首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactivity of (PNP)NiI, where PNP = (tBu2PCH2SiMe2)2N, with oxidants was evaluated. Towards the nitroxyl TEMPO, a 1:1 adduct is formed which was shown to have η2-TEMPO bound through both N and O, with the consequence that one P of the PNP ligand is displaced, leaving the pincer ligand bidentate to NiII. DFT calculations show that the bidentate character of TEMPO is due to steric clash between tBu and TEMPO ring methyl groups. Reaction of (PNP)Ni with I2, Br2, C2Cl6 and even CH2Cl2 all yield (PNP)NiIIX, but never (PNP)NiIIIX2. Excess Br2 instead oxidizes one phosphorus, yielding the zwitterion [(BrtBu2PCH2SiMe2)N(SiMe2CH2PtBu2)]NiBr2, whose structure is determined. DFT calculation of the species (PNP)NiIII(Br)2 yields reaction thermodynamics which show the reason for its absence, and also shows the low BDE of its Ni-Br bond. (PNP)Ni slowly catalyzes the polymerization of HCCR (R = H or Ph), but gives no detectable conversion to a new alkyne-derived nickel complex.  相似文献   

2.
Reaction of the disilylcyclopentadiene 1,1-[SiMe2(CH2CHCH2)]2C5H4 with NbCl5 gave the new allylsilyl-substituted monocyclopentadienyl niobium complex [Nb{η5-C5H4SiMe2(CH2CHCH2)}Cl4]. This compound was reacted with LiNHtBu or NH2tBu to give the imido derivative [Nb{η5-C5H4SiMe2(CH2CHCH2)}(NtBu)Cl2], which was further alkylated to the imido alkyl complexes [Nb{η5-C5H4SiMe2(CH2CHCH2)}(NtBu)R2] (R = Me, CH2Ph) and [Nb{η5-C5H4SiMe2(CH2CHCH2)}(NtBu)Cl (CH2Ph)]. Reaction of the imido complexes with the corresponding lithium cyclopentadienides gave the dicyclopentadienyl-imido complexes [M(η5-C5R5){η5-C5H4SiMe2(CH2CHCH2)}(NtBu)Cl] (M = Nb, Ta; R = H, Me). Metallocene dichlorides [M(η5-C5R5){η5-C5H4SiMe2(CH2CHCH2)}Cl2] (M = Nb, Ta; R = H, Me) were easily prepared by reduction with Na/Hg and simultaneous transmetallation of [Ta(η5-C5R5)Cl4] with Li[C5H4SiMe2(CH2CHCH2)] and of [Nb{η5-C5H4SiMe2(CH2CHCH2)}Cl4] with Li(C5R5). All of the new compounds have been characterized by elemental analysis, and IR and NMR spectroscopy.  相似文献   

3.
Rhodium(III) and iridium(III) octahedral complexes of general formula [MCl3{R2PCH2C(But)NNC(But)CH2PR2}] (M = Rh, Ir; R = Ph, c-C6H11, Pri, But; not all the combinations) were prepared either from the corresponding diphosphinoazines and RhCl3 · 3H2O or by the oxidation of previously reported bridging complexes [{MCl(1,2-η:5,6-η-CHCHCH2CH2CHCHCH2CH2)}2{μ-R2PCH2C(But)NNC(But)CH2PR2}] with chlorine-containing solvents. Depending on the steric properties of the ligands, complexes with facial or meridional configuration were obtained. Crystal and molecular structures of three facial and two meridional complexes were determined by X-ray diffraction. Hemilability of ligand in the complex fac-[RhCl3{(C6H11)2PCH2C(But)NNC(But)CH2P(C6H11)2}] consisting in reversible decoordination of the phosphine donor group in the six-membered ring was observed as the first step of isomerization between fac and mer isomers.  相似文献   

4.
Abstraction of chloride from the Pd complex {[η3-2,6-(tBu2PCH2)2C6H3)]PdCl with AgBF4 in THF gives {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(THF)}+BF4 −. Attemped crystallization of this THF complex produced the aqua complex {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(OH2)}+BF4 −. Crystal structures of two crystalline forms of this compound are reported. In {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(OH2)}+BF4 −·THF, one hydrogen of the water is hydrogen bonded to the oxygen of the THF, and the other hydrogen is hydrogen bonded to an F of the BF4 − anion. Another crystalline form has no THF, but has both of the hydrogens of water hydrogen bonded to different BF4 − anions, such that two different BF4 − anions bridge two {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(OH2)}+ cations. A crystal structure is also reported for the palladium chloride complex [η3-2,6-(tBu2PCH2)2C6H3)]PdCl.  相似文献   

5.
A new series of mono- and diphenylsubstituted silatranes and boratranes N(CH2CH2O)2(CHR3CR1R2O)MZ (M = Si, Z = CH2Cl, CCPh, H, OMenth, R1, R2, R3 = H, Ph; M = B, Z = nothing, R1, R2, R3 = H, Ph) have been synthesized. Both transalkoxylation and stepwise modification of a preformed metallatrane skeleton were used. The chloromethyl derivatives N(CH2CH2O)2(CHRCHRO)SiCH2Cl (R = H, Ph) react with tert-BuOK under intramolecular cycle expansion to give 1-tert-butoxy-2-carba-3-oxahomosilatranes N(CH2CH2O)(CH2CH2OCH2)(CHRCHRO)SiOtBu (R = H, Ph). The treatment of boratranes N(CH2CH2O)2(CH2CR1R2O)B (R1,R2 = H, Ph) with triflic acid and trimethylsilyl triflate results in the products of electrophilic attack at the nitrogen atom. The molecular structures of four silatranes and one boratrane bearing phenyl groups in the atrane skeleton were determined by the X-ray structure analysis.  相似文献   

6.
Protonation of (PNP)RuN, where PNP is (tBu2PCH2SiMe2)2N, with HCl occurs at the amide nitrogen, with coordination of chloride to RuIV, while triflic acid protonates the same nitrogen, but has triflate anion hydrogen-bonded to the proton on the PNP amide nitrogen, not triflate coordinated to the metal. Methyl triflate however alkylates the nitride nitrogen, to give a C2v symmetric product. DFT calculations show that the thermodyamic preference is for proton on amide nitrogen while alkyl favors nitride alkylation, even without the need for a hydrogen bond to reverse the H vs. alkyl preference. Alkylation at the amide nitrogen leads to nearly complete loss of the PN(R)P Ru/N bond in this unobserved isomer. These preferences among nucleophilic sites on (PNP)RuN are rationalized based on the frontier orbitals of this molecule.  相似文献   

7.
A tetrameric [Ag(μ-3,5-tBu2pz)]4 · CH2Cl2 (1 · CH2Cl2) has been prepared and structurally characterized. The four Ag-atoms are in an approximate rhombic arrangement with pyrazolato bridges alternating on either side of the Ag4-plane. A 1H NMR study shows partial decomposition of 1 to the mononuclear [Ag(3,5-tBu2pzH)2]+ in solution.  相似文献   

8.
The new trans-hyponitrite derivative complex [Ru2(CO)4(μ-PtBu2)(μ-dppm)(μ-η2-ONNOMe)] (2, dppm = Ph2PCH2PPh2) was prepared by deprotonation of [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-dppm)(μ-η2-ONNOMe)][BF4] (1) with the base DBU (1.8-diazabicyclo[5.4.0]undec-7-ene). The latter complex salt has been obtained in an improved synthesis starting from the trans-hyponitrite complex [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-dppm)(μ-η2-ONNO)]. Compound 2 has been characterized by spectroscopic methods as well as by X-ray diffraction and represents the first neutral complex bearing a deprotonated monoester of the hyponitrous acid as the bridging ligand.  相似文献   

9.
The dinuclear nickel(II) complex [Ni2L(Cl)]+ (1), where (L)2− represents a 24-membered binucleating hexamine-dithiophenolate ligand, reacts readily with primary and secondary amines RR′NH in the presence of CO2 (1 bar) to give dinuclear monoalkyl- and dialkylcarbamate complexes [Ni2L(O2CNRR′)]+ (R = H, R′ = CH2Ph (2), R = H, R′ = n-Bu (3), R = H, R′ = n-Oct (4), R = H, R′ = CH2CH2OH (5), R = R′ = Et (6), and R = R′ = CH2CH2OH (7)). Complexes 2-7 can also be prepared by the reaction of 1 with CO2(air)/amine. The carbamate complexes are hydrolyzed in methanolic solution to give the known alkylcarbonate complex [Ni2L(O2COMe)]+ (8). These conversions are less rapid than the transesterification reactions of 8, due to a less electron-demanding carboxyl C(carbamate) atom. All new complexes were either isolated as perchlorate or tetraphenylborate salts and fully characterized by elemental analysis, UV/Vis, and IR spectroscopy. The structures of 2[BPh4] and 7[BPh4] have also been determined by X-ray crystallography. They confirm the presence of μ1,3-bridging alkylcarbamate units in the products.  相似文献   

10.
Halide abstraction from the 18 electron Ru(II) complex RuCl(CO)2[2,6-(CH2PtBu2)2C6H3] (2) with AgPF6 results in the exclusive formation of the cationic complex {Ru(CO)2[2,6-(CH2PtBu2)2C6H3]}+PF6 (3). The molecular structures of 2 and 3 were determined by complete single-crystal diffraction studies. X-ray crystallographic analysis of 3 reveals that the “open” coordination site is occupied by an agostic interaction between the metal center and an sp3 C-H bond of a tert-butyl substituent. DFT gas phase calculations (B97-1/SDD) show the necessity of two sterically demanding tert-butyl substituents on one P donor atom for the agostic interaction to occur. The reaction of 3 with H2 results in the quantitative conversion to {Ru(H)(CO)2[2,6-(CH2PtBu2)2C6H4]}+PF6 (4) where the aromatic Cipso-H bond is η2-coordinated to the metal center. Treatment of the agostic complex 4 with Et3N results in the formation of the neutral complex Ru(H)(CO)2[2,6-(CH2PtBu2)2C6H3] (5). The mechanistic details of 3 + H2 → 4 were investigated by DFT calculations at the B97-1/SDB-cc-pVDZ//B97-1/SDD level of theory.  相似文献   

11.
The reactions of the triangulo-cluster [Pt3(μ-CO)3(PtBu3)3] with activated olefins and alkynes have been examined under various conditions. At low temperature, cluster fragmentation occurs yielding the Pt(0) complexes [Pt(CO)(PtBu3)(olefin)] (olefin = maleic anhydride and maleimide), while di(tert-butyl)acetylenedicarboxilate reacts quantitatively giving the dinuclear Pt(0) complex [Pt2(CO)2(PtBu3)2(μ-η22-tBuO2CCCCO2tBu)]. At higher temperature and in the presence of alkyne in large excess, the latter dimer converts quantitatively to the monomers [Pt(CO)(PtBu3)(alkyne)] (alkyne = CF3CCCF3 and tBuO2CCCCO2tBu). The stereochemistry of these complexes has been established by NMR and IR measurements. The structure of [Pt(CO)(PtBu3)(CF3CCCF3)] was confirmed by X-ray diffraction analysis.  相似文献   

12.
The reaction of the chelating P,N ligand RNC(But)CH(R)PPh2 (R = SiMe3) (1) with CuCl and CuCl2 (probably by way of reduction to Cu(I) by the phosphine ligand) or Cu(NCCH3)4ClO4 yielded the dimeric 1:1 complex [Cu{PPh2CH(R)C(But)NR}Cl]2 (2) or the monomeric 2:1 complex [Cu{PPh2CH(R)C(But)NR}2]ClO4 (3), respectively. The presence of trace amounts of water during the reaction resulted in the successive cleavage of the two trimethylsilyl groups of the ligand and the formation of the monomeric chelate complexes [Cu{PPh2CH(R)C(But)NH}2]ClO4 (4) and [Cu{PPh2CH2C(But)NH}2]ClO4 (5). Oxidation of 5 by atmospheric oxygen led to small quantities of the blue Cu(II) complex [Cu{(O)PPh2CH2C(But)NH}2](ClO4)2 (6). The dimeric gold complexes [Au{PPh2CH2C(But)NH}]2X2 (X = BF4, ClO4) (7) were similarly obtained from the previously described Au{PPh2CH(R)C(But)NR}Cl by replacing the covalently bound chlorine with the weakly coordinating anions in the presence of small quantities of water. The solution and solid state structures (except 5) of all complexes were determined by NMR spectroscopy and X-ray crystallography.  相似文献   

13.
The ligand hydrotris(1,4-dihydro-3-methyl-4-phenyl-5-thioxo-1,2,4-triazolyl)borato (TrPh,Me) was synthetized as natrium salt and the complexes [Zn(TrPh,Me)2] · 7.5H2O · 1.5CH3CN (2a), [Zn(TrPh,Me)2] · 8DMF (2b), [Co(TrPh,Me)2] · 8DMF (3a), [Ni(TrPh,Me)2] · H2O · 6DMSO (4a), [Bi(TrPh,Me)2]NO3 (5), have been isolated and structurally characterized by X-ray diffraction. In the zinc derivatives the ligand adopts different denticity and coordination modes, η2 and [S2] for 2a and η3 and [N3] for 2b, depending on the crystallization solvent, giving rise to tetrahedral and octahedral geometry, respectively. In the octahedral cobalt and nickel complexes the ligand is η3 and [N3] coordinated whereas in the bismuth complex the η3 and [S3] coordination is exhibited.  相似文献   

14.
In this paper it is reported the synthesis of the phosphonium salts [Ph2P(CH2)n(Ph)2PCH2COOMe]Br (n = 1 (1), 2 (2)) and [Ph2P(CH2COOMe)(CH2)n(Ph)2PCH2COOMe]Br2 (n = 3 (3)) derived from the reactions of the diphosphines dppm, dppe and dppp with methyl bromoacetate. By reaction of the monophosphonium salt of dppm and dppe with the strong base Na[N(SiMe3)2] the corresponding carbonyl stabilized ylides Ph2P(CH2)n(Ph)2PCHCOOMe (n = 1 (4), 2 (5)) were obtained. The Ph2P(CH2)2(Ph)2PCHCOOMe (5) ylide was reacted with Pd(II) and Pt(II) substrates. From these reactions were isolated exclusively complexes in which the ylide was chelated to the metal through the free phosphine group and the ylidic carbon atom. A further reaction of the Ph2P(CH2)2(Ph)2PCHCOOMe (5) ylide with 1.5 equiv. of Na[N(SiMe3)2] gives the bifunctionalized ketenylidene Ph2P(CH2)2(Ph)2PCCO (6) system. This cumulenic ylide reacts with Pt(II) complexes to form a chelated derivative in which IR and NMR spectra suggest the breaking of the CC bond of the -CCO group.  相似文献   

15.
Individual synthetic routes to heterobimetallic Ti(IV)-Ag(I) acetylides of type {[Ti](μ-σ,π-CCR1)2}AgCCR2 ([Ti] = (η5-C5H4SiMe3)2Ti: R1 = SiMe3: 6, R2 = SiMe3; 7, R2 = Ph. R1 = tBu: 8, R2 = SiMe3; 9, R2 = Ph. [Ti] = (η5-C5H5)2Ti): 10, R1 = tBu, R2 = SiMe3) including (i) the reaction of {[Ti](μ-σ, π-CCR1)2}AgNO3 ([Ti] = (η5-C5H4SiMe3)2Ti): 1, R1 = SiMe3; 2, R1 = tBu. [Ti] = (η5-C5H5)2Ti: 3, R1 = tBu) with LiCCR2 (4, R2 = SiMe3; 5, R2 = Ph) and (ii) treatment of [Ti](CCSiMe3)2 ([Ti] = (η5-C5H4SiMe3)2Ti) (11) with [AgCCR2] (12, R2 = SiMe3; 13, R2 = Ph) are described. The reactions of 1-3 with 4 or 5 appeared to be sensitive towards stoichiometry because an excess of 4 or 5 resulted in the formation of [(Ag(CCR2)2)Li(OEt2)]n (14) and [Ti](CCR1)2. Coordination polymer 14 is also accessible, when, for example, [AgCCSiMe3] (12) is treated with 1 eq. of LiCCSiMe3 (4) in diethyl ether.The titanium(IV)-silver(I) acetylides 6-10 are stable in the dark and at low temperature, while on exposure to light and on heating they decompose to give R2CC-CCR2 together with [Ti](CCR1)2 and elemental silver.Complexes 6-10 contain a mono-nuclear AgCCR2 entity stabilized by the chelate-bonded organometallic π-tweezer molecule [Ti](CCSiMe3)2, which was evinced by structure determination of 7 in the solid state. In 14 linear [Me3SiCC-Ag-CCSiMe3] units are connected by [Li(OEt2)]+ building blocks forming a coordination polymer.  相似文献   

16.
Structural determinations and electrochemical properties in the series of multinuclear ferrocenyl-ethynyl complexes with formula [(η5-C5R5)(P2)MII-CC-(fc)n-CC-MII(P2)(η5-C5R5)] (fc = ferrocenyl; M = Fe(II), Ru(II), Os(II); R = H, CH3; P2 = Ph2PCH2CH2PPh2 (dppe), (C2H5)2PCH2CH2P(C2H5)2 (depe)) are reported. Complexes with more electron-rich ligand environment, such as [M(η5-C5R5)P2] (R = CH3 and P2 = dppe, depe), were also prepared with regard to the understanding of electronic coupling mechanism. Structural determinations confirm that the ferrocenyl group is directly linked to the ethynyl linkage which is linked to the pseudo-octahedral [(η5-C5R5)(P2)M] metal center. These complexes undergo sequential reversible oxidation events from 0.0 to 1.0 V referred to the Ag/AgCl electrode in anhydrous CH2Cl2 solution and the low-potential waves have been assigned to the two end-capped metallic centers. The magnitude of the electronic coupling between the two terminal metallic centers in the series of complexes was estimated by the electrochemical technique. Based on the correlation between the ΔE1/2 values and the second redox potentials of the end-capping metallic centers in the series of complexes, a qualitative explanation for the difference of the electronic coupling is given.  相似文献   

17.
《Inorganica chimica acta》2004,357(14):4165-4171
Cationic palladium(II) complexes [PdCl{PR2CH2C(But)NNC(But)CH2PR2}]Cl, where R = isopropyl, cyclohexyl or tert-butyl, were synthesized by the reactions of the corresponding diphosphinoazines with bis(acetonitrile)palladium(II) dichloride. When bis(benzonitrile)palladium(II) dichloride was used instead, in the molar ratio of 2:1 to the diphosphinoazine, a new complex was isolated with the isopropyl ligand showing a previously unknown (E,E) tetradentate coordination mode. Crystal and molecular structure was determined by X-ray diffraction. The solid complex was a racemate of two axially chiral enantiomers and the chirality was preserved in solution. Reactions of the cationic complexes with triethylamine gave complexes [PdCl{PR2CHC(But)NNC(But)CH2PR2}], containing deprotonated diphosphinoazines in ene-hydrazone unsymmetrical pincer-like configuration. The complexes represent several of the still rare examples of Pd(II) amido bis(phosphine) complexes with a chlorine atom covalently bonded trans to the amide nitrogen.  相似文献   

18.
A metathesis reaction of [CpMCl2(PR3)] [M = Rh, R = Ph (1), Me (3); M = Ir, R = Ph (2), Me (4)] takes place in the presence of potassium butadienesulfinate (SO2CHCHCHCH2)K (9) to afford the mononuclear compounds [CpM(Cl)(PR3)(η1-SO2CHCHCHCH2)] [M = Rh, R = Ph (11S), (11W); M = Rh, R = Me (13S), (13W)] and [M = Ir, R = Ph (12S); M = Ir, R = Me (14S), (14W)] under different reaction conditions. The addition of PR3 (R = Ph, Me) to CpIr(Cl)[(1,2,5-η)-SO2CHCHCHCH2] (7) affords the corresponding iridium isomers 12S, 12W and 14S, in a non-selective reaction, along with the corresponding dichloride compounds 2 or 4. The 1H and 13C{1H} NMR data are consistent with the butadienesulfonyl ligands coordinated exclusively through the sulfur atom, and they show the presence of two isomers, described as the S and W conformers, which can be isolated separately. There is clear evidence that these isomers correspond to the kinetic and thermodynamic derivatives, respectively.  相似文献   

19.
Based on templates of [Ph3PCH2Ph]Cl and [Ph4P]Cl ([Ph3PCH2Ph] = benzyltriphenylphosphonium, [Ph4] = tetraphenylphosphonium), the hydrothermal reactions of zinc acetate dihydrate, H2tp (tp = terephthalate) and water give rise to two new zinc-terephthalate coordination polymers, [Ph3PCH2Ph][Zn(tp)Cl] (1) and [Ph4P][Zn(tp)(H2O)2·0.5tp] (2). X-ray single-crystal structural analysis reveals that both 1 (C33H26ClO4PZn) and 2 (C36H30O8PZn) crystallize in the 2D non-interpenetrating layered supramolecular networks with guest organophosphonium cations. Due to template effect of different guest cations, 1 presents an interesting 2D smectite-like lamellar framework that formed by the 4-linked (4,4) anionic zinc-terephthalate polymeric network and the interlayer [Ph3PCH2Ph]+ exchangeable cations, while 2 shows a 2D 3-linked (6,3) H-bonded anionic zinc-terephthalate polymeric brickwall network with encapsulated guest [Ph4P]+ cations. Both compounds are stable up to about 300 °C, and exhibit intense fluorescent emission band at 446 nm (λexc = 328 nm) for 1 and 420 nm (λexc = 340 nm) for 2 in the solid state at room temperature.  相似文献   

20.
The alkyne complexes [Cp′2M(L)(η2-Me3SiC2SiMe3)] (Cp′ = substituted or unsubstituted cyclopentadienyl; M = Ti, Zr, Hf; L = Py, THF) can serve as metallocene precursors by substitution of the alkyne molecule with other ligands. The reactions of the unsubstituted cyclopentadienyl complexes [Cp2Zr(THF)(η2-Me3SiC2SiMe3)] (1) and [Cp2Ti(η2-Me3SiC2SiMe3)] (2) with azobenzene were investigated. In the first case the diazene complex [Cp2Zr(THF)(N2Ph2)] (3) was obtained by alkyne exchange. In the reaction of the titanium complex 2 a NN bond cleavage of azobenzene and a C-H activation of the cyclopentadienyl ligand were observed and the dinuclear imido bridged compound 4 was formed. This mixed valence complex is bridged additionally by a cyclopentadienyl ligand in a η1:η5-coordination mode which is very unusual for titanium complexes. The molecular structures of both compounds were confirmed by X-ray crystallography and compared to former structural data shown in literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号