首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of twenty indole hydrazone analogs (121) were synthesized, characterized by different spectroscopic techniques such as 1H NMR and EI-MS, and screened for α-amylase inhibitory activity. All analogs showed a variable degree of α-amylase inhibition with IC50 values ranging between 1.66 and 2.65 μM. Nine compounds that are 1 (2.23 ± 0.01 μM), 8 (2.44 ± 0.12 μM), 10 (1.92 ± 0.12 μM), 12 (2.49 ± 0.17 μM), 13 (1.66 ± 0.09 μM), 17 (2.25 ± 0.1 μM), 18 (1.87 ± 0.25 μM), 20 (1.83 ± 0.63 μM), and 19 (1.97 ± 0.02 μM) showed potent α-amylase inhibition when compared with the standard acarbose (1.05 ± 0.29 μM). Other analogs showed good to moderate α-amylase inhibition. The structure activity relationship is mainly focusing on difference of substituents on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.  相似文献   

2.
A series of novel α-aminophosphonate derivatives containing DHA structure were designed and synthesized as antitumor agents. In vitro antitumor activities of these compounds against the NCI-H460 (human lung cancer cell), A549 (human lung adenocarcinoma cell), HepG2 (human liver cancer cell) and SKOV3 (human ovarian cancer cell) human cancer cell lines were evaluated and compared with commercial anticancer drug 5-fluorouracil (5-FU), employing standard MTT assay. The pharmacological screening results revealed that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most demonstrated more potent inhibitory activities compared with the commercial anticancer drug 5-FU. The action mechanism of representative compound 7c was preliminarily investigated by acridine orange/ethidium bromide staining, Hoechst 33258 staining, JC-1 mitochondrial membrane potential staining and flow cytometry, which indicated that the compound can induce cell apoptosis in NCI-H460 cells. Cell cycle analysis showed that compound 7c mainly arrested NCI-H460 cells in G1 stage.  相似文献   

3.
A series of bisbenzimidazole derivatives starting from o-phenylenediamine and 4-nitro-o-phenylenediamine were prepared with oxalic acid. Most of the reactions were conducted using both the microwave and conventional methods to compare yields and reaction times. The operational simplicity, environmental friendly conditions and high yield in a significantly short reaction time were the major benefits. All substances’ inhibitory activities against α-glucosidase were evaluated. The results may suggest a significant role for the nature of bisbenzimidazole compounds in their inhibitory action against α-glucosidase. They showed different range of α-glucosidase inhibitory potential with IC50 value ranging between 0.44 ± 0.04 and 6.69 ± 0.01 μM when compared to the standard acarbose (IC50, 13.34 ± 1.26 μM). This has described a new class of α-glucosidase inhibitors. Molecular docking studies were done for all compounds to identify important binding modes responsible for inhibition activity of α-glucosidase.  相似文献   

4.
We describe a simple method for the synthesis of modified dinucleosides containing pyrimidine nucleoside analogues (2’-deoxyuridine, thymidine and 5-fluoro-2’-deoxyuridine). Six different dimers with a 1,2,3-triazole linkage were obtained by azide–alkyne 1,3-dipolar cycloaddition (click reaction), starting from propargylated 2’-deoxyuridine and 5’-azido-nucleoside derivatives. Their cytotoxic activity was tested in five human cancer cell lines: cervical (HeLa), high grade gliomas (U-118?MG, U-87?MG, T98G), liver (HepG2), and normal human fibroblast cell line (MRC-5) using the sulforhodamine B (SRB) assay. The experiment showed that the obtained dimers with a 1,2,3-triazole moiety were very stable compounds, also in the physiological-like media, and had no anticancer activity.  相似文献   

5.
Synthesis, structure, and evaluation of in vitro α-glucosidase enzyme inhibition of a new class of diethylammonium salts of aryl substituted thiobarbituric acid is described. This protocol is straight, environmentally benign and efficient, involving Aldol-Michael addition reaction in one pot fashion. The 3D chemical structures of the synthesized compounds were assigned based on spectroscopic methods and X-ray single crystal diffraction analyses. All synthesized compounds 3a-3n were evaluated for their in vitro α-glucosidase enzyme inhibitory activity, whereas acarbose was used as the standard drug (IC50 = 840 ± 1.73 µM). All tested compounds were found to possess varying degree of α-glucosidase enzyme inhibition activity with (IC50 = 19.46 ± 1.84–415.8 ± 4.0 µM). Compound 3i (IC50 = 19.4 ± 1.84 µM) exhibited the highest activity. To the best of knowledge this is the first report of the in vitro α-glucosidase enzyme inhibition by the diethylamonium salts of aryl substituted thiobarbituric acid. Furthermore, molecular docking studies of selected compounds were also performed to see interactions between active compounds and binding sites.  相似文献   

6.
7.
A potent series of substituted (2S,4S)-benzylproline α2δ ligands have been designed from the readily available starting material (2S,4R)-hydroxy-l-proline. The ligands have improved pharmacokinetic profile over the (4S)-phenoxyproline derivatives described previously and have potential for development as oral agents for the treatment of neuropathic pain. Compound 16 has been progressed to clinical development.  相似文献   

8.
《Inorganica chimica acta》1986,124(3):127-132
The barium dithiocarbamate derivates of the α-amino acids glycine, DL-alanine, DL-2-amino- butyric acid, DL-norvaline and DL-norleucine have been synthesized. The crystal structure of the glycine derivative was determined. The anions were used to obtain the corresponding nickel(II) complexes in acid form. The complexes are diamagnetic, and coordination takes place in a near-square planar geometry around the Ni(II) ion through the sulphur atoms of the dithiocarbamate moiety, the structure having been confirmed by IR, 1H NMR, UV-Vis spectroscopies and chemical analysis.  相似文献   

9.
A novel and efficient strategy for the synthesis of phosphoramidon and its β anomer has been developed by manipulating the anomerization of α-l-rhamnose triacetate upon phosphitylation. The experimental results suggest that proton transfer, bond rotation, and N atom are the key factors for the anomerization. The determined Ki and Kd values establish that phosphoramidon prepared by this method possesses excellent biological activity, and indicate that the contacts of rhamnose moiety with the enzyme have limited contribution to the binding.  相似文献   

10.
An α-l-rhamnosyl ceramide (1, α-l-RhaCer) has been prepared that was recognized by anti-l-rhamnose (anti-Rha) antibodies. During these studies we explored the use of an α-l-rhamnosyl thioglycoside and a trichloroacetimidate as a glycosyl donors. Subsequently, the acceptors desired for glycosylation, 3-O-benzoylazidosphingosine or 3-O-alloxycarbonylsphingosine, were prepared from d-xylose. The thioglycoside donor, 2,3,4-tri-O-acetyl-1-(4-tolyl)thio-α-l-rhamnopyranoside, and the trichloroacetimidate donor, 2,3,4-tri-O-acetyl-1-(2,2,2-trichloroethanimidate)-α-l-rhamnopyranoside, were synthesized in 50% and 78% yield overall, respectively. The synthesis of the glycosylation acceptor employed an addition–fragmentation olefination that was successfully carried out in 53% yield. With the successful synthesis of key intermediates, α-l-RhaCer (1) was prepared without any insurmountable obstacles. Anti-Rha antibodies were prepared in BALB/c mice by immunizing them with rhamnose-ovalbumin (Rha-Ova) with Sigma Adjuvant System (SAS) and the anti-l-Rha antibodies were isolated from the blood sera. Liposomes and EL4 tumor cells were used as model systems to demonstrate the ability of 1 to insert into a lipid bilayer. The interaction of the liposomes or the EL4 cells with α-l-RhaCer (1) and anti-Rha antibodies were investigated by fluorescence microscopy and flow cytometry, respectively, to confirm the ability of glycolipid 1 to be displayed on the tumor cell surface as well as the ability to be recognized by anti-Rha antibodies.  相似文献   

11.
Based on the previously reported lead compound, a series of benzofuran derivatives were prepared to study their antagonistic activities to A2A receptor. The replacement of the phenyl group at the 4-position with a heterocyclic ring improved the PK profile and aqueous solubility. From these studies, we discovered a potent new A2A antagonist, 12a, which has both a good oral bioavailability and in vivo efficacy on motor disability in MPTP-treated common marmosets.  相似文献   

12.
Conformational constraint has been used to design a potent series of α2δ ligands derived from the readily available starting material (2S,4R)-hydroxy-l-proline. The ligands have improved physicochemistry and potency compared to their linear counterparts (described in our earlier publication) and the lead compound has been progressed to clinical development.  相似文献   

13.
We have identified four isozymes of α-glucosidase in the cellular slime mold, Dictyostelium discoideum. The isozymes can be distinguished by their physical and enzymatic properties. α-Glucosidase-1, α-glucosidase-2, and α-gluocosidase-3 are all present in vegetative cells, while α-glucosidase-4 is present only after the cells have proceeded through aggregation. Three of the four enzymes, α-glucosidase-1, α-glucosidase-3, and α-glucosidase-4, have acidic pH optima of 3.5, 2.2, and 4.0, respectively. In contrast, α-glucosidase-2 has a neutral pH optimum, 7.25. α-Glucosidase-1, α-glucosidase-2, and α-glucosidase-3 are distinguishable by electrophoresis in native polyacrylamide gels. α-Glucosidase-4 comigrates with α-glucosidase-2 on native gels but they can be resolved by isoelectric focusing. The isozymes also differ with respect to affinity for the substrates p-nitrophenyl-α-d-glucoside and 4-methyl-umbelliferyl-α-d-glucopyranoside and the relative maximal rates of hydrolysis of these substrates. α-Glucosidases-1, -2, and -4 have apparent Km's in the millimolar range while the apparent Km of α-glucosidase-3 for p-nitrophenyl-α-d-glucoside is much higher. This may suggest that isozyme 3 is an endoglycosidase or may have greater affinity for other sugar substrates. α-Glucosidase-1 is the major isozyme in vegetative cells.  相似文献   

14.
Synthesis and structure–activity relationships of 7-O-p-cyanobenzoyl pyripyropene A derivatives with modification at C1 and 11 are described. Regioselective mono-deprotection of di-tert-butylsilylene acetal was critical in their synthesis.  相似文献   

15.
Both the lack of a credible malaria vaccine and the emergence and spread of parasites resistant to most of the clinically used antimalarial drugs and drug combination have aroused an imperative need to develop new drugs against malaria. In present work, α-pyranochalcones and pyrazoline analogs were synthesized to discover chemically diverse antimalarial leads. Compounds were tested for antimalarial activity by evaluation of the growth of malaria parasite in culture using the microtiter plate based SYBR-Green-I assay. The (E)-3-(3-(2,3,4-trimethoxyphenyl)-acryloyl)-2H-chromen-2-one (Ga6) turned out to be the most potent analog of the series, showing IC50 of 3.1 μg/ml against chloroquine-sensitive (3D7) strain and IC50 of 1.1 μg/ml against chloroquine-resistant field isolate (RKL9) of Plasmodium falciparum. Cytotoxicity study of the most potent compounds was also performed against HeLa cell line using the MTT assay. All the tested compounds showed high therapeutic indices suggesting that they were selective in their action against the malaria parasite. Furthermore, docking of Ga6 into active site of falcipain enzyme revealed its predicted interactions with active site residues. This is the first instance wherein chromeno-pyrazolines have been found to be active antimalarial agents. Further exploration and optimization of this new lead could provide novel, antimalarial molecules which can ward off issues of cross-resistance to drugs like chloroquine.  相似文献   

16.
In search of potent α-amylase inhibitor we have synthesized eighteen indole analogs (118), characterized by NMR and HR-EIMS and screened for α-amylase inhibitory activity. All analogs exhibited a variable degree of α-amylase inhibition with IC50 values ranging between 2.031 ± 0.11 and 2.633 ± 0.05 μM when compared with standard acarbose having IC50 values 1.927 ± 0.17 μM. All compounds showed good α-amylase inhibition. Compound 14 was found to be the most potent analog among the series. Structure-activity relationship has been established for all compounds mainly based on bringing about the difference of substituents on phenyl ring. To understand the binding interaction of the most active analogs molecular docking study was performed.  相似文献   

17.
We have designed and synthesized twenty-six N-arylindazole-3-carboxamide (3a-p) and N-benzoylindazole (6a-j) derivatives to discover with excellent inhibition activities of α-MSH-stimulated melanogenesis. In the bio evaluation studies of these compounds, we discovered eighteen compounds, out of twenty-six exhibited more potent inhibition than the positive control arbutin. From the SAR studies, we identified 3k and 6g as lead compounds which displayed almost 5 and 9 times more potent inhibition of α-MSH-stimulated melanogenesis respectively than the reference arbutin. It is also evident the presence of electron withdrawing group at para position (R3) for the compounds (3a-p) and presence of +M group at ortho position (R5) for the compounds (6a-j) were crucial for their excellent inhibition activities of α-MSH-stimulated melanogenesis.  相似文献   

18.
We have disclosed our effort to develop caffeic acid derivatives as potent and non-toxic inhibitors of α-MSH-stimulated melanogenesis to treat pigmentation disorders and skin medication including a cosmetic skin-whitening agent. The SAR studies revealed that cyclohexyl ester and secondary amide derivatives of caffeic acid showed significant inhibitory activities.  相似文献   

19.
A series of new N-(11H-Indeno[1,2-b]quinoxalin-11-ylidene)benzohydrazide derivatives (3a3p) were synthesized and evaluated for their α-glucosidase inhibitory activity. The synthesized compounds 3d, 3f, 3g, 3k, 3n, 3p and 4 showed significant α-glucosidase inhibitory activity as compared to acrabose, a standard drug used to treat type II diabetes. Structures of the synthesized compounds were determined by using FT-IR, 1H NMR, 13C NMR, mass spectrometry and elemental analysis techniques.  相似文献   

20.
In an effort to develop potent and selective inhibitors toward ACAT2, structure–activity relationship studies were carried out using derivatives based on pyripyropene A (PPPA, 1). In particular, we investigated the possibility of introducing appropriate 1,11-O-benzylidene and 7-O-substituted benzoyl moieties into PPPA (1). The new o-substituted benzylidene derivatives showed higher selectivity for ACAT2 than PPPA (1). Among them, 1,11-O-o-methylbenzylidene-7-O-p-cyanobenzoyl PPPA derivative 7q and 1,11-O-o,o-dimethylbenzylidene-7-O-p-cyanobenzoyl PPPA derivative 7z proved to be potent ACAT2 inhibitors with unprecedented high isozyme selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号