首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 430 毫秒
1.
Addition of excess trimethylphosphine and a halide source to a solution of W(CO)(acac)2(η2-L) (L = NCPh and OCMe2) leads to displacement of L and one acetylacetonate chelate to produce electron-rich, seven-coordinate complexes of the formula W(CO)(acac)(X)(PMe3)3 (X = Cl, Br, and I). Use of NaN3 instead of a halide source leads primarily to loss of carbon monoxide and dinitrogen, and protonation from adventitious water yields the cationic imido complex [W(NH)(acac)(PMe3)3]+. Heating [W(NH)(acac)(PMe3)3]+ in aromatic isocyanates at high temperature results in isocyanate insertion into the NH imido bond to form new C-N bonds. An alternate route to related imido complexes involves heating [W(O)(acac)(PMe3)3]+ with phenyl isocyanate at high temperatures to yield the substituted imido complex [W(NPh)(acac)(PMe3)3]+.  相似文献   

2.
The crystal structures of the four-coordinate trans-[Rh(Cl)(CO)(SbPh3)2] (1) and the five-coordinate trans-[Rh(Cl)(CO)(SbPh3)3] (2) are reported, as well as the unexpected oxidative addition product, trans-[Rh(I)2(CH3)(CO)(SbPh3)2] (3), obtained from the reaction of 2 with CH3I. The formation constants of the five-coordinate complex were determined in dichloromethane, benzene, diethyl ether, acetone and ethyl acetate as 163±8, 363±10, 744±34, 1043±95 and 1261±96 M−1, respectively. While coordinating solvents facilitate the formation of the five-coordinate complex, the four-coordinate complex could be obtained from diethyl ether due to the favorable low crystallization energy. The tendency of stibine ligands to form five-coordinate rhodium(I) complexes is attributed mainly to electron deficient metal centers in these systems, with smaller contributions by the steric effects. The average effective cone angle for the SbPh3 ligand in the three crystallographic studies was determined as 139° with individual values ranging from 133 to 145°.  相似文献   

3.
Reaction of [Rh(CO)2I]2 (1) with MeI in nitrile solvents gives the neutral acetyl complexes, [Rh(CO)(NCR)(COMe)I2]2 (R=Me, 3a; tBu, 3b; vinyl, 3c; allyl, 3d). Dimeric, iodide-bridged structures have been confirmed by X-ray crystallography for 3a and 3b. The complexes are centrosymmetric with approximate octahedral geometry about each Rh centre. The iodide bridges are asymmetric, with Rh-(μ-I) trans to acetyl longer than Rh-(μ-I) trans to terminal iodide. In coordinating solvents, 3a forms mononuclear complexes, [Rh(CO)(sol)2(COMe)I2] (sol=MeCN, MeOH). Complex 3a reacts with pyridine to give [Rh(CO)(py)(COMe)I2]2 and [Rh(CO)(py)2(COMe)I2] and with chelating diphosphines to give [Rh(Ph2P(CH2)nPPh2)(COMe)I2] (n=2, 3, 4). Addition of MeI to [Ir(CO)2(NCMe)I] is two orders of magnitude slower than to [Ir(CO)2I2]. A mechanism for the reaction of 1 with MeI in MeCN is proposed, involving initial bridge cleavage by solvent to give [Rh(CO)2(NCMe)I] and participation of the anion [Rh(CO)2I2] as a reactive intermediate. The possible role of neutral Rh(III) species in the mechanism of Rh-catalysed methanol carbonylation is discussed.  相似文献   

4.
5.
The kinetics and mechanism of the oxidative addition of CH3I to [Rh(acac)(CO)(PX3)], where X = p-chlorophenyl, phenyl and p-methoxyphenyl, were studied with the aid of IR and visible spectrophotometry in 1,2-dichloroethane. The reaction proceeds through an initial ionic intermediate followed by two consecutive equilibrium steps, the first involving acetyl formation followed by acyl → alkyl rearrangement to give [Rh(acac)(CO)(CH3)- (I)(PX3)] as final product. Equilibrium and rate constants are correlated with phosphine basicity.  相似文献   

6.
Reaction of HSi(OEt)3 with IrCl(CO)(PPh3)2 (5:1 molar ratio) at room temperature for 1 h gives IrCl(H){Si(OEt)3}(CO)(PPh3)2 (1), which is observed by the 1H and 31P{1H} NMR spectra of the reaction mixture. The same reaction, but in 20:1 molar ratio at 50 °C for 24 h produces IrCl(H)2(CO)(PPh3)2 (2) rather than the expected product Ir(H)2{Si(OEt)3}(CO)(PPh3)2 (3) that was previously reported to be formed by this reaction. Accompanying formation of Si(OEt)4, (EtO)3SiOSi(OEt)3, and (EtO)2HSiOSi(OEt)3 is observed. On the other hand, trialkylhydrosilane HSiEt3 reacts with IrCl(CO)(PPh3)2 (10:1 molar ratio) at 80 °C for 84 h to give Ir(H)2(SiEt3)(CO)(PPh3)2 (4) in a high yield, accompanying with a release of ClSiEt3.  相似文献   

7.
A NMR study of the reaction mixture of the square planar [Rh((C4H3S)COCHCOR)(CO)(PPh3)] complex and CH3I, where R = CF3, C6H5 or C4H3S, revealed that two types of alkyl and one (R = CF3) or two (R = C6H5 or C4H3S) types of acyl species exist in the system. Two isomers of each species with an unsymmetrical β-diketonato ligand were observed. 1H-1H NOESY NMR unambiguously showed that the PPh3 group is in the apical position in the more stable RhIII-alkyl product. Theoretical computations of the equilibrium geometry of the possible reaction products, consistent with experimental observations, revealed that the first alkyl product results from trans addition to RhI and that the second thermodynamic alkyl product adopts an octahedral geometry with the PPh3 group and the iodide above and below the square planar plane. Theoretical computations also revealed that the thermodynamic acyl product adopts a square-pyramidal geometry with the COCH3 group in the apical position.  相似文献   

8.
The reaction of 2-(diphenylphosphino)-N-[2-(diphenylphosphino)benzylidene]benzeneamine (PNCHP) with 0.5 equivalents of [{RhCl(1,5-cyclooctadiene)}2] affords the extremely, air-sensitive compound, [RhCl(PNCHP-κ3P,N,P)]. This reacts with carbon monoxide to afford [RhCl(CO)(PNCHP-κ3P,N,P)] which rearranges in dichloromethane solution to [Rh(CO)(PNCHP-κ3P,N,P)]Cl · HCl. The single crystal structure of [Rh(CO)(PNCHP-κ3P,N,P)]Cl · HCl shows the Rh to be in a square planar environment with the HCl molecule held via hydrogen bonding in the lattice. NMR experiments show the coordinated chloride in [RhCl(PNCHP-κ3P,N,P)] can be substituted with tetrahydrofuran, acetonitrile or triphenylphosphine and the complex undergoes oxidative addition with dichloromethane to yield [Rh(CH2Cl)Cl2(PNCHP-κ3P,N,P)].  相似文献   

9.
The syntheses of five new complexes of the 2-formylpyridinethiosemicarbazone ligand (HFpyTSC) with Pd(II) and Rh(III) ions are described, viz., [Pd(FpyTSC)(PPh3)]PF6, [Pd(FpyTSC)(SCN)], [Pd(FpyTSC)Br], [Pd(HFpyTSC)2]Br2 and [Rh(FpyTSC)(PPh3)2Cl]ClO4. The formulation of the complexes is discussed in terms of their elemental analyses and IR, Raman, NMR (1H, 13C and 31P), mass and electronic spectra. The X-ray crystal structures of [Pd(FpyTSC)(PPh3)]PF6 and [Pd(FpyTSC)(SCN)] show that the HFpyTSC ligand coordinates to the central Pd(II) ion in a planar conformation through the pyridyl nitrogen, the azomethine nitrogen and the deprotonated thiol sulphur atom. Thus, HFpyTSC is a versatile ligand that usually acts as a mononegative tridentate ligand bonding through Npy, NCN and C-S while, in the case of [Pd(HFpyTSC)2]Br2, it behaves as a neutral bidentate ligand via NCN and CS.  相似文献   

10.
The synthesis and characterization of the neutral 2+1 mixed ligand complex fac-Re(CO)3(acac)(isc) (4) with acetylacetonate (acac) as the bidentate ligand and an isocyanide (the isocyanocyclohexane, isc) as the monodentate ligand is described. The synthesis of 4 proceeds through the intermediate formation of the fac-Re(acac)(H2O)(CO)3 precursor complex 2. Complex 4 was characterized by elemental analysis, spectroscopic methods, and X-ray crystallography showing a distorted octahedral arrangement of the ligands around Re. At technetium-99m level, the corresponding fac-99mTc(acac)(isc)(CO)3 complex 5 was obtained in high yield by reacting the fac-99mTc(acac)(H2O)(CO)3 precursor complex 3 with isocyanocyclohexane and its structure was established by chromatographic comparison with the prototypic rhenium complex using high performance liquid chromatography.  相似文献   

11.
The reactive palladium dimer, [Pd(dppm)(O2CCF3)]2, is carbonylated to [Pd(dppm)(O2CCF3)]2(μ-CO) in a reversible reaction with K = c. 7.2(2)x104 atm−1 (P1/2 = c. 2.4 Torr). This is significantly larger than is expected based on the λmax = 280 nm in the electronic spectrum. The product can be isolated in analytically pure form by crystallization under a CO atmosphere. It forms crystals in the monoclinic space group Cc with a = 18.584(5), b = 28.65(1), c = 11.164(3) Å and β = 95.16(2)°. The structure is significantly distorted. The bonding about the two palladium atoms is quite asymmetric. While one is close to a square planar geometry with a Pd---C(O) distance of 1.90(2) Å, the other is significantly pyramidalized and has a longer (2.00(2) Å) bond to the bridging CO. The Pd---Pd distance is only 2.896(2) Å, much shorter than that usually observed for formally non-bonded Pd atoms.  相似文献   

12.
A new convenient high-yield synthesis of the tris-cyclometalated complexes fac-[Rh(ppy)3] (4; ppy = 2-phenylpyridinato) was developed. Complex 4 was prepared in a kind of one-pot synthesis starting from in situ prepared [Rh(acac)(coe)2] (2) which was heated in refluxing 2-phenylpyridine for a short time. After purification by filtration over alumina, compound 4 was obtained in yields of 65%. Also [Rh(acac)(ppy)2] (3) was prepared in a similar manner by oxidative addition of Hppy in refluxing toluene in high yields. In contrast to previous findings with the analogous iridium compounds, there was not any hint at the formation of the isomer mer-[Rh(ppy)3] using similar reaction conditions as applied for iridium. Furthermore the compound [{Rh(μ-Cl)(ppy)2}2] (5) was prepared from [{Rh(μ-Cl)(coe)2}2] (1) and Hppy in refluxing toluene in nearly quantitative yield.  相似文献   

13.
The kinetics and mechanism of the reaction [Rh(β-diketone)(CO)(PPh3)] + CH3I → [Rh(β-diketone)(CH3)(I)(CO)(PPh3)] where β-diketone = acac, TFDMAA, TFAA and HFAA, were studied with the aid of i.r. and visible spectrophotometry. The reaction proceeds by two consecutive steps through a postulated ionic intermediate. The influence of phosphine dissociation, solvent polarity, alkyl group variation and different electronegative β-diketone substituents on the reaction rate were investigated. The rate constant for a methyl-acyl → metal-alkyl conversion (CH3 migration) was determined.  相似文献   

14.
Catalytic hydroformylation of olefins has been carried out in a HP FT-IR cell using RhH(CO)(PPh3)3 catalytic precursor. A different behaviour was noticed between a terminal (hex-1-ene) and an internal alkene (cyclohexene) and different rate-determining steps of the catalytic cycle have been hypothesised. The hydroformylation of hex-1-ene has also been tested in the presence of Co2(CO)8 as catalyst. In this case, only the catalytic precursor is evidenced by HP FT-IR. Finally, the influence of an additional gas (helium, nitrogen or argon) in the reaction medium was evaluated: a high pressure of argon or nitrogen affects the initial rate of the reaction as shown by a decrease of the rate of the aldehyde formation.  相似文献   

15.
Several new bis-thiolate complexes of the type [Rh(dippe)(μ-SR)]2 where R=H, methyl, cyclohexyl, o-biphenyl, and phenyl, or (SR)2SCH2CH2CH2S have been synthesized and characterized by NMR spectroscopy and single crystal X-ray diffraction. All [Rh(dippe)(μ-SR)]2 complexes except [Rh(dippe)(μ-SPh)]2 exhibit bent geometries, while the orientation of the thiolato substituents changes with increasing steric bulk. 1H and 31P NMR spectroscopies indicate that both ring inversion and sulfur inversion occur among the members of the series, which allows them to access several isomeric forms when they are in solution. 31P NMR spectroscopy indicates that sulfur inversion in [Rh(dippe)(μ-SH)]2, [Rh(dippe)(μ-Sbiphenyl)]2, and [Rh(dippe)(μ-SPh)]2 is a non-dissociative process.  相似文献   

16.
Metal-sulfur complex fragments, to which small molecules like N2, N2H2, N2H4, NH3, or CO can bind, are desirable model compounds concerning enzymatic N2 fixation.This paper reports on the effects of the phosphane co-ligand on formation and reactivity of [Ru(L)(PR3)(`N2Me2S2')] [`N2Me2S2'2−=1,2-ethanediamine-N,N-dimethyl-N,N-bis(2-benzenethiolate)(2−)] complexes with nitrogenase relevant ligands, especially N2, N2H4, NH3, and CO.Treatment of [Ru(NCCH3)4Cl2] with Li2`N2Me2S2', excessive LiOMe, bulky PPh3 or PCy3, respectively, led to the formation of two series of [Ru(L)(PR3)(`N2Me2S2')] complexes [for R=Ph: 1b, 1c (L=NCCH3), 6b (L=N2H4), 7b (L=N2), 8b1-3 (L=CO), 9b (L=NH3); for R=Cy: 1a (L=NCCH3), 6a (L=N2H4), 7a (L=N2), 8a (L=CO), 9a (L=NH3)]. While the use of PPh3 (θ=145°) yielded cis,trans and cis,cis isomers of [Ru(NCCH3)(PPh3)(`N2Me2S2')] (1b, 1c), no isomer formation was observed with the bulkier phosphane PCy3 (θ=170°). Sterically less demanding phosphanes (θ=118-132°) afforded bisphosphane complexes [Ru(PR3)2(`N2Me2S2')] [2d (R=Me), 2e (R=Et), 2f (R=nPr), and 2g (R=nBu)], which were practically inert and could only be converted in two cases and under drastic reaction conditions into the CO complexes [Ru(CO)(PR3)(`N2Me2S2')] [4e (R=Et), 4f (R=nPr)]. The chelating bidentate phosphane dppe (bisdiphenylphosphanoethane) yielded exclusively the mononuclear complex [Ru(dppe)(`N2Me2S2')] (3).  相似文献   

17.
Mo(CO)4(LL) complexes, where LL = polypyridyl ligands such as 2,2′-bipyridine and 1,10-phenanthroline, undergo quasi-reversible, one-electron oxidations in methylene chloride yielding the corresponding radical cations, [Mo(CO)4(LL)]+. These electrogenerated species undergo rapid ligand substitution in the presence of acetonitrile, yielding [Mo(CO)3(LL)(CH3CN)]+; rate constants for these substitutions were measured using chronocoulometry and were found to be influenced by the steric and electronic properties of the polypyridyl ligands. [Mo(CO)3(LL)(CH3CN)]+ radical cations, which could also be generated by reversible oxidation of Mo(CO)3(LL)(CH3CN) in acetonitrile, can be irreversibly oxidized yielding [Mo(CO)3(LL)(CH3CN)2]2+ after coordination by an additional acetonitrile. Infrared spectroelectrochemical experiments indicate the radical cations undergo ligand-induced net disproportionations that follow first-order kinetics in acetonitrile, ultimately yielding the corresponding Mo(CO)4(LL) and [Mo(CO)2(LL)(CH3CN)3]2+ species. Rate constants for the net disproportionation of [Mo(CO)3(LL)(CH3CN)]+ and the carbonyl substitution reaction of [Mo(CO)3(LL)(CH3CN)2]2+ were measured. Thin-layer bulk oxidation studies also provided infrared characterization data of [Mo(CO)4(ncp)]+ (ncp = neocuproine), [Mo(CO)3(LL)(CH3CN)]+, [Mo(CO)3(LL)(CH3CN)2]2+ and [Mo(CO)2(LL)(CH3CN)3]2+ complexes.  相似文献   

18.
Neutral [MCl(L2)(Hpzpy)], [M(L2)(pzpy)] and cationic [M(L2)(Hpzpy)]CF3SO3 rhodium(I) or iridium(I) complexes [M = Rh or Ir; L2 = diolefin or (CO)2; pzpy = 3-(2-pyridyl)pyrazolate] have been prepared; the pzpy and Hpzpy ligands coordinate to the metal as bidentate chelate groups through one pyrazole nitrogen and the pyridine nitrogen atom. The reactivity of these complexes towards oxidative addition reactions of halogens, methyl iodide or triflic acid and towards displacement reactions has been studied. The neutral and cationic iridium(I) complexes are modest catalysts for the hydrosilylation of phenylacetylene with triethylsilane at 60 °C. The complexes have been characterised by analytical and spectroscopic data; their configuration has been confirmed by COSY and NOESY experiments and the molecular structure of [Rh(COD)(Mepzpy)(PPh3)]CF3SO3 has been established by an X-ray diffraction study.  相似文献   

19.
The reaction of 2-(2-aminophenyl)benzothiazole (Habt) with [Re(CO)5Br] led to the isolation of the rhenium(I) complex fac-[Re(Habt)(CO)3Br] (1). With trans-[ReOCl3(PPh3)2], the ligand Habt decomposed to form the oxofree rhenium(V) complex [Re(itp)2Cl(PPh3)] (2) (itp = 2-amidophenylthiolate). From the reaction of trans-[ReOBr3(PPh3)2] with 2-(2-hydroxyphenyl)benzothiazole (Hhpd) the complex [ReVOBr2(hpd)(PPh3)] (3) was obtained. Complexes 1-3 are stable and lipophilic. 1H NMR and infrared assignments, as well as the X-ray crystal structures, of the complexes are reported.  相似文献   

20.
The reaction of the Tc(I) complex [Tc(NO)Cl2(HOMe)(PPh3)2] with stoichiometric amounts of 2-mercatopyridine and a proton scavenger yields [Tc(NO)Cl(Spy)(PPh3)2] or [Tc(NO)(Spy)2(PPh3)], depending upon quantities of ligands employed. These two complexes have been structurally characterized. The small bite angles of the bidentate mercaptopyridine ligands cause significant deviation from octahedral coordination geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号