydc = pyridine-2,6-dicarboxylic acid, H2pydco = pyridine-2,6-dicarboxylic acid N-oxide), have been synthesized under the intervention of various polycarboxylate ligands. Complex 1 exhibits a 3-D 4-connected structure with 1-D nanosized open channels encapsulated lots of water molecules. Complex 2 represents a 2-D grid containing two types of rectangular windows. When pydc and pydco instead of pm, complexes 3 and 6 were obtained with highly undulated 2-D layers. The interlayers of 3 are filled with two kinds of solvent molecules, whereas 6 is a double-layered framework without free molecules. Complexes 4 and 5 consist of two distinct 1-D infinite chains held together to form different 2-D supramolecular networks. Importantly, bpt spacer shows changeful conformational geometries and generates complicated crystalline architectures with the introduction of polycarboxylate ligands. Additionally, thermal stability of complexes 1, 3 and 5, fluorescent properties of 6 and X-ray powder diffraction of 1 have also been investigated.  相似文献   

4.
Hydrothermal synthesis has afforded cobalt 5-substituted isophthalate complexes with 4,4′-dipyridylamine (dpa) ligands, showing different dimensionalities depending on the steric bulk and hydrogen-bonding facility of the substituent. [Co(tBuip)(dpa)(H2O)]n (1, tBuip = 5-tert-butylisophthalate) is a (4,4) grid two-dimensional coordination polymer featuring 2-fold parallel interpenetration. [Co(MeOip)2(Hdpa)2] (2, MeOip = 5-methoxyisophthalate) is organized into 3-fold parallel interpenetrated (4,4) grids through strong N-H+?O hydrogen bonding. {([Co(OHip)(dpa)(H2O)3])3·2H2O}n (3, OHip = 5-hydroxyisophthalate) possesses 1-D chain motifs. The 5-methyl derivative {[Co(mip)(dpa)]·3H2O}n (4, mip = 5-methylisophthalate) has a 3-D 658 cds topology. {[Co(H2O)4(Hdpa)2](nip)2·2H2O} (5, nip = 5-nitroisophthalate) and {[Co(sip)(Hdpa)(H2O)4]·2H2O} (6, sip = 5-sulfoisophthalate) are coordination complexes. Antiferromagnetic superexchange is observed in 1 and 4, with concomitant zero-field splitting. Thermal decomposition behavior of the higher dimensionality complexes is also discussed.  相似文献   

5.
Four new complexes, {[Mn(imH)2(pdc)]·H2O}n (1), [Zn2(pdc)2(H2O)5]·2H2O (2), [Zn(imH)2(pdc)]·H2O (3), {[Zn2(pdc)2(bpy)(H2O)2]·5H2O}n (4) [imH = imidazole pdc = pyridine 2,6-dicarboxylate, bpy = 4,4′-bipyridine] have been synthesized under hydrothermal conditions and structurally characterized by elemental analysis, IR, PXRD, single-crystal X-ray diffraction and thermogravimetric analyses. All the four complexes display a three-dimensional (3D) open framework with one-dimensional (1D) channels that are filled with lattice water molecules. Particularly, in 4, the lattice water molecules form an infinite water chain. Both 1 and 4 consist of 1D polymeric chains. While 2 contains a dinuclear Zn(II) unit, and 3 is a mononuclear complex. Further, the result of thermal analysis of 1 and 2 shows the robustness of the overall supramolecular three-dimensional architecture. Complexes 1, 3, and 4 exhibit strong fluorescent emissions in the solid state at room temperature and could be significant in the field of photoactive materials.  相似文献   

6.
The product from the reaction between Cd(NO3)2·4H2O and 1,3,5-benzenetricarboxylic acid (H3btc) in DMF at 95 °C depends on the reaction time, with [Cd(Hbtc)(H2O)2] 1 and [Cd(Hbtc)(DMF)2] 2 isolated after heating for 10 min, the latter after standing the solution for 1-2 weeks at room temperature. [Cd3(btc)2(H2O)9]·4H2O 3 was isolated after heating for 1 h, whereas [Cd12(btc)8(DMF)14(OH2)2]·1.5DMF 4 was isolated after heating for 2 days. Compounds 1 and 3 have been previously reported, whereas 2 and 4 are both new. Compound 2 adopts a two-dimensional sheet structure, with the coordinated DMF ligands projecting from both sides of the sheets, whereas 4 has a complex three-dimensional structure related to the fsc net. When the reaction was repeated in the presence of pyrazine (pyz), the product [Cd(Hbtc)(pyz)(DMF)]·DMF 5 was isolated as a minor compound. Compound 5 has a two-dimensional structure, with Cd-Hbtc zig-zag chains linked into sheets through the pyrazine ligands.  相似文献   

7.
Reactions of MCl2 (M = Mg, Ca, Sr, Ba) and a4-ptz (a4-ptz = 5-[N-acetato (4-pyridyl)] tetrazolate) potassium salt in water, respectively, and produced four new complexes [Mg(H2O)6] · (a4-ptz)2 · 2H2O (1), [Ca(a4-ptz)2(H2O)2]n · 2nH2O (2), [Sr(a4-ptz)2(H2O)2]n · 2nH2O (3), [Ba4(a4-ptz)8(H2O)8]n · 4nH2O (4). These compounds were structurally characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Compound 1 has mononuclear structure bearing distinct intermolecular hydrogen-bond interactions to form a three-dimensional supramolecular network. While compounds 2-4 have one-dimensional polymeric chains that are bridged by two water molecules linker, respectively. The luminescence properties of 1-4 were investigated at room temperature in the solid state.  相似文献   

8.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

9.
Five new complexes, [Co3(HL1)2(Py)8]·4CH3OH (1), [Ni3(HL1)2(Py)4]2·2DMF (2), [Co3(H2L2)2(Py)8]·2NO3 (3), [Ni2(HL2)(Py)6] (4) and [Cu4(HL2)2(Py)4]·4DMF (5) (H4L1 = N-propionyl-4-hydroxysalicylhydrazide, H44-hopshz; H5L2 = N-(3-carboxy-cis-2-propenoyl)-4-hydroxysalicylhydrazide, H54-hocpshz) have been obtained from two N,N′-diacylhydrazide ligands and characterized by elemental analysis, FT-IR, X-ray diffraction and antimicrobial activities. These di-, tri-, and tetrameric complexes are connected into three-dimensional supramolecular architectures with interesting topologies through O-H?O, C-H?O and C-H?π interactions. 1-3 are linear trimeric complexes with the ligands triply-deprotonated. Topological analysis indicates that they exhibit 2D (4,4), 3D (6,8)-connected (3349526)(3441257647) and 8-connected (42563) net, respectively. 4 and 5 possess dimeric and tetrameric structures, which are extended into 7-connected (33413536) and 4-connected (4,4) net, respectively.  相似文献   

10.
Hydrothermal synthesis has afforded five d10 configuration divalent metal diphenate coordination polymers containing pyridyl-piperazine type ligands, which were structurally characterized by single-crystal X-ray diffraction. {[Cd(diphenate)(3-bpmp)(H2O)]·0.5H2O}n (1, 3-bpmp = bis(3-pyridylmethyl)piperazine) has a double layer topology. Its perchlorate-containing analog {[Cd3(diphenate)4(H23-bpmp)(H3-bpmp)(H2O)2](ClO4)·7H2O}n (2) possesses a very rare 4-connected 658 dmp topology based on anionic trinuclear nodes. {[Cd(diphenate)(4-bpfp)]·H2O}n (3, 4-bpfp = bis(4-pyridylformyl)piperazine) manifests a non-interpenetrated diamondoid lattice, while the related compound [Cd(diphenate)(4-bpmp)(H2O)]n (4, 4-bpmp = bis(4-pyridylmethyl)piperazine) has a simple (4,4) grid topology. {[Zn(diphenate)(4-bpmp)]·0.5H2O}n (5) displays a 2-fold interpenetrated diamondoid lattice. Luminescent properties of these materials are also reported.  相似文献   

11.
Four new coordination polymers namely {[Mn2(BT)(DPS)2(H2O)6]·10H2O}n (MnBTDPS), {[Co2(BT)(DPS)2(H2O)6]·10H2O}n (CoBTDPS), {[Cu2(BT)(DPS)(H2O)4]·5H2O}n (CuBTDPS) and {[Zn2(BT)(DPS)2]·6H2O}n (ZnBTDPS), where BT = 1,2,4,5-benzenetetracarboxylate and DPS = di(4-pyridyl) sulfide, were synthesized and characterized by thermal analysis, vibrational spectroscopy (Raman and infrared) and single crystal X-ray diffraction analysis. In all compounds, the DPS ligands are coordinated to metal sites in a bridging mode and the carboxylate moiety of BT ligands adopts a monodentate coordination mode, as indicated by the Raman spectra data through the Δν (νasym(COO) − νsym(COO)) value. According to X-ray diffraction analysis, MnBTDPS and CoBTDPS are isostructural and in these cases, the metal centers exhibit a distorted octahedral geometry. In CuBTBPP, the Cu2+ centers geometries are best described as square-pyramids, according to the trigonality index τ = 0.14 for Cu1 and τ = 0.10 for Cu2. On the other hand, in ZnBTDPS, the Zn2+ sites adopt a tetrahedral geometry. Finally, the four compounds formed two-dimensional sheets that are connected to each other through hydrogen bonding giving rise to three-dimensional supramolecular arrays.  相似文献   

12.
Two new zinc-triazole-carboxylate frameworks constructed from secondary building units (SBUs), [Zn5(trz)4(btc)2(DMF)2(H2O)2]·2H2O·DMF (1) and [Zn4(trz)3(btc)2(CH3CN)(H2O)]·5H2O·(Bu4N) (2), [Htrz = 1,2,4-triazole, H3btc = 1,2,4-benzenetricarboxylate, Bu4N = tetrabutylammonium], have been synthesized by solvothermal reactions and characterized by single-crystal X-ray diffraction analyses, X-ray power diffraction, elemental analyses, infrared spectra and thermogravimetric analyses. Both compounds 1 and 2 exhibit 3D (3,8)-connected tfz-d nets with {43}2{46.618.84} topology symbol built from rod-shaped {[Zn5(trz)4]6+}n SBUs (1) and {[Zn4(trz)3]5+}n SBUs (2). In two compounds, rodlike units are connected by btc ligands via different modes. Additionally, solid state fluorescent emission spectra of two compounds show fluorescent properties at room temperature.  相似文献   

13.
1,10-Phenanthroline hydrogen phthalato manganese(II) dimer [Mn2(Hphth)2(phen)4] · 2Hphth · 6H2O (1), monomeric phenanthroline phthalato manganese(II) monomer [Mn(phth)(phen)2(H2O)] · 2.5H2O (2), 2,2′-bipyridine phthalato manganese(II) polymer [Mn(phth)(bpy)(H2O)2]n (3) and 1,10-phenanthroline maleato polymer [Mn(male)(phen)(H2O)2]n · 2nH2O (4) (H2phth = o-phthalic acid, male = maleic acid, phen = 1,10-phenanthroline and bpy = 2,2′-bipyridine) have been synthesized and characterized spectroscopically and structurally. Each Mn(II) atom in dimeric 1 is octahedrally coordinated by two oxygen atoms of phthalate anions and by two cis-phenanthroline ligands. The hydrogen phthalato anion bridges the Mn(II) ions through the deprotonated carboxyl groups, while the carboxylic acid group remains free. In the monomeric 2, the Mn(II) ion is octahedrally surrounded by four nitrogen atoms from two cis-phen ligands, one carboxyl oxygen from a monodentate phth ion, and one coordinated water molecule. The dimeric phthalato complex 1 can be cleaved into monomer 2 under heating with deprotonation, and the course of the reaction can be qualitatively traced by IR spectra. The phthalate group in the complex 3 binds to two manganese atoms through the vicinal carboxyl-oxygen atoms in syn-syn bridging mode. The Mn(II) atoms are linked by the phthalate group to yield a one-dimensional chain running along the a-axis. The coordination polymer 3 can be obtained from the reaction of dichloro dibipyridine manganese with phthalate under heating. In polymer 4, the manganese atom is six-coordinated by two nitrogen atoms from phen, two oxygen atoms from the coordinated water molecules and two oxygen atoms from two different maleate dianions. Each maleato unit links two neighboring manganese atoms to yield one-dimensional chain along b-axis in bis-monodentate mode. The single-chain polymer 4 prepared at low temperature can be converted to double-chain coordination polymer [Mn(male)(phen)]n · nH2O (5) with dehydration in warm solution.  相似文献   

14.
Four new cadmium(II) and zinc(II) coordination polymers {[Zn(btrp)(SIP)][Zn0.5(H2O)3]}n (1), {[Cd1.5(btrp)(SIP)(H2O)2]·2H2O}n (2), {[Cd1.5(btrb)(SIP)(H2O)3]·2H2O}n (3), {[Zn1.5(btrb)1.5(SIP)(H2O)2]·2H2O}n (4) (btrp = 1,3-bis(1,2,4-triazol-1-yl)propane, btrb = 1,3-bis(1,2,4-triazol-1-yl)butane, NaH2SIP = 5-sulfoisophthalic acid monosodium salt) have been synthesized under hydrothermal conditions and structurally characterized. Compound 1 possesses an infinite 1D ladder-like chain structure with [Zn(H2O)6]2+ trapped in the pores, which is further interconnected by π?π interactions to lead to a 2D supramolecular architecture. Compounds 2 and 3 features two similar 2D layer structures, and the resulting 2D structures are interconnected by hydrogen-bond interactions to lead to 3D supramolecular architectures. Compound 4 is a 2D parallel ladder structure, and through the interpenetrating btrb ligand, it constructs into 3D architectures. Luminescence analyses were performed on all the four compounds, which show strong fluorescent emissions in the solid state at room temperature.  相似文献   

15.
Divalent cobalt coordination polymers containing both ortho-phenylenediacetate (ophda) and rigid dipyridyl ligands 4,4′-bipyridine (bpy) or 1,2-bis(4-pyridyl)ethylene (dpee) display different topologies depending on carboxylate binding mode, tether length, and inclusion of charged species. [Co(ophda)(H2O)(dpee)]n (1) displays a common (4,4) grid layer motif. Use of the shorter bpy tether afforded {[Co2(ophda)2(bpy)3(H2O)2][Co(bpy)2(H2O)4](NO3)2·2bpy·7H2O}n (2) or [Co(ophda)(bpy)]n (3) depending on cobalt precursor. Compound 2 manifests 5-connected [Co2(ophda)2(bpy)3(H2O)2]n pillared bilayer slabs with rare 4862 SnS topology and entrained [Co(bpy)2(H2O)4]2+ complex cations. The 3-D coordination polymer 3 has an uncommon 4,6-connected binodal (4462)(446108) fsc topology, and shows ferromagnetic coupling (J = +1.5(2) cm−1) along 1-D spiro-fused [Co(OCO)2]n chain submotifs.  相似文献   

16.
Four octamolybdate-based compounds, that is, CuII2(L1)4(Mo8O26) (1), CuII2(HL2)4(Mo8O26)2 (2), [CuIIL2(H2O)(Mo8O26)0.5]·2H2O (3) and [CuIIL2(H2O)(Mo8O26)0.5]·2H2O (4) (L1 = 2-(2-pyridyl)imidazole, L2 = 2-(1-(pyridine-3-ylmethyl)-1H-imidazol-2-yl)pyridine), have been hydrothermally synthesized via changing the reaction conditions and structurally characterized by single-crystal X-ray diffraction. With L1 ligand, we obtained compound 1, which is a 0D molecule and extends to a 3D supramolecular structure via hydrogen-bonding interactions. By using L2 instead of L1 ligand, compound 2 comes into being which is as well a discrete molecule and further extended to a 3D supramolecular structure by hydrogen bonds. Intriguingly, compounds 3 and 4 are supramolecular isomers: the former is a 2D 4-connected network and the latter is a 3D (3,4)-connected framework. The measurements of diffuse reflectance for compounds 1-4 indicate that they are potential wide gap semiconductors.  相似文献   

17.
Five MnII-sdba coordination polymers with mono-, di-, tri-, tetra-nuclear cores based on the V-shaped 4,4′-dicarboxybiphenyl sulfone (H2sdba) ligands: [Mn(sdba)(phen)2(H2O)]n·3nH2O (1), [Mn2(sdba)2(μ-H2O)(py)4]n (2), [Mn3(sdba)2(Hsdba)2(2,2′-bipy)2]n (3), [Mn4(sdba)4(4-mepy)2(H2O)4]n·2nH2O (4) and [Mn4(sdba)4(bpp)4(μ-H2O)2]n·0.5nH2O (5) (phen = 1,10-phenanthroline, 2,2′-bipy = 2,2′-bipyridine, 4-mepy = 4-picoline, bpp = 1,3-bi(pyridine-4-yl)propane) were hydrothermally synthesized and structurally characterized. The M-O-C metal clusters in above complexes act as SBUs, and the V-shaped sdba ligands link the SBUs to generate the novel frameworks. In complexes 1 and 3 their 1D chains are linked into the 2D planes through various hydrogen bonding. Complex 2 displays the 3D structure with interpenetrated threefold, while complexes 4 and 5 both exhibit the 3D structures with the tetra-nuclear Mn4 units. The magnetic susceptibility studies in the 2-300 K range for these complexes reveal the existence of anti-ferromagnetic exchange interactions between the MnII ions.  相似文献   

18.
Hydrothermal reactions between H4ODPA (2,2′,3,3′-oxydiphthalic acid) and metal ion salts of Ba2+, Cu2+, Zn2+ and Gd3+ afford four novel coordination polymers [Ba(H2ODPA)(H2O)4] · H2O (1), [Cu2(ODPA)(H2O)3] · H2O (2), Zn2(ODPA)(H2O)2 (3) and [Gd(HODPA)(H2O)3.5] · H2O (4), accordingly. These polymers show great differences in regard to their structures and properties originated from the variation of size and coordination geometry of the metal ions. Compound 1 presents puckered achiral layer structure with (4.82) topology with helices, 2 has a 63 topology with copper tetramer as SBUs, 3 has chiral layer with two kinds of helices built up from Zn-binuclear “paddle-wheel” like SBUs, and 4 features a simple 1D helix with opposite chirality. Compound 3 shows obvious fluorescent emissions upon excitation. Compound 2 shows ferromagnetic interactions between CuII centers bridged by carboxylate groups, whereas compound 4 presents weak ferromagnetic interaction between GdIII ions.  相似文献   

19.
Self-assembly of flexible 1,3-bis(1,2,4-triazol-1-yl)propane (btp), inorganic Cu(II) salt and rigid benzene-based carboxylate coligand generates four complexes, {[Cu(btp)2(CH3OH)(H2O)]·H2O·2ClO4}n (1), {[Cu(btp)(Hbtc)2]·0.5H2O}n (2), [Cu(btp)2(H3btea)2]n (3), and [Cu(btp)(nb)2] (4) (H3btc = 1,3,5-benzenetricarboxylic acid, H4btea = 1,2,4,5-benzenetetracarboxylic acid, Hnb = p-nitrobenzoic acid), which are fully structural characterized by single-crystal X-ray crystallography, elemental analysis, IR, and TG-DTA techniques. Structural determinations reveal that the polymeric two-dimensional (2D) Cu-btp grid-like layer for 1, 1D linear single- and double-stranded chains for 2 and 3, as well as the discrete binuclear structure for 4, are jointly directed by the coordination polyhedrons of the Cu(II) ion and the exo-bidentate bridging btp core ligand with various conformations. The theoretical calculations suggest that the trans-trans btp is the most stable conformation, and the metal binding site is collectively determined by the electron density of N donors and the spatial orientation of the btp ligand. Unexpectedly, the polycarboxylate anions in 1-4 can only act as terminal coligands not popular bridging connectors. The thermal stability of the resulting complexes is also compared.  相似文献   

20.
The new β-diketone-functionalized pyridinecarboxylate ligand 2-(3-oxo-3-phenyl-propionyl)-6-pyridinecarboxylic acid (H2L) has been synthesized and fully characterized. Its tetranuclear and trinuclear nickel(II) coordination compounds [Ni4L4(DMF)(H2O)3]·2.5DMF·3H2O (1) and [Ni3L2(OAc)2(DMF)2 (H2O)2]·DMF·H2O (2) have also been synthesized and characterized by single crystal X-ray diffraction. Compound 1 has a [2 × 2] molecular grid structure and 2 is a trinuclear structure. The magnetic properties study of 1 and 2 revealed the intramolecular antiferromagnetic exchange coupling between the Ni(II) ions exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号