首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of succinamic acid (H2sucm) in Cu(ClO4)2·6H2O/N,N′-donor [2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4′-dimethyl-2,2′-bipyridine (dmbpy), 4,4′-bipyridine (4,4′-bpy)] reaction mixtures yielded compounds [Cu2(Hsucm)3(bpy)2](ClO4)·0.5MeOH (1·0.5MeOH), [Cu2(Hsucm)(OH)(H2O)(bpy)](ClO4)2 (2), [Cu4(Hsucm)5(dmbpy)4]n(ClO4)3n·nH2O ·0.53nMeOH (3·nH2O·0.53nMeOH), [Cu2(Hsucm)2(dmbpy)2(H2O)2](ClO4)2·2H2O (4·2H2O), [Cu2(Hsucm)2(phen)2(H2O)2](ClO4)2·1.8MeOH (5·1.8MeOH), [Cu2(Hsucm)2(phen)2(MeOH)2](ClO4)2·MeOH (6·MeOH) and [Cu(Hsucm)2(H2O)(4,4′-bpy)]n (7). The succinamate(−1) ligand exists in five different coordination modes in the structures of 1-7, i.e. the common syn, syn μ2OO′ in 1-6, the μ22O in 1, the μ22OO′ in 1, the μ32O2O′ in 3, and the monodentate κO in 7. The primary amide group of Hsucm remains uncoordinated and participates in intra- and intermolecular hydrogen bonding interactions leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of representative complexes was monitored by TG/DTG and DTA measurements.  相似文献   

2.
Bin Hu 《Inorganica chimica acta》2010,363(7):1348-6199
Four transition metal complexes of 3,8-di(thiophen-2′,2″-yl)-1,10-phenanthroline (dtphen), formulated as [Ni(dtphen)2(H2O)2]·(ClO4)2 (1), [Zn(dtphen)2(H2O)]·(ClO4)2 (2) [Cu(dtphen)2(H2O)]·(ClO4)2 (3), [Cu(dtphen)(phen)2]·(ClO4)2 (4) (phen = 1,10-phenanthroline) with different metal-to-ligand ratios, were synthesized and characterized herein. The X-ray single-crystal diffraction studies of 1-4 exhibit that different molecular configurations for the dtphen ligand can be observed where the side thiophene rings adopt the trans/trans, trans/cis, trans/disorder and cis/cis conformations relative to the central 1,10-phenanthroline unit in different compounds. Fluorescence emission spectra of 1-4 in methanol show that the fluorescence emission of 2 is much stronger than the other three metal complexes, which is mainly due to its full d10 electronic configuration of Zn(II) ion.  相似文献   

3.
Three novel ternary copper(II) complexes, [Cu2(phen)2(l-PDIAla)(H2O)2](ClO4)2·2.5H2O (1), [Cu4(phen)6(d,l-PDIAla)(H2O)2](ClO4)6·3H2O (2) and [Cu2(phen)2(d,l-PDIAla)(H2O)](ClO4)2·0.5H2O (3) (phen = 1,10-phenanthroline, H2PDIAla = N,N’-(p-xylylene)di-alanine acid) have been synthesized and structurally characterized by single-crystal X-ray crystallography and other structural analysis. Spectrometric titrations, ethidium bromide displacement experiments, CD (circular dichroism) spectral analysis and viscosity measurements indicate that the three compounds, especially the complex 3, strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants of the ternary copper(II) complexes with CT-DNA are 0.89 × 105, 1.14 × 105 and 1.72 × 105 M−1, for 1, 2 and 3, respectively. Comparative cytotoxic activities of the copper(II) complexes are also determined by acid phosphatase assay. The results show that the ternary copper(II) complexes have significant cytotoxic activity against the HeLa (Cervical cancer), HepG2 (hepatocarcinoma), HL-60 cells (myeloid leukemia), A-549 cells (pulmonary carcinoma) and L02 (liver cells). Investigations of antioxidation properties show that all the copper(II) complexes have strong scavenging effects for hydroxyl radicals and superoxide radicals.  相似文献   

4.
The dinuclear and trinuclear copper(II) complexes [Cu2(L)(OH)(ClO4)(phen)(H2O)]ClO4 · [Cu2(L)(OH)(ClO4)2(phen)(CH3OH)] (1) and [Cu3(L)2(OH)2(H2O)2](NO3)2 (2) (HL=2-[2-(α-pyridyl)ethyl]imino-3-butanone oxime and phen=1,10-phenanthroline) were prepared and their crystal structures have been determined by X-ray crystallography. Complex 1 is composed of [Cu2(L)(OH)(ClO4)(phen)(H2O)]ClO4 (1a) and [Cu2(L)(OH)(ClO4)2(phen)(CH3OH)] (1b). In 1a and 1b, one oximato of L and one hydroxo group bridge two copper(II) ions. The linear trinuclear cation [Cu3(L)2(OH)2(H2O)2]2+ in 2 is centrosymmetric, and one oximato and one hydroxo group bridge the central and terminal copper(II) ions. The strong antiferromagnetic interactions within the dinuclear and trinuclear complexes 1 and 2 have been observed (2J=∼−900 cm−1 for 1 and 2, respectively, H=−2JS1·S2).  相似文献   

5.
Ruthenium complexes containing pdon (pdon = 1,10-phenanthroline-5,6-dione) were synthesized. Their spectroscopic and electrochemical properties were examined. The molecular structure with [Ru(pdon)(bpy)2](ClO4)2 ([1](ClO4)2) (bpy = 2,2′-bipyridyl) was determined by single crystal X-ray diffraction. The optically transparent thin-layer electrochemical measurements confirm that the quinone form of [1](ClO4)2 is reduced to the semi-quinone state in acetonitrile (′ = −8 mV). Comparing the model complex, [1](ClO4)2, and metal-free pdon, the positive charge on two carbon atoms of the o-quinone group is bigger than that of metal-free pdon. The assemblies of the complexes were finally examined using ligand substitution.  相似文献   

6.
The coordination capability of the octaaza 24-membered (L1) and the tetraoxotetraaza 28-membered (L2) macrocycle ligands - with different sizes, nature and number of the donor atoms - has been investigated with nitrate and perchlorate Cd(II) salts. The complexes were prepared in 1:1 and 2:1 Cd:L molar ratio. The characterization by elemental analysis, IR, LSI mass spectrometry, conductivity measurements and 1H NMR spectroscopy, together with the crystal structure of the complexes [CdL1](NO3)2 · 0.5H2O, [CdL1](ClO4)2 and [CdL2(CH3CN)2](ClO4)2 · CH3CN · H2O confirms the formation of mononuclear complexes in all cases. The [CdL1](NO3)2 · 0.5H2O and [CdL1](ClO4)2 present a mononuclear endomacrocyclic structure with the metal ion coordinated by the eight donor nitrogen atoms from the macrocyclic backbone in a square antiprism geometry. The complex [CdL2(CH3CN)2](ClO4)2 · CH3CN · H2O is also mononuclear, but the cadmium ion is in an octahedral environment coordinated by four amine nitrogen atoms from the macrocyclic framework and two nitrogen atoms from two acetonitrile molecules. The ether oxygen atoms from the ligand are not coordinated.  相似文献   

7.
Conventional reactions of the versatile multidentate ligand 5-methyl-1,2,4-triazolo[1,5-a] pyrimidin-7(4H)-one (HmtpO) with metallic(II) perchlorate salts lead to three novel multidimensional complexes [Cu(HmtpO)2(H2O)3](ClO4)2·H2O (1), {[Cu(HmtpO)2(H2O)2](ClO4)2 ·2HmtpO}n (2) and {[Co(HmtpO)(H2O)3](ClO4)2·2H2O}n (3). We have tested the antiparasital activity in vitro and in vivo of the three new complexes against Trypanosoma cruzi showing very promising results and overcoming clearly the reference drug commonly used for the Chagas disease treatment, benznidazole.  相似文献   

8.
Reaction of [CuIIL⊂(H2O)] (H2L = N,N′-ethylenebis(3-ethoxysalicylaldimine)) with nickel(II) perchlorate in 1:1 ratio in acetone produces the trinuclear compound [(CuIIL)2NiII(H2O)2](ClO4)2 (1). On the other hand, on changing the solvent from acetone to methanol, reaction of the same reactants in same ratio produces the pentametallic compound [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)]·2MeOH (2A), which loses solvated methanol molecules immediately after its isolation to form [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)] (2B). Clearly, formation of 1 versus 2A and 2B is solvent dependent. Crystal structures of 1 and 2A have been determined. Interestingly, compound 2A is a [3 × 1 + 1 × 2] cocrystal. The cryomagnetic profiles of 1 and 2B indicate that the two pairs of copper(II)···nickel(II) ions in the trinuclear cores in both the complexes are coupled by almost identical moderate antiferromagnetic interaction (J = −22.8 cm−1 for 1 and −26.0 cm−1 for 2B).  相似文献   

9.
A series of ruthenium (II) complexes of formulae trans-[Ru(PPh3)2(L′H)2](ClO4)2 (1), [Ru(bpy)(L′H)2](ClO4)2 (2), [Ru(bpy)2(L′H)](ClO4)2 (3), cis-[Ru(DMSO)2(L′H)2]Cl2 (4), and [Ru(L′H)3](PF6)2 (5) (where L′H = 2-(2′-benzimidazolyl)pyridine) have been synthesized by reaction of the appropriate ruthenium precursor with 1,2-bis(2′-pyridylmethyleneimino)benzene (L). The complexes were characterized by elemental analyses, spectroscopic and electrochemical data. All the complexes were found to be diamagnetic and hence metal is in +2 oxidation state. The molecular structure of trans-[Ru(PPh3)2(L′H)2](ClO4)2 has been determined by the single crystal X-ray diffraction studies. The molecular structure shows that Ru(II) is at the center of inversion of an octahedron with N4P2 coordination sphere. The ligand acts as a bidentate N,N′donor. The electronic spectra of the complexes display intense MLCT bands in the visible region.Cyclic voltammetric studies show quasi-reversible oxidative response at 0.99-1.32 V (vs Ag/AgCl reference electrode) due to Ru(III)/Ru(II) couple.  相似文献   

10.
Several new Cu-hippurate derivative-phenanthroline ternary complexes have been prepared. The X-ray structure of one of them, [Cu(hip)(phen)2]+·(hip) (2) (where hip is hippurate and phen is 1,10-phenanthroline) has been solved. The structure of this new compound shows important differences (3D-pattern) to other similar related complexes (2D-pattern). A study of the biological activity of [Cu(hip)(phen)2]+·(hip)·2H2O (2), [Cu(BGG)(phen)2]+·(BGG)·6H2O (3), [Cu(BIGG)2(phen)](H2O) (4) and [Cu(I-hip)(bpy)2]+·(I-hip)·3.5H2O (5) (where I-hip is ortho-iodohippurate, BGG corresponds to benzoylglycilglycine, and BIGG is ortho-iodobenzoylglycilglycine) is included and compared with the anti-proliferative activity of [Cu(I-hip)(phen)2]+·(I-hip)·7H2O (1) previously described, resulting in a greater cytotoxic activity of the compounds with 1,10-phenanthroline instead of those with 2,2′-bipyridyl, in the same way that removing iodine substitution or lengthening the peptidic chain diminishes the activity of compounds compared with 1. The presence of an ortho-iodine group and the direct bond between Ar-CO and glycine moieties yield to the best results.  相似文献   

11.
Compounds of the molecular formulae, [LH3](NO3)3 (1), [Fe(LH)2](PF6)4·5H2O (2), [Fe(L)2][Fe(L)(LH)](PF6)5·H2O (3), [Fe(L)2][Fe(L)(LH)](BF4)5·2H2O (4) and [Fe(L)2](Cr2O7)·6H2O (5) have been synthesized using 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine (L). The molecular structures of all the compounds were determined. The Fe(II) complexes are high spin in nature at room temperature and upon cooling a gradual spin-transition is observed. Among 1-5, hydrogen-bonding, π···π, and anion···π interactions as well as water tetramer and pentamer are present in the molecular packing.  相似文献   

12.
The mixed-ligand ruthenium(II) complexes [(phen)2Ru(pzbzimH3)](ClO4)2·3H2O (1), [(phen)2Ru(bzimH)2](ClO4)2·3H2O (2) and [(bpy)2Ru(bpybzimH2)](ClO4)2 (3), where phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine, pzbzimH3 = pyrazole-3,5-bis(benzimidazole), bzimH = benzimidazole and bpybzimH2 = 6,6′-bis(benzimidazole-2-yl)-2,2′-bipyridine have been synthesized and spectroscopically characterized. The X-ray structures of the three compounds have been determined which show that relative to the polypyridine ligands (phen or bpy) two donor nitrogens of the second ligand occupy cis position. In case of 3, bpybzimH2 ligand is coordinated in puckered form where its bpy unit acts in a monodentate fashion. The electrochemical properties, absorption and emission spectral characteristics and lifetimes of luminescence decay of the complexes have been compared. Deprotonation of the azole NH moieties of the complexes lead to substantial lowering of redox potentials of the RuII/RuIII couple as well as the MLCT and emission band energies. Spectrophotometric and spectrofluorometric titrations of complexes 1 and 3 have been carried out in 3:2 acetonitrile-water as a function of pH over the range 3.5-12.0 and the pK values have been determined. The kinetic parameters for the decay of the 3MLCT excited states of 1 at different pH at 298 K have been evaluated.  相似文献   

13.
ESIMS reveals that methanol solutions of 1:1, 1:2 and 1:3 mixtures of Zn(ClO4)2 · 6H2O and 1,10-phenanthroline (phen) generate [Zn(phen)(OH)]+, [Zn(phen)(H2O)4(OH)]+, [Zn(phen)2(H2O)(OH)]+and [Zn(phen)2(H2O)4(OH)]+ ions in the gas phase. DFT calculations at the B3LYP/LanL2DZ level show that zinc is planar tricoordinate in [Zn(phen)(OH)]+ and the cis configuration is more stable than the trans one for the hexacoordinate ion [Zn(phen)2(H2O)(OH)]+. DFT calculations also show that the [Zn(phen)(H2O)4(OH)]+ and [Zn(phen)2(H2O)4(OH)]+ ions are actually [Zn(phen)(H2O)(OH)]+ · 3H2O and [Zn(phen)2(H2O)(OH)]+ · 3H2O containing extended motifs of H-bonded water clusters. The aqua species corresponding to the monohydroxo ions are acidic. Their acid dissociations are modeled collectively by equilibrium (see below) where other ligands around Zn are not specified. An attempt is then made to estimate Ka
  相似文献   

14.
The reaction of aqueous solutions of the preformed 1:1 Cu(ClO4)2-polydentate amine with tetrasodium 1,2,4,5-benzene tetracarboxylate (Na4bta) afforded three different types of polynuclear compounds. These include the tetranuclear complexes: [Cu4(Medpt)44-bta)(ClO4)2(H2O)2](ClO4)2·2H2O (1), [Cu4(pmdien)44-bta)(H2O)4](ClO4)4 (2), [Cu4(Mepea)44-bta)(H2O)2](ClO4)4(3), [Cu4(TPA)44-bta)](ClO4)4·10H2O (4) and [Cu4(tepa)44-bta)](ClO4)4·2H2O (5), the di-nuclear: [Cu2(DPA)22-bta)(H2O)2]·4H2O (6), [Cu2(dppa)22-bta)(H2O)2]·4H2O (7) and [Cu2(pmea)22-bta)]·14H2O (8) and the trinuclear complex [Cu3(dppa)33-bta)(H2O)2.25](ClO4)2·6.5H2O (9) where Medpt = 3,3′-diamino-N-methyldipropylamine, pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, Mepea = [2-(2-pyridyl)ethyl]-(2-pyridylmethyl)methylamine, TPA = tris(2-pyridylmethyl)amine, tepa = tris[2-(2-pyridyl)ethyl)]amine, DPA = di(2-pyridymethyl)amine, dppa = N-propanamide-bis(2-pyridylmethyl)amine and pmea = bis(2-pyridylmethyl)-[2-(2-pyridylethyl)]amine. The complexes were structurally characterized by elemental analyses, spectroscopic techniques, and by X-ray crystallography for complexes 1, 2, 4, 6, 7 and 9. X-ray structure of the complexes reveal that bta4− is acting as a bridging ligand via its four deprotonated caboxylate groups in 1, 2 and 4, three carboxylate groups in 9 and via two trans-carboxylates in 6 and 7. The complexes exhibit extended supramolecular networks with different dimensionality: 1-D in 2 and 4 due to hydrogen bonds of the type O-H···O, 2-D in 1 and 7, and 3-D network in 6 as a result of hydrogen bonds of the types N-H···O and O-H···O. Magnetic susceptibility measurements showed very weak antiferromagnetic coupling between the CuII ions in 1-5, 7-9 (|J| = 0.02-0.87 cm−1) and weak ferromagnetic coupling for 6 (= 0.08 cm−1).  相似文献   

15.
The nickel(II) complexes of the compositions [Ni(hmidtc)(bpy)2]ClO4 (I), [Ni(hmidtc)(phen)2]ClO4 (II), [Ni(hmidtc)(phen)2]SCN (III), [Ni(hmidtc)(phen)2]PF6 (IV), [Ni(hmidtc)(phen)2]BPh4 (V), [Ni(hmidtc)(phen)2]AcO·2H2O (VI) and [Ni(hmidtc)(phen)2]Br·H2O (VII), involving a combination of one hexamethyleneimine-dithiocarbamate anion (hmidtc) and two bidentate N,N-donor ligands (2,2′-bipyridine (bpy) for I or 1,10-phenanthroline (phen) for II-VII), have been prepared. The compounds were characterized by elemental analysis, molar conductivity measurements, UV-Vis and IR spectroscopy, magnetochemical measurements and thermal analysis. A single-crystal X-ray analysis of the complex I revealed a distorted octahedral geometry with the nickel(II) ion coordinated by four nitrogen atoms (from two bidentate-coordinated bpy molecules) and two sulfur atoms (from one bidentate-coordinated hmidtc anion), together giving an NiN4S2 donor set.  相似文献   

16.
A new potentially tetradentate (N4) Schiff base ligand (L), 1,9,12,20-tetraazatetracyclo[18.2.2.02,7.014,19]tetracosa-2(7),3,5,8,12,14(19),15,17-octaene containing a piperazine moiety is described. Macrocyclic Schiff base complexes, [NiL](ClO4)2 (1) and [CuL](ClO4)2 (2) have been obtained from equimolar amounts of ligand (L) with nickel(II) and copper(II) metal ions. While the equilibrium reaction in the presence of cobalt(II) and zinc(II) metal ions with ligand L in a 1:1 molar ratio yielded the open-chain Schiff base complexes, [CoL′](ClO4)2 (3) and [ZnL′](ClO4)2 (4) containing two terminal primary amino groups. The ligand L′ is 1,4-bis(2-(2-aminoethyliminomethyl)phenyl)piperazine. The crystal structures of (1) and (4) have been also determined by X-ray diffraction. It was shown that the Ni(II) is coordinated to the ligand L by two nitrogen atoms of piperazine group and two nitrogen atoms of the imine groups, in a slightly distorted square-planar geometry. Also single crystal X-ray analysis of (4) confirmed a distorted octahedral arrangement in the vicinity of Zn atom with N6 donor set. The spectroscopic characterization of all complexes is consistent with their crystal structures.  相似文献   

17.
The heterotrimetallic complex, [{LCuMn(H2O)}{Cr(phen)(C2O4)2}](ClO4) · H2O (1), has been obtained by assembling heterobinuclear cations, [LCuMn]2+, with [Cr(phen)(C2O4)2] ions (H2L is the compartmental Schiff-base resulting from the stepwise condensation of 2,6-diformyl-p-cresol with ethylenediamine and diethylenetriamine). The copper(II) and manganese(II) ions are hosted into the compartments of the macrocyclic ligand. [Cr(phen)(C2O4)2] acts as a ligand, being coordinated through one oxalato oxygen atom to the apical position of the square pyramidal copper(II) ion. The cryomagnetic investigation of 1 reveals an antiferromagnetic interaction between CuII and MnII within the compartmental ligand (J = −39 cm−1). The interaction between CuII and CrIII across the oxalato bridge is negligible. The crystal structure of [LCuPb](ClO4)2 · H2O, a useful precursor in obtaining 3d-3d′ complexes, is also reported.  相似文献   

18.
A series of new binuclear copper (II) and nickel (II) complexes of the macrocyclic ligands bis(1,4,7-triazacyclononan-1-yl)butane (Lbut) and bis(1,4,7-triazacyclononan-1-yl)-m-xylene (Lmx) have been synthesized: [Cu2LbutBr4] (1), [Cu2Lbut(imidazole)2Br2](ClO4)2 (2), [Cu2Lmx(μ-OH)(imidazole)2](ClO4)3 (3), [Cu2Lbut(imidazole)4](ClO4)4 · H2O (4), [Cu2Lmx(imidazole)4](ClO4)4 (5), [Ni2 Lbut(H2O)6](ClO4)4 · 2H2O (6), [Ni2Lbut(imidazole)6](ClO4)4 · 2H2O (7) and [Ni2Lmx (imidazole)4(H2O)2](ClO4)4 · 3H2O (8). Complexes 1, 2, 7 and 8 have been characterized by single crystal X-ray studies. In each of the complexes, the two tridentate 1,4,7-triazacyclononane rings of the ligand facially coordinate to separate metal centres. The distorted square-pyramidal coordination sphere of the copper (II) centres is completed by bromide anions in the case of 1 and/or monodentate imidazole ligands in complexes 2, 4 and 5. Complex 3 has been formulated as a monohydroxo-bridged complex featuring two terminal imidazole ligands. Complexes 6-8 feature distorted octahedral nickel (II) centres with water and/or monodentate imidazole ligands occupying the remaining coordination sites. Within the crystal structures, the ligands adopt trans conformations, with the two metal binding compartments widely separated, perhaps as a consequence of electrostatic repulsion between the cationic metal centres. The imidazole-bearing complexes may be viewed as simple models for the coordinative interaction of the binuclear complexes of bis (tacn) ligands with protein molecules bearing multiple surface-exposed histidine residues.  相似文献   

19.
Four cobalt(III) complexes containing the polypyridine pentadentate ligands N,N-bis(2-pyridylmethyl)amine-N′-ethyl-2-pyridine-2-carboxamide (PaPy3H), N,N-bis(2-pyridylmethyl)amine-N′-[1-(2-pyridylethyl)acetamide (MePcPy3H), and N,N-bis(2-pyridylmethyl)amine-N′-(2-pyridylmethyl)acetamide (PcPy3H), have been synthesized. All three ligands bind the Co(III) center in the same fashion with the exception of loss of conjugation between the carboxamide moiety and the pyridine ring in the latter two. The structures of [(PaPy3)Co(OH)][(PaPy3)Co(H2O)](ClO4)3 · 3H2O (1), [(PaPy3)Co(NO2)](ClO4) · 2MeCN (2), [(MePcPy3)Co(MeCN)](ClO4)2 · 0.5MeCN (3), and [(PcPy3)Co(Cl)](ClO4) · 2MeCN (4) have been determined. These ligands with strong-field carboxamido N donor stabilize the +3 oxidation state of the Co center as demonstrated by the facile oxidation of the corresponding Co(II) complexes (prepared in situ) by H2O2, [Fe(Cp)2](BF4), or nitric oxide (NO). The Co-Namido bond distances of 1-4 lie in the narrow range of 1.853-1.898 Å. 1H NMR spectra of these complexes confirm the low-spin d6 ground states of the metal centers.  相似文献   

20.
Four new Cu(II) complexes [Cu(pzda)(2,2′-bpy)(H2O)] · 2.5H2O (1), [Cu(pzda)(phen)(H2O)] · H2O (2), [Cu(pzda)(4,4′-bpy)] · H2O (3) and [Cu(pzda)(bpe)0.5(H2O)] (4) were synthesized by hydrothermal reactions of copper salt (acetate or sulphate) with pyrazine-2,6-dicarboxylic acid (H2pzda), and 2,2′-bipyridine (2,2′-bpy), 1,10-phenanthroline (phen), 4,4′-bipyridine (4,4′-bpy) or 1,2-bis(4-pyridyl)-ethane (bpe), respectively. For 1 and 2, they are both monomeric entities which are further assembled into 3D supramolecular networks by hydrogen bonds and π-π stacking interactions. Complex 3 has a 2D metal-organic framework which is connected into 3D supramolecular network by hydrogen bonds. However, for 4, the bpe ligand bridges two Cu(II) ions into binuclear unit, and then the binuclear molecules are assembled into 3D supramolecular network by hydrogen bonds between the coordination water molecule and the carboxylate oxygen atoms. The thermal decomposition mechanism of complexes 1 and 2 cooperated with powder XRD at different temperatures is discussed. The results reveal that once liberation of water molecules takes place the supramolecular network of 1 and 2 collapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号