首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 1:1 condensation of 1,2-diaminopropane and 1-phenylbutane-1,3-dione at high dilution gives a mixture of two positional isomers of terdentate mono-condensed Schiff bases 6-amino-3-methyl-1-phenyl-4-aza-2-hepten-1-one (HAMPAH) and 6-amino-3,5-dimethyl-1-phenyl-4-aza-2-hexen-1-one (HADPAH). The mixture of the terdentate ligands has been used for further condensation with pyridine-2-carboxaldehyde or 2-acetylpyridine to obtain the unsymmetrical tetradentate Schiff base ligands. The tetradentate Schiff bases are then allowed to react with the methanol solution of copper(II) and nickel(II) perchlorate separately. The X-ray diffraction confirms the structures of two of the complexes and shows that the condensation site of the diamine with 1-phenylbutane-1,3-dione is the same.  相似文献   

2.
The 1:1 condensation of 1-benzoylacetone and 1,2-diaminopropane yields 6-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one (HL). When copper(II) perchlorate is added to the methanolic solution of HL, followed by triethylamine in 1:2:1 molar ratio, an unusual copper(II) complex, [Cu(L)(HL)]ClO4, is separated out where the deprotonated ligand, L, is coordinated in the usual chelating tridentate manner but HL is coordinated to Cu(II) only through the amine N, i.e. it acts as a pendant ligand. The complex is characterized by X-ray crystal structure analysis.  相似文献   

3.
Two Schiff bases, HL1 and HL2 have been prepared by the condensation of N-methyl-1,3-propanediamine (mpn) with salicylaldehyde and 1-benzoylacetone (Hbn) respectively. HL1 on reaction with Cu(ClO4)2·6H2O in methanol produced a trinuclear CuII complex, [(CuL1)3(μ3-OH)](ClO4)2·H2O·0.5CH2Cl2 (1) but HL2 underwent hydrolysis under similar reaction conditions to result in a ternary CuII complex, [Cu(bn)(mpn)ClO4]. Both complexes have been characterised by single-crystal X-ray analyses, IR and UV-Vis spectroscopy and electrochemical studies. The partial cubane core [Cu3O4] of 1 consists of a central μ3-OH and three peripheral phenoxo bridges from the Schiff base. All three copper atoms of the trinuclear unit are five-coordinate with a distorted square-pyramidal geometry. The ternary complex 2 is mononuclear with the square-pyramidal CuII coordinated by a chelating bidentate diamine (mpn) and a benzoylacetonate (bn) moiety in the equatorial plane and one of the oxygen atoms of perchlorate in an axial position. The results show that the Schiff base (HL2) derived from 1-benzoylacetone is more prone to hydrolysis than that from salicylaldehyde (HL1). Magnetic measurements of 1 have been performed in the 1.8-300 K temperature range. The experimental data clearly indicate antiferromagnetism in the complex. The best-fit parameters for complex 1 are g = 2.18(1) and J = −15.4(2) cm−1.  相似文献   

4.
Imine based bis-bidentate ligands H2-m-xysal, (L1H2); H2-m-xysal-Cl, (L2H2); H2-m-xysal-Br, (L3H2); H2-m-xysal-OCH3, (L4H2); H2-m-xysal-(t-Bu)2, (L5H2) were synthesized and characterized. These substituted 1,3-bis(hydroxylbenzyl)-diaminoxylene dianion ligands upon treating with copper(II) acetate in 2:2 equivalent of L:M ratio, resulted in a series of binuclear [Cu2(m-xysal)2] neutral complexes 1-5. The crystal structures determined for the complexes 1 and 2 indicate a dinuclear association. The CH?π interaction observed between the metal-chelate ring and the hydrogens associated with m-xylene spacer moiety being first in this series of complexes, is demonstrated to stabilize the helical conformation through intramolecular self assembly process. The position of the resonance on the EPR spectra and the absence of ΔMs = ±1 feature for the complexes 2, 3, and 5 obtained for room temperature solid state samples revealed that the metal centers though exist in the dinuclear unit, they are separated from each other and possess a non-interacting monomer-type metal-metal association. The Cu(II) centers in all these complexes possessing an intermediate geometry between tetrahedral and square planar, an appropriate catalytic study converting 4-nitrobenzaldehye to corresponding nitroaldol was carried out using complex 5.  相似文献   

5.
Crystallographic and magnetic studies have been performed on the complex, [{CuCl}2(μ-tppz)][PF6]2, where tppz is 2,3,5,6-tetra-2-pyridinylpyrazine. The crystal structure revealed an infinite, ionic chain wherein Cu(II) ions are respectively above and below the plane of the pyrazine moiety of the bridging tppz ligand with the pyridine moieties moving out of the pyrazine plane in order to coordinate to Cu(II). Each chloride ligand bonds equatorially to Cu(II) in a [{CuCl}2(μ-tppz)]2+ ion and axially to a neighboring [{CuCl}2(μ-tppz)]2+ ion so as to form a one-dimensional chain in the solid state. The temperature-dependent magnetic susceptibilitity could be satisfactorily fitted by using a modified Bleaney-Bowers expression (for H = −JSa · SbJ = −5.6 cm1 and g = 2.16) where the exchange interaction is suggested to involve the orbitals of the tppz ligand.  相似文献   

6.
A new mononuclear Cu(II) complex, [CuL(ClO4)2] (1) has been derived from symmetrical tetradentate di-Schiff base, N,N′-bis-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L) and characterized by X-ray crystallography.The copper atom assumes a tetragonally distorted octahedral geometry with two perchlorate oxygens coordinated very weakly in the axial positions.Reactions of 1 with sodium azide, ammonium thiocyanate or sodium nitrite solution yielded compounds [CuL(N3)]ClO4 (2), [CuL(SCN)]ClO4 (3) or [CuL(NO2)]ClO4 (4), respectively, all of which have been characterized by X-ray analysis.The geometries of the penta-coordinated copper(II) in complexes 2-4 are intermediate between square pyramid and trigonal bipyramid (tbp) having the Addition parameters (τ) 0.47, 0.45 and 0.58, respectively.In complex 4, the nitrite ion is coordinated as a chelating ligand and essentially both the O atoms of the nitrite occupy one axial site.Complex 1 shows distinct preference for the anion in the order in forming the complexes 2-4 when treated with a mixture. Electrochemical electron transfer study reveals CuIICuI reduction in acetonitrile solution.  相似文献   

7.
Two new copper(II) complexes, [Cu3(L1)2(H2O)2](ClO4)2 (1) and [CuL2⊂ (H2O)] (2) have been derived from two di-compartmental Schiff base ligands H2L1 and H2L2, respectively. Depending on slight modification of the substituent group of the potentially N2O4 donor ligands, tri- and mononuclear structures are obtained, which have been confirmed by single-crystal X-ray diffraction studies. Both complexes have been characterized by elemental analysis, IR, UV-vis and EPR spectroscopy. Complex 1 consists of an angular trinuclear array of copper ions, while complex 2 consists of a mononuclear copper center. Variable temperature magnetic susceptibility measurements have been performed to investigate the magnetic behaviour of complex 1 and the result indicates a strong antiferromagnetic exchange interaction (J = −120.1(2) cm−1) between the adjacent copper(II) centers through two double μ2-phenoxo bridges. Complex 2 is a mononuclear inclusion compound encapsulating one water molecule in the vacant external compartment of the ligand through hydrogen-bonding interactions.  相似文献   

8.
The ligand 1,3-bis[(2-dimethylaminoethyl)iminomethyl]benzene (baib) reacts with [Cu(MeCN)4][ClO4] to form a binuclear copper(I) complex . Crystal structure analysis reveals that the distorted tetrahedral coordination of each copper(I) center is satisfied by one bidentate arm of each ligand. The complex undergoes ready aromatic ring hydroxylation at position 2 of the phenyl ring when reacted with molecular oxygen in MeCN/MeOH/CH2Cl2, producing a four-coordinate μ-phenoxo- and μ-hydroxo-bridged dicopper(II) complex, [Cu2(baib-O)(OH)(OClO3)2] · 1.5H2O (2) (baib-OH: 1,3-bis[(2-dimethylaminoethyl)iminomethyl]phenol). This reaction mimics the reactivity of the copper monooxygenase tyrosinase. A trend is observed for the extent of aromatic ring hydroxylation (25 °C): MeCN > MeOH > CH2Cl2. Cyclic voltammetric experiment of 1 in MeCN reveals an appreciably high redox potential (anodic peak potential, Epa = 0.69 V versus SCE) for the redox process. Complex 2 has been characterized by single-crystal X-ray crystallography. Variable temperature (60-300 K) magnetic susceptibility measurements on 2 establish that the copper(II) centers in 2 are antiferromagnetically coupled (2J = −280 cm−1).  相似文献   

9.
Bis(o-aminobenzaldehyde)thiocarbohydrazone (HL) forms with copper(II) nitrate a tetranuclear complex [Cu2(L)(NO3)3]2·2H2O, in which two dinuclear units are joined by nitrate bridges. The dihydrazone ligand behaves ditopically, providing NNS and NNN binding sites, with the four coppers essentially in a square-pyramidal geometry. The tetranuclear molecule displays intramolecular magnetic interactions, with the antiferromagnetic exchange (−2J = 210(1) cm−1) between the copper(II) ions within each dinuclear moiety dominant over weak interdimer ferromagnetic coupling.  相似文献   

10.
Tetranuclear Cu(II) complexes of N-(2-hydroxymethylphenyl)salicylideneimine (H2L1-H) and its homologues (5-CH3: H2L1-Me, 5-Cl: H2L1-Cl), [Cu(L1-H)]4 · 3H2O (1), [Cu(L1-Me)]4 · 2CH2Cl2 (2), and [Cu(L1-Cl)]4 · 2CH2Cl2 (3), have been characterized by X-ray crystal structure analyses and magnetic measurements. The structure analyses revealed that the complexes 1-3 have a defective double-cubane tetra copper(II) core connected by μ3-alkoxo bridges. The intramolecular Cu?Cu distances are in the range from 5.251(2)-5.256(3) Å for the longest to 3.0518(9)-3.092(2) Å for the shortest. Each Cu(II) ion has a square-pyramidal geometry and the dihedral angles between adjacent Cu(II) basal planes are almost right angles. Magnetic measurements of the present complexes indicate that weak antiferromagnetic interactions (J=−15 to −19 cm−1) between neighboring copper(II) ions are dominant in these tetracopper cores.  相似文献   

11.
A series of copper(II) and zinc(II) complexes involving a tridentate O,N,O'-donor Schiff base derived from salicylaldehyde and beta-alanine {i.e. N-salicylidene-beta-alanine(2-), (L)}, having the composition [Cu(2)(L)(2)(H(2)O)].H(2)O (1), [Cu(L)(H(2)O)](n) (2), and [Zn(L)(H(2)O)](n) (3), have been prepared and characterized by elemental analyses, UV-visible (UV-VIS), FT-IR and ESI-MS spectra, and thermal analyses. Complexes 1 and 2 have been investigated by single crystal X-ray analysis and also by temperature dependent magnetic susceptibility measurements (294-80K). All prepared complexes have been evaluated by the antiperoxynitrite activity assay and alloxan-induced diabetes model. The significant antioxidant and antidiabetic activities have been found in the case of both copper(II) complexes 1 and 2. In spite of first two complexes, the zinc(II) complex 3, as well as the potassium salt of the ligand (KHL) showed only insignificant protective effect against the tyrosine nitration in vitro.  相似文献   

12.
Reaction of 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) with Cu(ClO4)2·6H2O in methanol in 3:1 M ratio at room temperature yields light green [CuL3](ClO4)2·H2O (1). The X-ray crystal structure of the hemi acetonitrile solvate [CuL3](ClO4)2·0.5CH3CN has been determined which shows Jahn-Teller distortion in the CuN6 core present in the cation [CuL3]2+. Complex 1 gives an axial EPR spectrum in acetonitrile-toluene glass with g|| = 2.262 (A|| = 169 × 10−4 cm−1) and g = 2.069. The Cu(II/I) potential in 1 in CH2Cl2 at a glassy carbon electrode is 0.32 V versus NHE. This potential does not change with the addition of extra L in the medium implicating generation of a six-coordinate copper(I) species [CuL3]+ in solution. B3LYP/LanL2DZ calculations show that the six Cu-N bond distances in [CuL3]+ are 2.33, 2.25, 2.32, 2.25, 2.28 and 2.25 Å while the ideal Cu(I)-N bond length in a symmetric Cu(I)N6 moiety is estimated as 2.25 Å. Reaction of L with Cu(CH3CN)4ClO4 in dehydrated methanol at room temperature even in 4:1 M proportion yields [CuL2]ClO4 (2). Its 1H NMR spectrum indicates that the metal in [CuL2]+ is tetrahedral. The Cu(II/I) potential in 2 is found to be 0.68 V versus NHE in CH2Cl2 at a glassy carbon electrode. In presence of excess L, 2 yields the cyclic voltammogram of 1. From 1H NMR titration, the free energy of binding of L to [CuL2]+ to produce [CuL3]+ in CD2Cl2 at 298 K is estimated as −11.7 (±0.2) kJ mol−1.  相似文献   

13.
A linear trinuclear copper(II) complex (1), prepared from a new Schiff base ligand, namely the dianion of 4-chloro-6-(hydroxymethyl)-2-((3-aminopropylimino)methyl)-phenol, was synthesized and characterized in this paper. The X-ray structural study reveals that the geometry of the central Cu2 ion is elongated octahedral and that of the two side Cu(II) ions is distorted square pyramidal. The magnetic susceptibility measurements from 2 to 300 K reveal medium antiferromagnetic interactions between the Cu(II) ions with a J value of −64.6(1) cm−1.  相似文献   

14.
Four copper(II) complexes containing the reduced Schiff base ligands, namely, N-(2-hydroxybenzyl)-glycinamide (Hsglym) and N-(2-hydroxybenzyl)-l-alaninamide (Hsalam) have been synthesized and characterized. The crystal structures of [Cu2(sglym)2Cl2] (1), [Cu2(salam)2(NO3)2] · H2O (3), [Cu2(salam)2(NO3)(H2O)](NO3) · 1.5H2O (4), [Cu2(salam)2](ClO4)2 · 2H2O (5) show that the Cu(II) atoms are bridged by two phenolato oxygen atoms in the dimers. The sglym ligand bonded to Cu(II) in facial manner while salam ligand prefers to bind to Cu(II) in meridonal geometry. Variable temperature magnetic studies of 3 showed it is antiferromagnetic. These Cu(II) complexes and [Cu2(sglym)2(NO3)2] (2), exhibit very small catecholase activity as compared to the corresponding complexes containing acid functional groups.  相似文献   

15.
Two phenoxo bridged dinuclear Cu(II) complexes, [Cu2L2(NO2)2] (1) and [Cu2L2(NO3)2] (2) have been synthesized using the tridentate reduced Schiff-base ligand 2-[(2-dimethylamino-ethylamino)-methyl]-phenol (HL). The complexes have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. The structures of the two compounds are very similar having the same tridentate chelating ligand (L) and mono-dentate anionic ligand nitrite for 1 and nitrate for 2. In both complexes Cu(II) is penta-coordinated but the square pyramidal geometry of the copper ions is severely distorted (Addison parameter (τ) = 0.33) in 1 while the distortion is quite small (average τ = 0.11) in 2. These differences have marked effect on the magnetic properties of two compounds. Although both are antiferromagnetically coupled, the coupling constants (J = −140.8 and −614.7 cm−1 for 1 and 2, respectively) show that the coupling is much stronger in 2.  相似文献   

16.
Two phenoxido bridged dinuclear Cu(II) complexes, [Cu2(L1)2(NCNCN)2] (1) and [Cu2(L2)2(NCNCN)2]·2H2O (2) have been synthesized using the tridentate reduced Schiff-base ligands 2-[1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL1) and 2-[1-(3-methylamino-propylamino)-ethyl]-phenol (HL2), respectively. The complexes have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Both the complexes present a diphenoxido bridging Cu2O2 core. The geometries around metal atoms are intermediate between trigonal bipyramid and square pyramid with the Addison parameters (τ) = 0.57 and 0.49 for 1 and 2, respectively. Within the core the Cu–O–Cu angles are 99.15° and 103.51° and average Cu–O bond distances are 2.036 and 1.978 Å for compounds 1 and 2, respectively. These differences have marked effect on the magnetic properties of two compounds. Although both are antiferromagnetically coupled, the coupling constants (J = −184.3 and −478.4 cm−1 for 1 and 2, respectively) differ appreciably.  相似文献   

17.
Two copper(II) complexes, [Cu(qsal)Cl](DMF) (1) and [Cu2(qsalBr)2Cl2](DMF) (2), with tridentate Schiff base ligands, 8-(salicylideneamino)quinoline (Hqsal) and 8-(5-bromo-salicylideneamino)quinoline (HqsalBr), respectively, were synthesised and structurally characterized. Each copper(II) ion in the two complexes is in a distorted square pyramidal N2OCl2 environment. Complex 1 exists as a polymeric species via equatorial-apical chloride bridges, whereas 2 is a di-chlorido-bridged dinuclear complex, where each bridging chloride simultaneously occupies an in-plane coordination site on one copper(II) ion and an apical site on the other copper(II) ion. Variable-temperature magnetical susceptibility measurements on the two complexes in the temperature range 2-300 K indicate the occurrence of intrachain ferromagnetic (J = +6.58 cm−1) and intramolecular antiferromagnetical (J = −6.91 cm−1) interactions.  相似文献   

18.
The electrochemical oxidation of anodic metal (iron, cobalt, nickel and copper) in an acetonitrile solution of the potentially chelating Schiff base N,N(dithiodiethylenebis-(aminylydenemethylydene)-bis(1,2-phenylene)ditosylamide (H2L) afforded stable complexes of empirical formula [ML]. The compounds obtained have been characterized by microanalysis, IR spectroscopy and ES-MS mass spectrometry. The crystal and molecular structures of [FeL]·CH3CN (1) [CoL]·CH3CN (2), [NiL]·CH3CN (3) and [CuL]·CH3CN (4) have been determined by X-ray diffraction in all complexes, the metal atom is in a distorted tetrahedral environment with the Schiff base acting as a tetradentate N4 donor.  相似文献   

19.
A mononuclear octahedral nickel(II) complex [Ni(HL1)2](SCN)2 (1) and an unusual penta-nuclear complex [{(NiL2)(μ-SCN)}4Ni(NCS)2]·2CH3CN (2) where HL1 = 3-(2-aminoethylimino)butan-2-one oxime and HL2 = 3-(hydroxyimino)butan-2-ylidene)amino)propylimino)butan-2-one oxime have been prepared and characterized by X-ray crystallography. The mono-condensed ligand, HL1, was prepared by the 1:1 condensation of the 1,2-diaminoethane with diacetylmonoxime in methanol under high dilution. Complex 1 is found to be a mer isomer and the amine hydrogen atoms are involved in extensive hydrogen bonding with the thiocyanate anions. The dicondensed ligand, HL2, was prepared by the 1:2 condensation of the 1,3-diaminopropane with diacetylmonoxime in methanol. The central nickel(II) in 2 is coordinated by six nitrogen atoms of six thiocyanate groups, four of which utilize their sulphur atoms to connect four NiL2 moieties to form a penta-nuclear complex and it is unique in the sense that this is the first thiocyanato bridged penta-nuclear nickel(II) compound with Schiff base ligands.  相似文献   

20.
Herein, we report the syntheses, spectral and structural characterization, and magnetic behavior of four new dinuclear terephthalato-bridged copper(II) complexes with formulae [Cu2(trpn)2(μ-tp)](ClO4)2 · 2H2O (1), [Cu2(aepn)2(μ-tp)(ClO4)2] (2), [Cu2(Medpt)2(μ-tp)(H2O)2](ClO4)2 (3) and [Cu2(Et2dien)2(μ-tp)(H2O)](ClO4)2 (4) where tp = terephthalate dianion, trpn = tris(3-aminopropyl)-amin, aepn = N-(2-aminoethyl)-1,3-propanediamine, Medpt = 3,3′-diamino-N-methyldipropylmine and Et2dien = N,N-diethyldiethylenetriamine. The structures of these complexes consist of two μ-tp bridging Cu(II) centers in a bis(monodentate) bonding fashion. The coordination geometry of the Cu(II) ions in these compounds may be described as close to square-based pyramid (SP) with severe significant distortion towards trigonal bipyramid (TBP) stereochemistry in 1. The visible spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Cu(II) centers. Also, the solid infrared spectral data for the stretching frequencies of the tp-carboxalato groups, the ν(COO) reveals the existence of bis(monodentate) coordination mode for the bridged terephthalate ligand. The susceptibility measurements at variable temperature over the range 2-300 K are reported. Despite the same bonding mode of the tp bridging ligand, there has been observed slight antiferromagnetic coupling for the compounds 1 and 4 with J values of −0.5 and −2.9 cm3 K mol−1, respectively, and very weak ferromagnetic coupling for 2 and 3 with J values of 0.8 and 10.1 cm3 K mol−1, respectively. The magnetic results are discussed in relation to other related μ-terephthalato dinuclear Cu(II) published compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号