首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(PNP)Ni+ (as its ( salt) adds PhCN to Ni, but HX cleaves the Si-CH2 bond to form Ni[η2−(tBu2PCH2SiMe2)N(H)(SiMe2X)][η2-CH2tBu2P]+, for X = OMe, piperidyl, N(H)CH2Ph, N(H)Ph, morpholinyl. The diprotic reagent H2O gives (η2-tBu2PCH2SiMe2OSiMe2NH2)(η2-tBu2CH2P)Ni+. RCCH (R = Ph, SiMe3, tBu) reacts, through three detected intermediates, to form (tBu2PCH2SiMe2)N(H)(SiMe2CH2tBu2PCCR)Ni+, a product where one P has been oxidized and Ni reduced, each by two electrons. This shows the dominant influence on reactivity of Si-C bond activation by its unconventional donation to nickel in the structure of (PNP)Ni+.  相似文献   

2.
Protonation of (PNP)RuN, where PNP is (tBu2PCH2SiMe2)2N, with HCl occurs at the amide nitrogen, with coordination of chloride to RuIV, while triflic acid protonates the same nitrogen, but has triflate anion hydrogen-bonded to the proton on the PNP amide nitrogen, not triflate coordinated to the metal. Methyl triflate however alkylates the nitride nitrogen, to give a C2v symmetric product. DFT calculations show that the thermodyamic preference is for proton on amide nitrogen while alkyl favors nitride alkylation, even without the need for a hydrogen bond to reverse the H vs. alkyl preference. Alkylation at the amide nitrogen leads to nearly complete loss of the PN(R)P Ru/N bond in this unobserved isomer. These preferences among nucleophilic sites on (PNP)RuN are rationalized based on the frontier orbitals of this molecule.  相似文献   

3.
Metal-oxygen bonding complexes (M = MgII, MnII, NiII, MoVI, WVI, PdII, SbIII, BiIII, FeIII, TiIV, KI, BaII, ZrIV and HfIV) with a hinokitiol (Hhino; 2-hydroxy-4-isopropylcyclohepta-2,4,6-trienone or β-thujaplicin) ligand, which has two unequivalent oxygen donor atoms, were synthesized and characterized by elemental analysis, TG/DTA, FT-IR and solution (1H and 13C) NMR spectroscopy. Single-crystal X-ray structure analysis revealed various molecular structures for the complexes, which were classified into several families of family, i.e. type A [MII(hino)2(L)]2 (M = MgII, MnII, NiII; L = EtOH or MeOH), with a dimeric structure consisting of one bridging hino anion, one chelating hino anion and one alcohol or water molecule, type B, with the octahedral, cis-dioxo, bis-chelate complexes cis-[MVIO2(hino)2] (M = MoVI, WVI), type C, with square planar complex [MII(hino)2] (M = PdII), type D, with tris-chelate, 7-coordinate complexes with one inert electron pair [MIII(hino)3] (M = SbIII, BiIII), type D′, with the bis-chelate, pseudo-6-coordinate complexes with one inert electron pair [MIII(hino)2X] (M = SbIII, X = Br), type E, with tris-chelate, 6-coordinate complexes with Δ and Λ isomers [MIII(hino)3] (M = FeIII), type E′ of bis-chelate, 6-coordinate complex [MIV(hino)2X2] (M = TiIV, X = Cl), type F, with water-soluble alkali metal salts [MI(hino)] (M = KI), and type H, with tetrakis-chelate, 8-coordinate complexes [MIV(hino)4](M = ZrIV, HfIV). These structural features were compared with those of metal complexes with a related ligand, tropolone (Htrop). The antimicrobial activities of these complexes, evaluated in terms of minimum inhibitory concentration (MIC; μg mL−1) in two systems, were compared to elucidate the relationship between structure and antimicrobial activity.  相似文献   

4.
Three polymeric o-dioxolene chelated manganese(III) complexes, {[MnIII(H2L1)(Cl4Cat)2][MnIII(Cl4Cat)2(H2O)2]} (1) (L1 = N,N′-bis(2-pyridylmethyl)-1,4-butanediamine, Cl4Cat = tetrachlorocatecholate dianion], {[MnIII(H2L1)(Br4Cat)2][MnIII(Br4Cat)2(H2O)2]·4DMF}∞, (2) and {[MnIII(H2L2)(Br4Cat)2][MnIII(Br4Cat)2(DMF)2]} (3) (L2 = N,N′-bis(2-pyridylmethyl)-1,6-hexanediamine, Br4Cat = tetrabromocatecholate dianion) have been synthesized and structures were determined by X-ray crystallography. All the complexes were fully characterized by various spectroscopic techniques and their electronic properties are described. It was found that the simple protonation or deprotonation of the bridging ligand (L1 or L2) coordinated to metal-dioxolene chromophore induce a change in the oxidation state of the coordinated dioxolene ligand without affecting the metal oxidation state. As a result, drastic change in the optical absorption properties of the complexes is observed in the visible and near-IR region as the transformation involves semiquinone-catecholate ligands. Moreover, all three complexes undergo thermally induced valence tautomerism in solution. For all the complexes, on increasing the temperature, the intensity of the lower energy Inter Valence Charge Transfer (IVCT) band at about 1930 nm increases with corresponding decrease of 600 nm band with an isosbestic point at 1820 nm due to the formation of mixed valence species MnII(X4SQ)(X4Cat) from (X = Cl or Br) by the transfer of one electron from Cat2− to MnIII center.  相似文献   

5.
Abstraction of chloride from the Pd complex {[η3-2,6-(tBu2PCH2)2C6H3)]PdCl with AgBF4 in THF gives {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(THF)}+BF4 −. Attemped crystallization of this THF complex produced the aqua complex {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(OH2)}+BF4 −. Crystal structures of two crystalline forms of this compound are reported. In {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(OH2)}+BF4 −·THF, one hydrogen of the water is hydrogen bonded to the oxygen of the THF, and the other hydrogen is hydrogen bonded to an F of the BF4 − anion. Another crystalline form has no THF, but has both of the hydrogens of water hydrogen bonded to different BF4 − anions, such that two different BF4 − anions bridge two {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(OH2)}+ cations. A crystal structure is also reported for the palladium chloride complex [η3-2,6-(tBu2PCH2)2C6H3)]PdCl.  相似文献   

6.
Despite the importance of VIII in biology, only three VIII complexes of naturally occurring amino acids have been structurally characterized. We report the structure of the first vanadium complex incorporating a glycine ligand, [V(Gly)3] · 2DMSO, which crystallizes in a monoclinic system with space group Cc, a = 8.9186(5) Å, b = 21.5347(9) Å, c = 9.9064(5) Å and β = 110.536(3)°. The X-ray structural data show the central VIII metal octahedrally coordinated by three bidentate glycinato ligands arranged a mer configuration, with both Δ and Λ enantiomers present in the unit cell. The bulk sample was isolated as [V(Gly)3] · DMSO · NaCl. Structural comparisons are made with the corresponding homoleptic glycinato complexes of CoIII, CrIII and NiII. The structure of trans-[V(OH2)4Cl2]Cl · 2H2O has also been re-determined. This latter complex crystallizes in a monoclinic system in the P2(1)/c space group, a = 6.4381(9) Å, b = 6.3843(9) Å, c = 11.7980(17) Å and β = 98.057(2)°. The vanadium atom lies at a crystallographic inversion centre within the distorted octahedron formed by the four water and two chloride ligands.  相似文献   

7.
Treatment of [Bun4N][Ru(N)Cl4] with Na(OR) afforded [Bun4N][Ru(N)(OR)4] (R = C6F5 (1), C6F4H (2), C6Br5 (3)), whereas that with [Bun4N][Os(N)Cl4] gave [Bun4N][Os(N)(OR)3Cl] (R = C6F5 (4), C6F4H (5), C6Br5 (6)). Treatment of [Bun4N][M(N)Cl4] with Na(SC6F4H) and Na(Sxyl) (xyl = 2,6-dimethylphenyl) afforded [Bun4N][M(N)(SC6F4H)4] (M = Ru (7), Os (8)) and [Bun4N][M(N)(Sxyl)4] (M = Ru (9), Os (10)), respectively. The crystal structures of compounds 1, 6 and 9 have been determined.  相似文献   

8.
[M(P3C2tBu2)(CO)3I] (M = Mo, 1, W, 2) have been synthesised and reacted with PCl5 for oxidation study purposes. Compounds Ti(P3C2tBu2)(Ind)Cl2], 3, and [Zr(P3C2tBu2)(Cp)Cl2], 4, were detected spectroscopically, but showed to be too unstable to be isolated. A Ti(IV) complex, [Ti(P3C2tBu2)Cl3], 5, has been formed from the reaction of [TiCl4] with the base-free ligand K(P3C2tBu2), while the Ti(III) species, [Ti(P3C2tBu2) Cl2(THF)], 6, was prepared from [TiCl3(THF)3]. Compounds 5 and 6 were studied as ethylene catalyst precursors after activation with MAO. In the studied conditions, complex 5 is the most active one with an activity of 2.2 × 105 g(molTi [E] h)−1, one order of magnitude higher than compound 6. The produced polymer is linear polyethylene.  相似文献   

9.
We present a new structurally determined seven-coordinate iron platform supported by the tris(2-picolyl)amine ligand 6,6′-(pyridin-2-ylmethylazanediyl)bis(methylene)bis(N-tert-butylpicolinamide) (TPA2C(O)NHtBu, 3) and its reactivity with oxo and nitrene transfer agents. Oxidation of the pentagonal bipyramidal, seven-coordinate iron(II)-triflate complex [TPA2C(O)NHtBuFeII(OTf)][OTf] (4) with PhIO produces the corresponding diiron(III) μ-oxo complex [(TPA2C(O)NHtBuFeIII)2(O)][OTf]4 (5). Mössbauer and magnetic measurements on 5 in the solid-state establish antiferromagnetic coupling between its two Fe(III) centers. Reactions of 4 with the nitrene transfer agents PhINTs (Ts = p-MeC6H4SO2) and PhINNs (Ns = p-NO2C6H4SO2) provide the corresponding iron(III)-amide congeners [TPA2C(O)NHtBuFeIII(NHTs)][OTf]2 (6) and [TPA2C(O)NHtBuFeIII(NHNs)][OTf]2 (7), respectively, affording a rare pair of isolable Fe(III)-amide compounds formed from nitrene transfer. By characterizing well-defined products in the crystalline form, derived from atom and group transfer to seven-coordinate iron, the collective data provide a starting point for the exploration of high-valent and metal-ligand multiply bonded species supported by approximate pentagonal-type ligand fields.  相似文献   

10.
Three new chiral ligands bearing an O,O′,N donor set (OmethoxyOhydroxyNpyridine) were synthesised and coordinated to FeIII, FeII, NiII, CuII and ZnII to yield complexes with the general formula [M(OON)Clx]y. While the pyridine N and the hydroxy O atoms coordinate strongly to all applied metal ions, the methoxy donor seems not to be involved in coordination, although some evidence for a weak interaction between OMe and the ZnII were found in NMR spectra. In the bidentate O′,N coordination mode the new ligands exhibit several coordination geometries as analysed in the solid compounds by XRD, EXAFS and EPR and in solution by UV-Vis absorption, cyclic voltammetry, EXAFS, EPR or NMR spectroscopy.  相似文献   

11.
Rhodium(III) and iridium(III) octahedral complexes of general formula [MCl3{R2PCH2C(But)NNC(But)CH2PR2}] (M = Rh, Ir; R = Ph, c-C6H11, Pri, But; not all the combinations) were prepared either from the corresponding diphosphinoazines and RhCl3 · 3H2O or by the oxidation of previously reported bridging complexes [{MCl(1,2-η:5,6-η-CHCHCH2CH2CHCHCH2CH2)}2{μ-R2PCH2C(But)NNC(But)CH2PR2}] with chlorine-containing solvents. Depending on the steric properties of the ligands, complexes with facial or meridional configuration were obtained. Crystal and molecular structures of three facial and two meridional complexes were determined by X-ray diffraction. Hemilability of ligand in the complex fac-[RhCl3{(C6H11)2PCH2C(But)NNC(But)CH2P(C6H11)2}] consisting in reversible decoordination of the phosphine donor group in the six-membered ring was observed as the first step of isomerization between fac and mer isomers.  相似文献   

12.
The reactions of Ln(NO3)3 · xH2O, CoSO4 · 7H2O or ZnSO4 · 6H2O and 2-pyridylphosphonic acid under hydrothermal conditions result in heterometallic phosphonate compounds with formula [Ln2M3(C5H4NPO3)6] · 4H2O (Ln2M3; M = CoII or ZnII; Ln = LaIII, CeIII, PrIII, NdIII, SmIII, EuIII, GdIII, TbIII, DyIII). These compounds are isostructural and crystallize in a chiral cubic space group I213. Each structure contains the {LnO9} polyhedra and {MN2O4} octahedra which are connected by edge-sharing to form an inorganic open-framework structure with a 3-connected 10-gon (10, 3) topology. The nature of LnIII-CoII magnetic interactions in Ln2Co3 is investigated by a comparison with their LnIII-ZnII analogues. It is found that the LnIII-CoII interaction is weak antiferromagnetic for Ln = Ce and ferromagnetic for Ln = Sm, Gd, Tb and Dy. In the cases of Ln = Pr, Nd and Eu, no significant magnetic interaction is observed.  相似文献   

13.
A series of crystalline PdII-based heterodimetallic acetate-bridged complexes containing the transition (MnII, CoII, NiII, CuII), post-transition (ZnII) and rare-earth (CeIV, NdIII, EuIII) metals were synthesized starting from Pd3(OOCMe)6 and the complementary metal(II, III) acetates. The crystal and molecular structures of the binuclear PdIIMII(μ-OOCMe)4L (M = Mn, Co, Ni, Zn; L = H2O, MeCN), trinuclear and tetranuclear (M = Nd, Eu) and complexes were established by X-ray diffraction.  相似文献   

14.
A series of new heterometallic CuIIZnII and NiIIZnII complexes with N- and N,O open-chain multidentate ligands (L1 = 4,6,6-trimethyl-1,9-diamino-3,7-diazanon-3-ene; L2 = 3,7-bis(2-aminoethyl)-1,3,5,7-tetraazabicyclo[3.3.1]nonane; L3 = 1,15-dihydroxy-7,9,9-trimethyl-3,6,10,13-tetraazapentadec-6-ene and L4 = 1-hydroxy-9-oxy-4,6,6-trimethyl-3,7-diazanon-3-ene) have been prepared through the “direct template synthesis” approach, which is a combination of classical template reactions of amines with acetone/formaldehyde and the “direct synthesis” method based on using elemental metals as starting materials. There is a significant decrease in the reaction time when the “direct synthesis” method is used compared to the conventional template condensation methods. X-ray crystallographic analyses of the complexes with the general formula M(L)ZnX4 and [CuL4ZnCl3]2 (M = Cu2+, Ni2+; L = L1-L3; X = Cl, NCS) reveal the presence of long intermolecular distance interactions, such as semi-coordination, S?S and H-bonding, in their crystal organization.  相似文献   

15.
Iron (II) and iron (III) complexes, [FeII(DEDTC)2(dppe)] · CH2Cl2 (1), [FeII(ETXANT)2(dppe)] (2) (DEDTC = diethyldithiocarbamate, ETXANT = ethyl xanthate, dppe = 1,2-bis (diphenylphosphino) ethane), and [FeIII(DEDTC)2(dppe)] [FeIIICl4] (3) have been synthesized and characterized. Since 3 contains two magnetic centers, an anion metathesis reaction has been conducted to replace the tetrahedral FeCl4 by a non-magnetic BPh4 ion producing [FeIII(DEDTC)2(dppe)]BPh4 (4) for the sake of unequivocal understanding of the magnetic behavior of the cation of 3. With the similar end in view, the well-known FeCl4 ion, the counter anion of 3, is trapped as PPh4[FeIIICl4] (5) and its magnetic property from 298 to 2 K has been studied. Besides the spectroscopic (IR, UV-Vis, NMR, EPR, Mass and XPS) characterization of the appropriate compounds, especially 2, others viz. 1, 3 and 4 have been structurally characterized by X-ray crystallography. While FeII complexes, 1 and 2, are diamagnetic, the FeIII systems, namely the cations of 3, and 4 behave as low-spin (S = 1/2) paramagnetic species from 298 to 50 K. Below 50 K 3 shows gradual increase of χMT up to 2 K suggesting ferromagnetic behavior while 4 exhibits gradual decrease of magnetic moment from 60 to 2 K, indicating the occurrence of weak antiferromagnetic interaction. These conclusions are supported by the Mössbauer studies of 3 and 4. The Mössbauer pattern of 1 exhibits a doublet site for diamagnetic (2-400 K) FeII. The compounds 1, 2 and 4 encompass interesting cyclic voltammetric responses involving FeII, FeIII and FeIV.  相似文献   

16.
A tetrameric [Ag(μ-3,5-tBu2pz)]4 · CH2Cl2 (1 · CH2Cl2) has been prepared and structurally characterized. The four Ag-atoms are in an approximate rhombic arrangement with pyrazolato bridges alternating on either side of the Ag4-plane. A 1H NMR study shows partial decomposition of 1 to the mononuclear [Ag(3,5-tBu2pzH)2]+ in solution.  相似文献   

17.
Structural changes between [OsIIL3]2+ and [OsIIIL3]3+ (L: 2,2′-bipyridine; 1,10-phenanthroline) and molecular and electronic structures of the OsIII complexes [OsIII(bpy)3]3+ and [OsIII(phen)3]3+ are discussed in this paper. Mid-infrared spectra in the ν(bpy) and ν(phen) ring stretching region for [OsII(bpy)3](PF6)2, [OsIII(bpy)3](PF6)3, [OsII(phen)3](PF6)2, and [OsIII(phen)3](PF6)3 are compared, as are X-ray crystal structures. Absorption spectra in the UV region for [OsIII(bpy)3](PF6)3 and [OsIII(phen)3](PF6)3 are dominated by very intense absorptions (ε = 40 000-50 000 M−1 cm−1) due to bpy and phen intra-ligand π → π transitions. In the visible region, relatively narrow bands with vibronic progressions of ∼1500 cm−1 appear, and have been assigned to bpy or phen-based, spin-orbit coupling enhanced, 1π → 3π electronic transitions. Also present in the visible region are ligand-to-metal charge transfer bands (LMCT) arising from π(bpy) → t2g(OsIII) or π(phen) → t2g(OsIII) transitions. In the near infrared, two broad absorption features appear for oxidized forms [OsIII(bpy)3](PF6)3 and [OsIII(phen)3](PF6)3 arising from dπ-dπ interconfigurational bands characteristic of dπ5OsIII. They are observed at 4580 and 5090 cm−1 for [OsIII(bpy)3](PF6)3 and at 4400 and 4990 cm−1 for [OsIII(phen)3](PF6)3. The bpy and phen infrared vibrational bands shift to higher energy upon oxidation of Os(II) to Os(III). In the cation structure in [OsIII(bpy)3](PF6)3, the OsIII atom resides at a distorted octahedral site, as judged by ∠N-Os-N, which varies from 78.78(22)° to 96.61(22)°. Os-N bond lengths are also in general longer for [OsIII(bpy)3](PF6)3 compared to [OsII(bpy)3](PF6)2 (0.010 Å), and for [OsIII(phen)3](PF6)3 compared to [OsII(phen)3](PF6)2 (0.014 Å). Structural changes in the ligands between oxidation states are discussed as originating from a combination of dπ(OsII) → π (bpy or phen) backbonding and charge redistribution on the ligands as calculated by natural population analysis.  相似文献   

18.
The new trans-hyponitrite derivative complex [Ru2(CO)4(μ-PtBu2)(μ-dppm)(μ-η2-ONNOMe)] (2, dppm = Ph2PCH2PPh2) was prepared by deprotonation of [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-dppm)(μ-η2-ONNOMe)][BF4] (1) with the base DBU (1.8-diazabicyclo[5.4.0]undec-7-ene). The latter complex salt has been obtained in an improved synthesis starting from the trans-hyponitrite complex [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-dppm)(μ-η2-ONNO)]. Compound 2 has been characterized by spectroscopic methods as well as by X-ray diffraction and represents the first neutral complex bearing a deprotonated monoester of the hyponitrous acid as the bridging ligand.  相似文献   

19.
A new class of mononuclear metal complexes with 1-methylimidazole-2-aldoximate (miao) has been synthesized and characterized: trans-NiII(Cl)2(Hmiao)2 (1), trans-NiII(miao)2(py)2 (2), NO-trans-NiII(miao)2(phen) (3), and NO-trans-FeII(miao)2(phen) (4). The crystal structures of 2, 3, and 4 have been determined by single-crystal X-ray crystallography. Compound 1 having the protonated miao ligand (i.e., Hmiao) is a precursor for synthesizing 2 and 3. Compound 2 is an octahedral NiII complex surrounded by two miao bidentate ligands and two monodentate ligands of pyridine in a trans-arrangement. Compound 3 is a cis-type octahedral NiII complex with two miao ligands and a bidentate ligand of 1,10-phenanthroline, in which the ligand arrangement around NiII center is found in an NO-trans form. Compound 4 is an isostructural FeII derivative of 3. Compounds 1, 2, and 3 exhibit paramagnetic nature with an S = 1 spin and a positive zero-field splitting, among which it for 3 is overlapped with intermolecular ferromagnetic interaction (zJ/kB = +0.16 K). Compound 4 is diamagnetic due to the existence of low-spin FeII ion.  相似文献   

20.
To complete the elucidation of the electrochemical properties of MnII-bis(terpyridine) complexes in CH3CN and evaluate the influence of the bulkiness of the terpy substituents, the oxidation processes of [MnII(L)2]2+ (L = terpy for 2,2′:6′,2″-terpyridine, pTol-terpy for 4′-(4-methylphenyl)-2,2′:6′,2″-terpyridine and tBu3-terpy for 4,4′,4″-tri-tert-butyl-2,2′:6′,2″-terpyridine) have been investigated in aqueous (1 M) CH3CN solution. In this medium, exhaustive oxidations at 1.10-1.20 V versus Ag/Ag+ release two electrons per molecule of initial complex and lead to clean dimerization processes with the quantitative formation of the oxo-bridged binuclear [Mn2IVO2(L)2(H2O)2]4+ complex for L = tBu3-terpy and of the tetranuclear [Mn4IVO5(L)4(H2O)2]6+ complexes for L = terpy and pTol-terpy. The formation of the tetranuclear complex with the tBu3-terpy derivative is prevented by the steric hindrance induced by the bulkiness of the tert-butyl groups, as confirmed by molecular mechanics calculations, as well as by their strong electron-donating properties. All these electrogenerated multinuclear complexes have been fully characterized in solution by UV-vis and electron paramagnetic resonance (EPR) spectroscopy. A markedly improved chemical synthesis of [Mn4IVO5(terpy)4(H2O)2]6+ is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号