首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of [CuIIL⊂(H2O)] (H2L = N,N′-ethylenebis(3-ethoxysalicylaldimine)) with nickel(II) perchlorate in 1:1 ratio in acetone produces the trinuclear compound [(CuIIL)2NiII(H2O)2](ClO4)2 (1). On the other hand, on changing the solvent from acetone to methanol, reaction of the same reactants in same ratio produces the pentametallic compound [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)]·2MeOH (2A), which loses solvated methanol molecules immediately after its isolation to form [(CuIIL)2NiII(H2O)2](ClO4)2·2[CuIIL⊂(H2O)] (2B). Clearly, formation of 1 versus 2A and 2B is solvent dependent. Crystal structures of 1 and 2A have been determined. Interestingly, compound 2A is a [3 × 1 + 1 × 2] cocrystal. The cryomagnetic profiles of 1 and 2B indicate that the two pairs of copper(II)···nickel(II) ions in the trinuclear cores in both the complexes are coupled by almost identical moderate antiferromagnetic interaction (J = −22.8 cm−1 for 1 and −26.0 cm−1 for 2B).  相似文献   

2.
The reactions of methyl 2-pyridyl ketone oxime, (py)C(Me)NOH, with MSO4 · xH2O (M = Zn, x = 7; M = Cd, x = 8/3), in the absence of an external base, have been investigated. The synthetic study has led to the two new complexes [Zn(SO4){(py)C(Me)NOH}(H2O)3] · H2O (1 · H2O) and [Zn2(SO4)2{(py)C(Me)NOH}4] · (py)C(Me)NOH [2 · (py)C(Me)NOH], and the coordination polymer [Cd(SO4){(py)C(Me)NOH}(H2O)]n · [Cd(SO4){(py)C(Me)NOH}(H2O)2]n (3). In the three complexes the organic ligand chelates through its nitrogen atoms. The sulfate anion in 1 · H2O is monodentate; the complex molecule is the mer isomer considering the positions of the aqua ligands. The ZnII centers in 2 · (py)C(Me)NOH are bridged by two syn, anti η112 ligands; each metal ion has the cis-cis-trans disposition of the coordinated sulfate oxygen, pyridyl nitrogen and oxime nitrogens, respectively. The molecular structure of 3 is unique consisting of two different linear and ladder - type chains. π-π stacking interactions and/or hydrogen bonds lead to the formation of interesting supramolecular architectures in the three complexes. The thermal decomposition of complex 3 has been studied. Characteristic vibrational (IR, Raman) bands are discussed in terms of the nature of bonding and the structures of the three complexes.  相似文献   

3.
The first employment of pyridine-2-amidoxime [(py)C(NH2)NOH] in zinc(II) chemistry is reported. The syntheses, crystal structures, and spectroscopic characterization are described for complexes [Zn(O2CR)2{(py)C(NH2)NOH}2] (R = Me; 1, Ph; 2), [Zn2(acac)2{(py)C(NH2)NO}2] (3), and [Zn(NO3){(py)C(NH2)NOH}2](NO3) (4). The reactions between Zn(O2CR)2·2H2O (R = Me, Ph) or Zn(NO3)2·5H2O and two equivalents of (py)C(NH2)NOH in MeOH led to mononuclear compounds 1, 2 and 4, respectively. All three complexes contain two neutral N,N′-chelating (η2) (py)C(NH2)NOH ligands, coordinated through the Npyridyl and Noxime atoms. In contrast, the use of Zn(acac)2·H2O in place of Zn(O2CR)2·2H2O gives the dinuclear compound 3, which instead contains the anionic, η111:μ bridging form of the organic ligand; the ZnII atoms are doubly bridged by the diatomic oximate groups of the (py)C(NH2)NO groups. Strong intra- and intermolecular hydrogen bonding interactions provide appreciable thermodynamic stability and interesting supramolecular chemistry for compounds 1-4. The photoluminescence properties of complexes 1-4 recorded in the solid state at room temperature are also presented.  相似文献   

4.
1-Methylisocytosine (1-MeIC) can be protonated at the endocyclic N(3) position (pKa of 1-MeICH+, 4.02 ± 0.04) or complexed at this position with (dien)MII (M = Pt, Pd). X-ray crystal structures of the protonated species 1 as well as the Pd (2) and Pt (3) complexes are reported, and gas phase structures of the cation 2 and 3 have been calculated by ab initio methods. These results are compared with results from X-ray crystallography. At high pH, the Pt complex 3 undergoes deamination of the exocyclic N(2)H2 group to the 1-methyluracilate complex. As compared to the situation with 1-methylcytosine (1-MeC), the accelerating effect of (dien)PtII is much less pronounced, however.  相似文献   

5.
New heterodinuclear ZnII/NiII (1) and homodinuclear NiII/NiII (2) water-soluble and air stable compounds of general formula [M(H2O)6][M′(dipic)2] · mH2O have been easily prepared by self-assembly of the corresponding metal(II) nitrates with dipicolinic acid (H2dipic) in water solution at room temperature.  The compounds have been characterized by IR, UV/Vis and atomic absorption spectroscopies, elemental and X-ray single crystal diffraction (for 1 · 4H2O and 2 · 5H2O) analyses.  3D infinite polymeric networks are formed via extensive hydrogen bonding interactions involving all coordinated and crystallization water molecules, and all dipicolinate oxygens, thus contributing to additional stabilization of dimeric units, metal-organic chains and 2D layers.  In 1 · 4H2O, the latter represent a rectangular-grid 2D framework with multiple channels if viewed along the c crystallographic axis, while in 2 · 5H2O intercalated crystallization water molecules are associated to form acyclic nonplanar hexameric water clusters and water dimers which occupy voids in the host metal-organic matrix, with a structure stabilizing effect via host-guest interactions.  The hexameric cluster extends to the larger (H2O)10 one with an unusual geometry (acyclic helical octamer with two pendent water molecules) by taking into account the hydrogen bonds to water ligands in [Ni(H2O)6]2+.  The obtained Zn/Ni compound 1 relates to the recently reported family of heterodimetallic complexes [M(H2O)5M′(dipic)2] · mH2O (M/M′ = Cu/Co, Cu/Ni, Cu/Zn, Zn/Co, Ni/Co, m = 2, 3), what now allows to establish the orders of the metal affinity towards the formation of chelates with dipicolinic acid (CoII > NiII > ZnII > CuII) or aqua species (CoII < NiII < ZnII < CuII).  相似文献   

6.
The decaaqua-di-rhodium(II) cation has been found to be an interesting starting material in the preparation of dioxygen complexes with different N-donor ligands. Treatment of aqueous HClO4 solution of [Rh2(H2O)10]4+ with NH4OH/NH3, py and/or en results in water exchange and the formation of corresponding [Rh2II(H2O)10−m(base)n(OH)m](4−m)+ derivatives. Reaction of the latter with dioxygen afforded superoxo and/or peroxo complexes, depending on reaction conditions: [Rh2III(O2 −)(NH3)8(OH)2](ClO4)3 (1), [Rh2III(O2 −)(NH3)8(OH)(H2O)](ClO4)4 (2), [Rh2III(O2 2−)(NH3)10](ClO4)4 · 6H2O (3), [Rh2III(O2 −)(py)8(H2O)2](ClO4)5 (4), [Rh2III(O2 2−)(en)4(H2O)2](ClO4)4 (5) and [Rh2III(O2 −)(en)4(H2O)2](ClO4)5 (6). All the obtained complexes were characterized by elemental analysis, mass spectrometry, UV-Vis, IR and ESR spectroscopies and magnetic measurements.  相似文献   

7.
A new class of mononuclear metal complexes with 1-methylimidazole-2-aldoximate (miao) has been synthesized and characterized: trans-NiII(Cl)2(Hmiao)2 (1), trans-NiII(miao)2(py)2 (2), NO-trans-NiII(miao)2(phen) (3), and NO-trans-FeII(miao)2(phen) (4). The crystal structures of 2, 3, and 4 have been determined by single-crystal X-ray crystallography. Compound 1 having the protonated miao ligand (i.e., Hmiao) is a precursor for synthesizing 2 and 3. Compound 2 is an octahedral NiII complex surrounded by two miao bidentate ligands and two monodentate ligands of pyridine in a trans-arrangement. Compound 3 is a cis-type octahedral NiII complex with two miao ligands and a bidentate ligand of 1,10-phenanthroline, in which the ligand arrangement around NiII center is found in an NO-trans form. Compound 4 is an isostructural FeII derivative of 3. Compounds 1, 2, and 3 exhibit paramagnetic nature with an S = 1 spin and a positive zero-field splitting, among which it for 3 is overlapped with intermolecular ferromagnetic interaction (zJ/kB = +0.16 K). Compound 4 is diamagnetic due to the existence of low-spin FeII ion.  相似文献   

8.
Yue Wang 《Inorganica chimica acta》2005,358(12):3407-3416
New ternary transition metal complexes of formulations [Co(bpa)(p-HB)2](bpa = 2,2′-bipyridylamine, p-HB = p-hydroxybenzenecarboxylic acid) (1), [Ni(bpa)(p-HB)(H2O)2]+(NO3) · H2O (2), , [Cu(bpa)(p-HB)Cl] (4) and [Zn(bpa)(p-HB)2]2 · 0.5H2O (5) are prepared, their structural features are characterized by crystal structural studies, and their DNA binding propensity has been evaluated by fluorescence method. The molecular structure of complex 1 shows the six coordinate octahedral geometry with one bpa and two p-HB ligands, complex 2 is the cationic complex and has the six coordinate octahedral structure with one bpa, one p-HB and two aqua ligands, complex 3 is also the cationic complex of octahedral coordination with two bpa and one p-HB ligands, complex 4 is five coordinate distorted square pyramidal with one bpa, one p-HB and chloride ligands and complex 5 has the distorted octahedral coordination with two p-HB and one bpa ligands. In all of the complexes, both bpa and p-HB act as the bidentate N and O-donor ligands, respectively. The intermolecular H-bond networks, together with π-π interaction in their solid state are also described. The complexes show the competitive inhibition of ethidium binding to DNA, and the DNA binding propensity can be reflected as the relative order: 3 > 2 > 1 > 5 > 4, in which the cationic charged Ni(II) complexes 2 and 3 show the most effective inhibition ability.  相似文献   

9.
Herein, we report the synthesis and characterization of a third polymorph of trans-[Co(2,3,2-tet)(NO2)2]NO3, III, crystallizing in space group (No. 2) obtained during an attempt to reproduce the synthesis of a previously reported polymorph, I (for more details of polymorphs I and II, see Introduction and references cited therein). The cations of polymorphs I and II differ primarily by the angles that the planes of the two -NO2 ligands make with one another; the former being considerably larger than that in II. Polymorph III resembles II in that the torsional angular differences between the trans-nitro ligands are also small, but differ notably from that in I.The structure of the compound [(5-Me-(dpt)Co(NO2)3], was determined also. The space group is P21/n, with two molecules in the asymmetric unit, whose occupancies are 65% and 35% for molecules IVa and IVb, respectively. Again, the two differ by the torsional angles of the nitro ligands, specially two of them whose angular orientations are vastly different. Molecules IVa and IVb are compared with a previously obtained polymorph V of this same compound reported earlier. Once more, V is closely related in stereochemistry to IVb, but differs markedly from IVa in nitro torsional angles.In all cases, the Co(amine) fragments are closely super-imposable and the differences in nitro torsional angles are the result of the availability of several amine hydrogens of the basal plane with which to make intra-molecular hydrogen bonds. Clearly, these hydrogen bonds must be of very similar strength and the barriers to rotation of the -NO2 ligands must have energies similar to the energetics of the hydrogen bonds causing the torsional motions.  相似文献   

10.
Novel bipyridine-type linking ligands L1 ((4-py)-CHN-C10H6-NCH-(4-py)) and L2 ((3-py)-CHN-C10H6-NCH-(3-py)), a pair of isomers due to possessing different pairs of terminal pyridyl groups, were prepared by the Schiff-base condensation. In ligand L1, the N?N separation between the terminal pyridyl groups is 16.0 Å, with their nitrogen donor atoms at the para positions (4,4′). The corresponding N?N separation in ligand L2 is 14.2 Å, with the nitrogen donor atoms at the meta positions (3,3′). 1-D zigzag-chain coordination polymers [Zn(L1)(NO3)2] (1) and [Zn(L2)(NO3)2] (2) were prepared by reactions of Zn(NO3)2 · 6H2O with ligands L1 and L2, respectively, by solution diffusion. Polymer 3, [Cd(L1)1.5(NO3)2], prepared from Cd(NO3)2 · 4H2O and L1, exhibits a 1-D ladder structure, whose repeating ladder unit consists of four Cd metals and four L1 ligands to create a large 76-membered ring with dimensions of 20.8 × 20.8 Å. All products were structurally characterized by X-ray diffraction.  相似文献   

11.
Two new nickel(II) complexes of the composition [Ni(cyclam)(Hdipic)2] · 2H2O (1) and [Ni(cyclam)(H2O)2][Ni(dipic)2] · 2.5H2O (2) (cyclam = 1,4,8,11-tetraazacyclotetradecane) have been prepared and structurally characterized by a combination of analytical, spectroscopic, thermogravimetric, and crystallographic methods. The structure of 1 shows that the central nickel(II) ion is coordinated axially by two monodentate Hdipic ligands. The discrete neutral complex 1 further extends its structure by hydrogen bonding interactions to form a one-dimensional supramolecule. The structure of 2 consists of two independent nickel(II) centers. Water molecules instead of dipic ligands prefer to coordinate to the Ni1 ion forming a divalent cation [Ni(cyclam)(H2O)2]2+. Two dipic ligands coordinate to the second Ni2 ion forming a divalent anion [Ni(dipic)2]2−. The divalent cations and anions are charge-balanced, resulting in a molecular salt. The divalent cations and anions are interconnected by multiple types of hydrogen bonding interactions.  相似文献   

12.
Two new organic-inorganic hybrid compounds [Zn(phen)(SO4)(H2O)2]n (1) and [Cu(phen)(H2O)2] · SO4 (2) have been prepared by conventional aqueous solution synthesis and characterized by single-crystal X-ray diffraction, IR spectroscopy, thermal gravimetric analysis (TGA) and fluorescent spectroscopy. In compound 1, the sulfate group adopts bidentate mode to coordinate with two Zn(II) ions to form one-dimensional polymer. The one-dimensional polymers are further linked together via the intermolecular hydrogen-bonding and π-π stacking interactions to form a 3D supramolecular framework. Compound 2 is build up of discrete [Cu(phen)(H2O]2+ cations and SO42− anions to form a three-dimensional framework via hydrogen-bonding and π-π stacking interactions. Furthermore, the luminescent properties of both 1 and 2 were studied. The complexes 1 and 2 excited at 280 nm wavelength produced characteristic luminescence features, arising maybe due to the π-π transitions.  相似文献   

13.
Reaction of Cu(ClO4)2·6H2O, SRaaiNR′ (1-alkyl-2-[(o-thioalkyl)phenylazo]imidazole) and NH4SCN (1:1:2 mol ratio) affords distorted square pyramidal, [CuII(SRaaiNR′)(SCN)2] (3) compound while identical reaction with [Cu(MeCN)4](ClO4) yields -SCN- bridged coordination polymer, [CuI(SRaaiNR′)(SCN)]n (4). These two redox states [CuII and CuI] are interconvertible; reduction of [CuII(SRaaiNR′)(SCN)2] by ascorbic acid yields [CuI(SRaaiNR′)(SCN)]n while the oxidation of [CuI(SRaaiNR′)(SCN)]n by H2O2 in presence of excess NH4SCN affords [CuII(SRaaiNR′)(SCN)2]. They are structurally confirmed by single crystal X-ray diffraction study. Cyclic voltammogram of the complexes show Cu(II)/Cu(I) redox couple at ∼0.4 V and azo reductions at negative to SCE. UV light irradiation in MeCN solution of [CuI(SRaaiNR′)(SCN)]n (4) show trans-to-cis isomerisation of coordinated azoimidazole. The reverse transformation, cis-to-trans, is very slow with visible light irradiation while the process is thermally accessible. Quantum yields (?t→c) of trans-to-cis isomerisation are calculated and free ligands show higher ? than their Cu(I) complexes. The activation energy (Ea) of cis-to-trans isomerisation is calculated by controlled temperature experiment. Copper(II) complexes, 3, do not show photochromism. DFT and TDDFT calculation of representative complexes have been used to determine the composition and energy of molecular levels and results have been used to explain the solution spectra, photochromism and redox properties of the complexes.  相似文献   

14.
[M(TPA)Cl]ClO4·nH2O complexes (1: M = CoII, n = 0; 2: M = CuII, n = ½; 3: M = ZnII, n = 0) where TPA = tris(2-pyridylmethyl)amine, were synthesized and structurally characterized. The molecular structure of [Cu(TPA)Cl]ClO4·½H2O was determined by single crystal X-ray crystallography. In aqueous solution, the complex ions [M(TPA)Cl]+ (M = CoII or CuII) are hydrolyzed to the corresponding aqua species [M(TPA)(H2O)]2+. In contrast to the TBP [Cu(TPA)(H2O)]2+, the corresponding TBP cobalt(II) species showed severe distortion towards tetrahedral geometry. The interactions of the three complexes with DNA have been investigated at pH 7.0 (1.0 mM Tris-Cl buffer) and 37 °C. Significant DNA cleavages were obtained for complexes 1 and 2, whereas complex 3 did not show any detectable cleavage for DNA. Under pseudo Michaelis-Menten kinetic conditions, the kinetic parameters kcat and KM were determined as kcat = 6.59 h−1 and KM = 2.20 × 10−4 M for 1 and the corresponding parameters for 2 are kcat = 5.7 × 10−2 h−1 and KM = 6.9 × 10−5 M, and the reactivity of the complexes in promoting the cleavage of DNA decreases in the order 1 > 2 ? 3. The rate enhancements for the DNA cleavage by 1 and 2 correspond to 1.8 × 108 and 1.6 × 106, respectively, over the non-catalyzed DNA. The reactivity of the two complexes was discussed in relation to other related artificial nucleases.  相似文献   

15.
Three new o-thioetherphenol ligands have been synthesized: 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)ethane (H2bse), 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)benzene (H2bsb), and 4,6-di-tert-butyl-2-phenylsulfanylphenol (Hpsp). Their complexes with copper(II) were prepared and investigated by UV-Vis-, EPR-spectroscopy; their electro- and magnetochemistry have also been studied: [CuII(psp)2] (1), [CuII2(bse)2] (2), [CuII2(bsb)2] (3), [CuII(bsb)(py)2] (4). The crystal structures of the ligands H2bse, H2bsb, Hpsp and of the complexes 1, 2, 3, 4 have been determined by X-ray crystallography.  相似文献   

16.
A new tri-cyanometalate building block for heterometallic complexes, [PPh4]2[FeII(Tpms)(CN)3] (2) (PPh4 = tetraphenylphosphonium; Tpms = tris(pyrazolyl) methanesulfonate), has been prepared. Using it as a building block, a one-dimensional chain compound, {[FeII(Tpms)(CN)3][MnII(H2O)2( DMF)2]} · DMF (3), has been synthesized and structurally characterized. The magnetic properties of 3 correspond to a ferromagnetic chain with weak long-range superexchanged magnetic interaction between the high-spin manganese(II) ions.  相似文献   

17.
The synthesis and characterisation of eight new octahedral PtIV complexes of the type trans,trans,trans-[Pt(N3)2(OH)2(NH3)(Am)] where Am = methylamine (2), ethylamine (4), thiazole (6), 2-picoline (8), 3-picoline (10), 4-picoline (12), cyclohexylamine (14), and quinoline (16) are reported, including the X-ray crystal structures of complexes 2, 8, and 14 as well as that of two of the precursor PtII complexes (trans-[Pt(N3)2(NH3)(methylamine)] (1) and trans-[Pt(N3)2(NH3)(cyclohexylamine)] (13)). Irradiation with UVA light rapidly induces loss in intensity of the azide-to-PtIV charge-transfer bands and gives rise to photoreduction of platinum. These complexes have potential for use as photoactivated anticancer agents.  相似文献   

18.
Compounds FeIII(3-CH3O-qsal)2PF6 · nH2O (n = 0, 2) (1, 1 · 2H2O) were synthesized and characterized: the structure of 1 and the magnetic properties of both compounds were determined. Compound 1 · 2H2O presents properties characteristic of high-spin Fe(III), while 1 presents properties of low-spin Fe(III) with an onset of a gradual spin crossover at ca. 300 K.  相似文献   

19.
Three palladium(II) complexes have been synthesized, using 3,4-bis(cyanamido) cyclobutane-1,2-dione dianion (3,4-bis(cyanamido)squarate or 3,4-NCNsq2−): [Pd(en)(3,4-NCNsq)] · 1.5H2O (1) (en=1,2-diaminoethane), [Pd(en)(3,4-(NC(O)NH2)sq)] · 0.5H2O (2) and K3Na[Pd2(3,4-(NCN)2sq)4] · 5H2O (3). Complex 1 has been characterized by elemental analysis, IR and 13C NMR spectroscopies. Complexes 2 and 3 have been characterized by single-crystal X-ray diffraction. In complex 2, the unusual hydration of the cyanamido ligand was observed, it proceeds in the coordination sphere of the palladium and leads to a chelating urea squarate ligand. Complex 3 is an anionic dinuclear complex containing four bridging cyanamido squarate ligands. In complexes 2 and 3, the 3,4-NCNsq2− ligand (hydrated or not) is, for the first time, coordinated to the metal atom by the two amido nitrogen atoms, either in a chelating mode (complex 2) or in a bridging mode giving a short Pd ? Pd distance of 2.8866(15) Å (complex 3). Electrochemical studies in acetonitrile and dmf solutions have been performed on complexes 1 and 3.  相似文献   

20.
Assembly of isonicotinic acid ligand (HL) with metal halide, five new hybrid complexes [CdI2(C5H4NCOOH)(C5H4NHCOO)] · H2O (1), Nan[ZnCl2(C5H4NCOO)]n · 2nH2O (2), [CdX(C5H4NCOO)]n (X = Br (3), I (4)) and [Cd3Cl2(OH)2(C5H4NCOO)2]n (5) were obtained, which display a variety of structural motifs, ranging from zero-dimensional to complicated three-dimensional networks. Complex 1 possesses an isolated unit MX2 that is further connected into 3D networks through hydrogen bonding and π-π stacking interactions. Complex 2 is characterized by an infinite one-dimensional chain of zinc atoms bridged by L ligands. While complexes 3 and 4 possess X-bridging 1[CdX2/2] inorganic chains connected by L ligands to form a 2D hybrid network structure. In the case of 5, the cadmium(II) cation is bridged by μ3-Cl atom and μ3-OH group to form a 2-D 2[Cd6/2Cl6/33-OH)2] inorganic layer which is further extended into 3-D framework by bridging L ligand via Cd-N and Cd-O bonds. The optical properties of 1, 4, and 5 in the solid state are investigated at room temperature and time-dependent DFT (TDDFT) calculation using the B3LYP functional has been performed on 1. The result indicated that the emission band of 1 is attributed to an admixture of MLCT (metal-to-ligand charge-transfer) and LLCT (ligand-to-ligand charge-transfer).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号