首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three novel organotin(IV) complexes with 2-(9H-carbazol-9-yl) acetic acid (HL), of the formulae {[nBu2SnOL]2O}2 (1), [nBuSn(O)OL]6 (2) and [nBu3SnOL]6 (3) were prepared. All compounds were characterized by X-ray crystallography, confirming that complex (1) is tetranuclear one with ladder framework, complex (2) is a hexanuclear organotin(IV) complex with drum structure and complex (3) is a macrocycle with 24-membered stannoxane ring. Furthermore, all complexes were tested in vitro for their cytotoxic activity, using human hepatocellular carcinoma cell line (BEL-7402) and human hepatocellular liver carcinoma cell line (HepG2). Complex (1) displayed the best cytotoxicity and can be pointed out as a promising substrate to be subject of further investigations.  相似文献   

2.
A series of new diorganotin and triorganotin(IV) heterocyclicdicarboxylates [(nBu3Sn)2(2,5-pdc)] (1), {[(2-FC6H4CH2)3Sn]2(2,5-pdc)} (2), {[(2-ClC6H4CH2)3Sn]2(2,5-pdc)} (3), {[(4-CNC6H4CH2)3Sn]2(2,5-pdc)} (4), {[(4-ClC6H4CH2)3Sn]2(2,5-pdc)} (5), [(Ph)2Sn(2,6-pdc)(H2O)] (6), {[nBu3Sn(2,6-pdc)SnnBu3]2(H2O)2} · C2H3N (7) and {[Ph3Sn(2,3-pdz)SnPh3]2(H2O)} (8) have been obtained by reactions of diorganotin(IV) and triorganotin (IV) oxide with 2,6 or 2,5-H2pdc (pdc = pyridinedicarboxylate) or 2,3-H2pdz (pdz = pyrazinedicarboxylate). Complexes 1-8 were characterized by elemental, IR and NMR spectra analyses. The crystal and molecular structures of compounds 1, 6, 7 and 8 have been determined by X-ray single crystal diffraction. Compound 1 has 2D network structures. Compound 6 has 1D polymeric chain and 3D framework supramolecular structures due to the coordinated water molecules. Compound 7 has a monomeric structure, but the supramolecular structures are network.  相似文献   

3.
Four new organotin(IV) complexes [(Bu3Sn)(FcCOO)]n (1), [(μ-Bu2Sn)2(μ-Bu2SnFcCOO)23-O)2(μ-OCH3)2]2 (2), [Ph3Sn(FcCOO)(H2O)](phen) (3) and [{Ph3Sn(FcCOO)}2(4,4′-bipy)] (4) [Fc = (η5-C5H5)Fe(η5-C5H4)] have been synthesized and characterized by elemental analyses, IR, (1H and 13C) NMR spectra and X-ray single-crystal diffraction analyses. The structure analyses show that all tin atoms in complexes 1-4 are five-coordinated with trigonal bipyramid geometry. Complexes 1-4 and FcCOOH undergo reversible one-electron oxidations in methanol solution. The antitumor activities of complexes 1-4 have also been tested. Complexes 1 and 2 exhibit medium activity towards P388 cell lines and Hela cell lines. Complexes 3 and 4 exhibit medium activity towards P388 cell lines but strong activity towards Hela cell lines. This may result from complexes 3 and 4 including the neutral molecules 1,10-phenanthroline and 4,4′-bipy.  相似文献   

4.
The germanium(II) aryloxide complexes (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{NH3}] (1) and [Ge(OC6H3Ph2-2,6)2] (2) react with either ButI or MeI to yield the corresponding germanium(IV) compounds (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{But}{I}] (3), (S)-[Ge{O2C20H10-(SiMe2Ph)2-3,3′}{Me}{I}] (4), [Ge(OC6H3Ph2-2,6)2(But)(I)] (5), and [Ge(OC6H3Ph2-2,6)2(Me)(I)] (6). Compound 6 reacts with 2,6-diphenylphenol to yield [Ge(OC6H3Ph2-2,6)3(Me)] (7), while 3-5 do not. The X-ray crystal structures of 3-5 and 7 were determined, and 3-5 represent the first structurally characterized germanium(IV) species having germanium bound to both oxygen and iodine.  相似文献   

5.
The complexes [Me2(Meclo)SnOSn(Meclo)Me2]2 (2) and [Ph3Sn(Meclo)] (3) where HMeclo is meclofenamic acid, N-(2,6-dichloro-m-tolylanthranilic acid)], have been prepared and structurally characterized by means of vibrational, 1H and 13C NMR spectroscopies. The crystal structure of complexes (2) and (3) have been determined by X-ray crystallography. Three distannoxane rings are present to the dimeric tetraorganodistannoxane of planar ladder arrangement of (2). The structure is centro symmetric and features a central rhombus Sn2O2 unit two additional tin atoms linked at the oxygen atoms. Five- and six-coordinated tin centers are present in the dimer distannoxane. X-ray analysis of (3) revealed a penta-coordinated structure containing Ph3Sn coordinated to the chelated carboxylato group. The polar imino hydrogen atom participates in intra-molecular hydrogen bonds. Complexes (2) and (3) are self-assembled via π → π, C-H-π, stacking interactions and intra-molecular hydrogen bonds. Meclofenamic acid and [Ph3Sn(Meclo)] have been evaluated for antiproliferative activity in vitro against three human cancer cell lines: MCF-7 (human breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma) and a mouse L-929 (a fibroblast-like cell line cloned from strain L). The [Ph3Sn(Meclo)] complex exhibited high cytotoxic activity against all the cancer cell lines. Meclofenamic and [Ph3Sn(Meclo)] were tested for anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv. The [Ph3Sn(Meclo)] complex was found to be a promising anti-mycobacterial lead compound, displaying high activity against M. tuberculosis H37Rv.  相似文献   

6.
A series of cis-bis{5-[(E)-2-(aryl)-1-diazenyl]quinolinolato}di-n-butyltin(IV) complexes has been synthesized and characterized by 1H-, 13C-, 119Sn NMR, ESI-MS (electrospray ionization mass spectrometry), IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The structures of four di-n-butyltin(IV) complexes, viz., nBu2Sn(L3)2 (3), nBu2Sn(L4)2 (4), nBu2Sn(L5)2 (5) and nBu2Sn(L7)2 · 0.5C6H6 (7) (LH = 5-[(E)-2-(aryl)-1-diazenyl)quinolin-8-ol) were determined by single crystal X-ray diffraction. In general, the complexes were found to adopt a distorted cis-octahedral arrangement around the tin atom. These complexes retain their solid-state structure in non-coordinating solvent as evidenced by 119Sn and 13C NMR spectroscopic results. The in vitro cytotoxicity of di-n-butyltin(IV) complexes (3-8) is reported against seven well characterized human tumour cell lines. The basicity of the two quinolinolato donor N and O atoms of the ligands are discussed in relation to the cytotoxicity data.  相似文献   

7.
Mononuclear zinc complexes of a family of pyridylmethylamide ligands abbreviated as HL, HLPh, HLMe3, HLPh3, and MeLSMe [HL = N-(2-pyridylmethyl)acetamide; HLPh = 2-phenyl-N-(2-pyridylmethyl)acetamide; HLMe3 = 2,2-dimethyl-N-(2-pyridylmethyl)propionamide; HLPh3 = 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide; MeLSMe = N-methyl-2-methylsulfanyl-N-pyridin-2-ylmethyl-acetamide] were synthesized and characterized spectroscopically and by single crystal X-ray structural analysis. The reaction of zinc(II) salts with the HL ligands yielded complexes [Zn(HL)2(OTf)2] (1), [Zn(HL)2(H2O)](ClO4)2 (2), [Zn(HLPh3)2(H2O)](ClO4)2 (3), [Zn(HLPh)Cl2] (4), [Zn(HLMe3)Cl2] (5), and [Zn(MeLSMe)Cl2] (6). The complexes are either four-, five- or six-coordinate, encompassing a variety of geometries including tetrahedral, square-pyramidal, trigonal-bipyramidal, and octahedral.  相似文献   

8.
The novel triphenyltin(IV) esters of flufenamic acid (1), Hflu, [Ph3Sn(flu)] (2), and of [2-(2,3-dichlorophenylamino)benzoic acid] (3), Hdcpa, [Ph3Sn(dcpa)] (4) have been structurally characterized by means of vibrational and 1H, 13C NMR spectroscopic studies. The crystal and molecular structures of [SnPh3(dcpa)(DMSO)] 4a are described. The molecular structure of 4a reveals that the Sn atom has a distorted trigonal bipyramidal coordination geometry with equatorial phenyl groups and the carboxylate and dimethylsulfoxide oxygen atoms occupying axial positions. The crystal structure of 4a is self-assembled by C-H---π and π-π stacking interactions. The in vitro cytotoxic activity of 1-4 and of the related non-steroidal anti-inflammatory drugs, NSAIDs, [2-(2,6-dimethylphenylamino)benzoic acid], Hdmpa (5), [Ph3Sn(dmpa)] (6), [2-(2,3-dimethylphenylamino)benzoic acid], mefenamic acid, Hmef (7) and [Ph3Sn(mef)] (8) has been evaluated against the cancer cell lines MCF-7, T-24, A-549 and L-929. The ligands exhibited very poor cytotoxic activity against the four cancer cell lines. Complex 6 exhibits the highest activity and selectivity against A-549 and MCF-7 cancer cell lines and complex 8 the highest activity and selectivity against T-24 cancer cell line. The cytotoxic results indicate that coupling of Hdmpa and Hmef with R3Sn(IV) metal center results in complexes with important biological properties and remarkable cytotoxic activity, since they display IC50 values in a μΜ range better to that of the antitumor drug cis-platin. Complexes 6 and 8 are considered as excellent antitumor compounds and the results of this study represent the discovery of triphenyltin(IV)esters as a potential novel class of anticancer agents.  相似文献   

9.
Five complexes [Mn2O(L1)4]n (1), [Co(L2)(H2O)2]n (2), [Co(L3)2(H2O)2]n (3) and [Co(L4)2(4,4′-bpy)(H2O)]n (4) were obtained by using flexible organic ligands HL1, HL2, HL3, and HL4 in hydrothermal systems with cobalt, copper and manganese salts respectively (HL1 = 2-(4-pyridylmethylthio)benzoic acid, HL2 = 4-(4-pyridylmethylthio)benzoic acid, HL3 = 2-(3-pyridylmethylthio)benzoic acid, HL4 = 4-(2-pyridylmethylthio)benzoic acid). The five complexes have been characterized by X-ray single crystal diffraction, FT-IR spectrum and elemental analysis. Complex 1 is assembled to a 3D porous framework with Mn2O units as nodes. Complex 2 shows 2D layer networks comprised of six-coordinated Co2+ centers and L2 anionic ions. Complexes 3 and 4 have different 1D double or single chain structures. Various non-covalent bonds such as hydrogen bonds, π?π interactions, H-bond grids and S?S weak interactions lead to interesting supramolecular frameworks. DC (direct current) temperature dependent magnetic susceptibilities suggest weak antiferromagnetic behaviors exist in 1, and single ion paramagnetic along with spin-orbit coupling behavior dominate in 3 and 4.  相似文献   

10.
The P-O ligand 3-(di(2-methoxyphenyl)phosphanyl)propionic acid (HL) was synthesized by a microwave-assisted reaction of a secondary phosphane. The coordination of HL to PtII yielded the neutral mononuclear complex trans-[PtCl(κ2-P,O-L)(κ-P-HL)] (1), while the reaction of PdClMe(η4-COD) (COD = 1,4-cyclooctadiene) with HL in the presence of NEt3 gave the anionic PdII compound of the formula (HNEt3)[PdClMe(κ2-P,O-L)] (2). Upon crystallization of the latter compound the neutral chloride-bridged dimetallic compound cis-[Pd(μ-Cl)Me(HL)]2 (3) was obtained. HL, 1 and CH2Cl2 have been characterized by single crystal X-ray structure analyses.  相似文献   

11.
A series of organotin(IV) carboxylates, [Bu2SnL2] (1), [Et2SnL2] (2), [Me2SnL2] (3), [Bu3SnL]n(4), [Me6Sn2L2]n(5), [Ph3SnL]n(6) and [Oct2SnL2] (7), where L = O2CCH2C6H4OCH3-4, have been synthesized. These complexes have been characterized by elemental analysis, FT-IR and multinuclear NMR (1H, 13C and 119Sn). Based on spectroscopic results, the ligand appeared to coordinate to the Sn atom through COO moiety. Single crystal analysis has shown a bridging behavior of ligand in tributyl- and trimethyltin(IV) derivatives, and a chelating bidentate mode in diethyltin(IV) complex. Bioassay results have shown that these compounds have good antibacterial, antifungal and antitumor activity. The activity against prostate cancer cell lines (PC-3) decreased in the order 1 > 5 > 2 > 3 > 7.  相似文献   

12.
Thiocarbonate ruthenium complexes of the form CpRu(L)(L′)SCO2R (L = L′ = PPh3 (1), 1/2 dppe (2), L = PPh3, L′ = CO (3); R = Et (a), Bun (b), C6H5 (c), 4-C6H4NO2 (d)) have been synthesized by the reaction of the corresponding sulfhydryl complexes, CpRu(L)(L′)SH, with chloroformates, ROCOCl, at low temperature. The bis(triphenylphosphine) complexes 1 can be converted to 3 under CO atmosphere. The crystal structures of CpRu(PPh3)2SCO2Bun (1b), CpRu(dppe)SCO2Bun (2b), and CpRu(PPh3)(CO)SCO2Bun (3b) are reported.  相似文献   

13.
Three new diorganotin(IV) complexes, [Bu2Sn(O2SeC6H5)2]n (1), [Bu2Sn(O2SeC6H4Me)2]n (2), [Me2Sn(O2SeC6H4Bu)2]n (3) have been synthesized by the reaction of benzeneseleninic acid, p-tolueneseleninic acid, and 4-tert-butylbenzeneseleninic acid with Me2SnCl2 or Bu2SnCl2 in the presence of sodium ethoxide in methanol at 50 °C. All of the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C and 119Sn) spectroscopy and X-ray crystallography. X-ray diffraction studies of 1, 2, 3 show that the areneseleninate groups behave as double bridges between the tin atoms leading to polymeric chain structure with Sn2O4Se2 eight-membered ring. The organic groups bonded to the tin atoms are in trans-position in the resulting octahedral arrangement.  相似文献   

14.
Reaction of the potassium salts of N-thiophosphorylated thioureas of common formula RNHC(S)NHP(S)(OiPr)2 [R = pyridin-2-yl (HLa), pyridin-3-yl (HLb), 6-amino-pyridin-2-yl (HLc)] with Cu(PPh3)3I in aqueous EtOH/CH2Cl2 leads to mononuclear [Cu(PPh3)2La,b-S,S′] (1, 2) and [Cu(PPh3)Lc-S,S′] (3) complexes. Using copper(I) iodide instead of Cu(PPh3)3I, polynuclear complexes [Cun(L-S,S′)n] (4-6) were obtained. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy, ES-MS and elemental analyses. The crystal structures of Cu(PPh3)2Lb (2) and Cu(PPh3)Lc (3) were determined by single-crystal X-ray diffraction.  相似文献   

15.
Chiral N,O pyridine alcohols HL1-HL6 were used to form complexes with copper(II) ions. Ligands HL1 and HL2 formed complexes with copper(II) ions when Cu(OAc)2 and HL were refluxed in methanol/ethanol mixture. Ligand HL3 formed a complex with copper(II) when deprotonated with NaH and stirred in a Cu(II) acetate THF solution. Ligands HL4-HL6 did not form complexes with copper(II) under similar conditions. Two complexes, [Cu(L1)2] and [Cu(L2)2], were isolated as single crystals and characterized by X-ray crystallography. These complexes showed low catalytic activities in asymmetric reactions. However, they became active when reacted with triflic acid. Copper complexes, [Cu(L)] or [Cu(L)]+, formed in situ by reacting ligands HL with copper(I) or (II) ions, respectively, were also found to be active copper catalysts for asymmetric cyclopropanation of styrene with ethyl diazoacetate and allylic oxidation of cyclohexene with t-butylperoxybenzoate. Enantioselectivities up to 56% and 38% were obtained in asymmetric cyclopropanation of styrene and asymmetric allylic oxidation of cyclohexene, respectively.  相似文献   

16.
A new synthetic route to the known tripodal tetradentate N3O ligand L1 (HL1 = [N-(3,5-di-tert-butyl-2-hydroxybenzyl)-N,N-di-(2-pyridylmethyl)]amine) is reported. The related compounds HLn (n = 2, 3) were prepared by a similar procedure. Treatment of HLn (n = 1-3) with FeCl3·6H2O in hot methanol led to the mononuclear iron(III) complexes [Fe(Ln)Cl2] (1: n = 1, 2: n = 2, 3: n = 3). The solid-state structures of complexes 1 and 2 were determined by X-ray crystallography. [Fe(L1)Cl2] (1) showed effective nuclease activity in the presence of hydrogen peroxide, converting supercoiled plasmid DNA to its linear form.  相似文献   

17.
We have examined the role of different solvents in the crystallisation process of cis-octahedral, diphenyltin(IV)-bis-cupferronato complex, Ph2Sn(cupf)2 (1), where . The Mössbauer spectra of frozen chloroform solution of 1 revealed the presence of cis and trans isomers. This cis-trans isomerisation was investigated by Mössbauer spectroscopy and the results inspired the synthesis of two new heptacoordinated derivatives: Ph2Sn(cupf)2(H2O) (2) and Ph2Sn(cupf)2(EtOH) · EtOH (3). In both compounds, the O-donor solvent molecules (H2O, EtOH) form novel Sn-O bonds with the Ph2Sn(IV) centre of 1, consequently the phenyl groups attached to tin undergo an intramolecular rearrangement. Compound 2 contains O-H ? O hydrogen bonded infinite chains. In compound 3, O-H ? O hydrogen-bonds and short O ? O contacts assemble the complexes and uncoordinated solvent molecules into dimeric supramolecules. These solvents have structure-determining roles at both molecular and supramolecular levels: at molecular level the coordination of solvent determines intramolecular rearrangement by changing the conformation of the parent unsolvated complex, whilst at supramolecular level they control the association of solvated molecules via hydrogen bonds.  相似文献   

18.
Four different mononuclear octahedral Ni(II) complexes with protonated and deprotonated form of the same ligand have been synthesized by controlling reaction conditions and structurally characterized. The complexes are [Ni(HLl-his)(benzoate)(MeOH)] (1), [Ni(HLl-his)(SCN)(MeOH)] (2), [Ni(HLl-his)2] (3) and [Ni(Ll-his)(imidazole)2] (4) where H2Ll-his is (S)-2-(2-hydroxybenzylamino)-3-(1H-imidazol-4-yl)-propionic acid. The ligand behaves as a monobasic tetradentate ligand in 1 and 2, monobasic tridentate ligand in 3 and dibasic tetradentate ligand in 4. Ni(II) coordinated phenolic proton of the ligand in the complexes 1-2 shows strong intra-molecular H-bonding with benzoate in 1 and lattice water in 2, whereas 3 shows intermolecular H-bonding between uncoordinated phenols with neighbouring carboxylate. The pH titration of the complexes revealed that metal coordination and H-bond in complexes 1 and 2 considerably lowers the acidity of ligand phenol (pKa 6.8 and 7.0 respectively) compared to phenol (pKa 10). The complex 4 does not show any proton loss due to the absence of phenolic proton. All the complexes show extensive H-bonded network in the crystals including narrow (7.8 × 5.2 Å) water filled one dimensional channel in 2.  相似文献   

19.
As the new H-cluster models, six diiron propanedithiolate (PDT) complexes with mono- and diphosphine ligands have been prepared and structurally characterized. The monophosphine model complex (μ-PDT)Fe2(CO)5[Ph2PNH(t-Bu)] (1) was prepared by reaction of parent complex (μ-PDT)Fe2(CO)6 (A) with 1 equiv of Ph2PNH(t-Bu) in refluxing xylene, whereas A reacted with 1 equiv of Me3NO · 2H2O in MeCN at room temperature followed by 1 equiv of Ph2PH to give the corresponding monophosphine model complex (μ-PDT)Fe2(CO)5(Ph2PH) (2). Further treatment of 2 with 1 equiv of n-BuLi in THF at −78 °C followed by 1 equiv of CpFe(CO)2I from −78 °C to room temperature afforded monophosphine model complex (μ-PDT)Fe2(CO)5[Ph2PFe(CO)2Cp] (3), whereas the diphosphine model complexes (μ-PDT)Fe2(CO)4(Ph2PC2H4PPh2) (4), (μ-PDT)Fe2(CO)4[(Ph2P)2N(n-Pr)] (5) and (μ-PDT)Fe2(CO)4[(Ph2P)2N(n-Bu)] (6) were obtained by reactions of A with ca.1 equiv of the corresponding diphosphines in refluxing xylene. All the new model complexes were characterized by elemental analysis, spectroscopy and particularly for 1 and 3-6 by X-ray crystallography. On the basis of electrochemical and spectroelectrochemical studies, model 5 was found to be a catalyst for HOAc proton reduction to H2, and for this electrocatalytic reaction an ECCE mechanism was proposed.  相似文献   

20.
Two trinuclear NiFe2 complexes Fe2(CO)63-S)2[Ni(Ph2PCH2)2NR] (R = n-Bu, 1; Ph, 2) containing an internal base were prepared as biomimetic models for the active sites of FeFe and NiFe hydrogenases. Treatment of complex Fe2(CO)63-S)2[Ni(Ph2PCH2)2N(n-Bu)] (1) with HOTf gave an N-protonated complex [Fe2(CO)63-S)2{Ni(Ph2PCH2)2NH(n-Bu)}][OTf] ([1H][OTf]). The structures of complexes 1, 2 and [1H][OTf] were determined by X-ray crystallography, which shows that the proton held by the N atom of [1H][OTf] lies in an equatorial position. Cyclic voltammograms of complexes 1 and [1H][OTf] were studied and compared with that of Fe2(CO)63-S)2[Ni(dppe)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号