共查询到20条相似文献,搜索用时 0 毫秒
1.
Li Zhang Peng Chen Lin Chen Tujun Weng Shichang Zhang Xia Zhou Bo Zhang Luchuan Liu 《PloS one》2015,10(2)
Apert syndrome (AS) is a type of autosomal dominant disease characterized by premature fusion of the cranial sutures, severe syndactyly, and other abnormalities in internal organs. Approximately 70% of AS cases are caused by a single mutation, S252W, in fibroblast growth factor receptor 2 (FGFR2). Two groups have generated FGFR2 knock-in mice Fgfr2S252W/+ that exhibit features of AS. During the present study of AS using the Fgfr2S252W/+ mouse model, an age-related phenotype of bone homeostasis was discovered. The long bone mass was lower in 2 month old mutant mice than in age-matched controls but higher in 5 month old mutant mice. This unusual phenotype suggested that bone marrow-derived mesenchymal stem cells (BMSCs), which are vital to maintain bone homeostasis, might be involved. BMSCs were isolated from Fgfr2S252W/+ mice and found that S252W mutation could impair osteogenic differentiation BMSCs but enhance mineralization of more mature osteoblasts. A microarray analysis revealed that Wnt pathway inhibitors SRFP1/2/4 were up-regulated in mutant BMSCs. This work provides evidence to show that the Wnt/β-catenin pathway is inhibited in both mutant BMSCs and osteoblasts, and differentiation defects of these cells can be ameliorated by Wnt3a treatment. The present study suggested that the bone abnormalities caused by deregulation of Wnt pathway may underlie the symptoms of AS. 相似文献
2.
Coordinated growth of the skull and brain are vital to normal human development. Craniosynostosis, the premature fusion of the calvarial bones of the skull, is a relatively common pediatric disease, occurring in 1 in 2500 births, and requires significant surgical management, especially in syndromic cases. Syndromic craniosynostosis is caused by a variety of genetic lesions, most commonly by activating mutations of FGFRs 1-3, and inactivating mutations of TWIST1. In a mouse model of TWIST1 haploinsufficiency, cell mixing between the neural crest-derived frontal bone and mesoderm-derived parietal bone accompanies coronal suture fusion during embryonic development. However, the relevance of lineage mixing in craniosynostosis induced by activating FGFR mutations is unknown. Here, we demonstrate a novel mechanism of suture fusion in the Apert Fgfr2(S252W) mouse model. Using Cre/lox recombination we simultaneously induce expression of Fgfr2(S252W) and β-galactosidase in either the neural crest or mesoderm of the skull. We show that mutation of the mesoderm alone is necessary and sufficient to cause craniosynostosis, while mutation of the neural crest is neither. The lineage border is not disrupted by aberrant cell migration during fusion. Instead, the suture mesenchyme itself remains intact and is induced to undergo osteogenesis. We eliminate postulated roles for dura mater or skull base changes in craniosynostosis. The viability of conditionally mutant mice also allows post-natal assessment of other aspects of Apert syndrome. 相似文献
3.
Tanimoto Y Yokozeki M Hiura K Matsumoto K Nakanishi H Matsumoto T Marie PJ Moriyama K 《The Journal of biological chemistry》2004,279(44):45926-45934
Apert syndrome is an autosomal dominant disease characterized by craniosynostosis and bony syndactyly associated with point mutations (S252W and P253R) in the fibroblast growth factor receptor (FGFR) 2 that cause FGFR2 activation. Here we investigated the role of the S252W mutation of FGFR2 on osteoblastic differentiation. Osteoblastic cells derived from digital bone in two Apert patients with the S252W mutation showed more prominent alkaline phosphatase activity, osteocalcin and osteopontin mRNA expression, and mineralized nodule formation compared with the control osteoblastic cells derived from two independent non-syndromic polydactyly patients. Stable clones of the human MG63 osteosarcoma cells (MG63-Ap and MG63-IIIc) overexpressing a splice variant form of FGFR2 with or without the S252W mutation (FGFR2IIIcS252W and FGFR2IIIc) showed a higher RUNX2 mRNA expression than parental MG63 cells. Furthermore MG63-Ap exhibited a higher osteopontin mRNA expression than did MG63-IIIc. The enhanced osteoblastic marker gene expression and mineralized nodule formation of the MG63-Ap was inhibited by the conditioned medium from the COS-1 cells overexpressing the soluble FGFR2IIIcS252W. Furthermore the FGF2-induced osteogenic response in the mouse calvarial organ culture system was blocked by the soluble FGFR2IIIcS252W. These results show that the S252W mutation in the FGFR2 gene enhances the osteoblast phenotype in human osteoblasts and that a soluble FGFR2 with the S252W mutation controls osteoblast differentiation induced by the S252W mutation through a dominant negative effect on FGFR2 signaling in Apert syndrome. 相似文献
4.
Mantilla-Capacho JM Arnaud L Díaz-Rodriguez M Barros-Núñez P 《Genetic counseling (Geneva, Switzerland)》2005,16(4):403-406
The Apert syndrome is characterized by craniosynostosis and syndactyly of hands and feet. Although most cases are sporadic, an autosomal dominant mode of inheritance is well documented. Two mutations in the FGFR2 gene (Ser252Trp and Pro253Arg) account for most of the cases. We report a patient with a rare form of Apert syndrome with polydactyly. The proposita has turribrachycephaly. complete syndactyly of 2nd to 5th digits (mitten hands and cutaneous fusion of all toes). The X-rays revealed craniosynostosis of the coronal suture and preaxial polydactyly of hands and feet with distal bony fusion. Molecular analysis found a C755G transversion (Ser252Trp) in the FGFR2 gene. Only eight patients with Apert syndrome and preaxial polydactyly have been reported and this is the first case in which molecular diagnosis is available. On the basis of the molecular findings in this patient, polydactyly should be considered part of the spectrum of abnormalities in the Apert syndrome. This assertion would establish the need for a new molecular classification of the acrocephalopolysyndactylies. 相似文献
5.
6.
Differential effects of FGFR2 mutations on syndactyly and cleft palate in Apert syndrome. 总被引:10,自引:3,他引:10
下载免费PDF全文

S. F. Slaney M. Oldridge J. A. Hurst G. M. Moriss-Kay C. M. Hall M. D. Poole A. O. Wilkie 《American journal of human genetics》1996,58(5):923-932
Apert syndrome is a distinctive human malformation characterized by craniosynostosis and severe syndactyly of the hands and feet. It is caused by specific missense substitutions involving adjacent amino acids (Ser252Trp or Pro253Arg) in the linker between the second and third extracellular immunoglobulin domains of fibroblast growth factor receptor 2 (FGFR2). We have developed a simple PCR assay for these mutations in genomic DNA, based on the creation of novel (SfiI) and (BstUI) restriction sites. Analysis of DNA from 70 unrelated patients with Apert syndrome showed that 45 had the Ser252Trp mutation and 25 had the Pro253Arg mutation. Phenotypic differences between these two groups of patients were investigated. Significant differences were found for severity of syndactyly and presence of cleft palate. The syndactyly was more severe with the Pro253Arg mutation, for both the hands and the feet. In contrast, cleft palate was significantly more common in the Ser252Trp patients. No convincing differences were found in the prevalence of other malformations associated with Apert syndrome. We conclude that, although the phenotype attributable to the two mutations is very similar, there are subtle differences. The opposite trends for severity of syndactyly and cleft palate in relation to the two mutations may relate to the varying patterns of temporal and tissue-specific expression of different fibroblast growth factors, the ligands for FGFR2. 相似文献
7.
The fibroblast growth factor and receptor system (FGF/FGFR) mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular). In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since this molecular pathway is widely expressed throughout head development, we explore whether and how two specific mutations on Fgfr2 causing Apert syndrome in humans affect the pattern and level of integration between the facial skeleton and the neurocranium using inbred Apert syndrome mouse models Fgfr2(+/S252W) and Fgfr2(+/P253R) and their non-mutant littermates at P0. Skull morphological integration (MI), which can reflect developmental interactions among traits by measuring the intensity of statistical associations among them, was assessed using data from microCT images of the skull of Apert syndrome mouse models and 3D geometric morphometric methods. Our results show that mutant Apert syndrome mice share the general pattern of MI with their non-mutant littermates, but the magnitude of integration between and within the facial skeleton and the neurocranium is increased, especially in Fgfr2(+/S252W) mice. This indicates that although Fgfr2 mutations do not disrupt skull MI, FGF/FGFR signaling is a covariance-generating process in skull development that acts as a global factor modulating the intensity of MI. As this pathway evolved early in vertebrate evolution, it may have played a significant role in establishing the patterns of skull MI and coordinating proper skull development. 相似文献
8.
Fanganiello RD Sertié AL Reis EM Yeh E Oliveira NA Bueno DF Kerkis I Alonso N Cavalheiro S Matsushita H Freitas R Verjovski-Almeida S Passos-Bueno MR 《Molecular medicine (Cambridge, Mass.)》2007,13(7-8):422-442
Apert syndrome (AS), a severe form of craniosynostosis, is caused by dominant gain-of-function mutations in FGFR2. Because the periosteum contribution to AS cranial pathophysiology is unknown, we tested the osteogenic potential of AS periosteal cells (p.Ser252Trp mutation) and observed that these cells are more committed toward the osteoblast lineage. To delineate the gene expression profile involved in this abnormal behavior, we performed a global gene expression analysis of coronal suture periosteal cells from seven AS patients (p.Ser252Trp), and matched controls. We identified 263 genes with significantly altered expression in AS samples (118 upregulated, 145 downregulated; SNR >or= |0.4|, P 相似文献
9.
De novo alu-element insertions in FGFR2 identify a distinct pathological basis for Apert syndrome. 总被引:8,自引:0,他引:8
下载免费PDF全文

M Oldridge E H Zackai D M McDonald-McGinn S Iseki G M Morriss-Kay S R Twigg D Johnson S A Wall W Jiang C Theda E W Jabs A O Wilkie 《American journal of human genetics》1999,64(2):446-461
Apert syndrome, one of five craniosynostosis syndromes caused by allelic mutations of fibroblast growth-factor receptor 2 (FGFR2), is characterized by symmetrical bony syndactyly of the hands and feet. We have analyzed 260 unrelated patients, all but 2 of whom have missense mutations in exon 7, which affect a dipeptide in the linker region between the second and third immunoglobulin-like domains. Hence, the molecular mechanism of Apert syndrome is exquisitely specific. FGFR2 mutations in the remaining two patients are distinct in position and nature. Surprisingly, each patient harbors an Alu-element insertion of approximately 360 bp, in one case just upstream of exon 9 and in the other case within exon 9 itself. The insertions are likely to be pathological, because they have arisen de novo; in both cases this occurred on the paternal chromosome. FGFR2 is present in alternatively spliced isoforms characterized by either the IIIb (exon 8) or IIIc (exon 9) domains (keratinocyte growth-factor receptor [KGFR] and bacterially expressed kinase, respectively), which are differentially expressed in mouse limbs on embryonic day 13. Splicing of exon 9 was examined in RNA extracted from fibroblasts and keratinocytes from one patient with an Alu insertion and two patients with Pfeiffer syndrome who had nucleotide substitutions of the exon 9 acceptor splice site. Ectopic expression of KGFR in the fibroblast lines correlated with the severity of limb abnormalities. This provides the first genetic evidence that signaling through KGFR causes syndactyly in Apert syndrome. 相似文献
10.
11.
12.
Peng Chen Li Zhang Tujun Weng Shichang Zhang Shijin Sun Mingtao Chang Yang Li Bo Zhang Lianyang Zhang 《PloS one》2014,9(1)
A S252W mutation of fibroblast growth factor receptor 2 (FGFR2), which is responsible for nearly two-thirds of Apert syndrome (AS) cases, causes retarded development of the skeleton and skull malformation resulting from premature fusion of the craniofacial sutures. We utilized a Fgfr2+/S252W mouse (a knock-in mouse model mimicking human AS) to demonstrate decreased bone mass due to reduced trabecular bone volume, reduced bone mineral density, and shortened growth plates in the long bones. In vitro bone mesenchymal stem cells (BMSCs) culture studies revealed that the mutant mice showed reduced BMSC proliferation, a reduction in chondrogenic differentiation, and reduced mineralization. Our results suggest that these phenomena are caused by up-regulation of p38 and Erk1/2 phosphorylation. Treatment of cultured mutant bone rudiments with SB203580 or PD98059 resulted in partial rescue of the bone growth retardation. The p38 signaling pathway especially was found to be responsible for the retarded long bone development. Our data indicate that the S252W mutation in FGFR2 directly affects endochondral ossification, resulting in growth retardation of the long bone. We also show that the p38 and Erk1/2 signaling pathways partially mediate the effects of the S252W mutation of FGFR2 on long bone development. 相似文献
13.
14.
Chen CP Lin SP Su YN Chien SC Tsai FJ Wang W 《Genetic counseling (Geneva, Switzerland)》2008,19(2):165-172
Pfeiffer syndrome (OMIM 101600) is an autosomal dominant disorder characterized by craniosynostosis, midface hypoplasia, ocular proptosis and digital malformations. We report on a type II Pfeiffer female infant with craniosynostosis, hydrocephalus, and characteristic craniofacial and digital abnormalities. The patient had a history of airway difficulty. Bronchoscopy at age four months revealed low tracheal stenosis and fibrous cartilaginous rings. She underwent tracheostomy for the treatment of cyanotic episodes. Molecular analysis revealed a de novo missense mutation c.870 G>T (TGG>TGT) in the FGFR2 gene that predicts a substitution of cysteine for tryptophan at the codon 290, (W290C). There is phenotypic heterogeneity of tracheal anomalies due to FGFR2 mutations. A review of the literature shows that Pfeiffer patients with the similar tracheal abnormalities can be caused by different FGFR2 mutations and, likewise, the patients with the same FGFR2 mutation may manifest different kinds of tracheal anomalies. Tracheal anomalies may occur in Pfeiffer patients and cause morbidity and mortality because of airway obstruction. Recognition and detailed evaluation of tracheal anomalies should be included in the early diagnostic workup for severe Pfeiffer patients. 相似文献
15.
Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S 总被引:37,自引:0,他引:37
M J McLeod 《Teratology》1980,22(3):299-301
The procedure described by Inouye ('76) for the staining of full-term mouse fetal skeletons has been adapted for use with mouse embryos and fetuses of days 14-18 of gestation. The main adaptations for younger specimens involve a longer time in acetone, in lieu of skinning, and omission of the aqueous KOH step. These adaptations require more time but result in consistently good staining of intact specimens. 相似文献
16.
N Balmain F Moutahir C W Heizmann M Lieberherr 《Cellular and molecular biology, including cyto-enzymology》2003,49(4):485-486
S100A2 protein, a Ca2+ binding protein, was investigated by immunocytochemistry in the epiphyseal cartilage and bone cells of growing rats, and in primary cultures of osteoblasts. S100A2 was detected in the chondrocytes and in the extracellular cartilage matrix. In the later however, its presence only in the calcifying areas of the epiphyseal cartilage suggests that it could be involved in the process of calcification of cartilage. 相似文献
17.
Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. 总被引:16,自引:0,他引:16
Arnaud André Mailleux Bradley Spencer-Dene Christian Dillon Delphine Ndiaye Catherine Savona-Baron Nobuyuki Itoh Shigeaki Kato Clive Dickson Jean Paul Thiery Saverio Bellusci 《Development (Cambridge, England)》2002,129(1):53-60
The mouse develops five pairs of mammary glands that arise during mid-gestation from five pairs of placodes of ectodermal origin. We have investigated the molecular mechanisms of mammary placode development using Lef1 as a marker for the epithelial component of the placode, and mice deficient for Fgf10 or Fgfr2b, both of which fail to develop normal mammary glands. Mammary placode induction involves two different signaling pathways, a FGF10/FGFR2b-dependent pathway for placodes 1, 2, 3 and 5 and a FGF10/FGFR2b-independent pathway for placode 4. Our results also suggest that FGF signaling is involved in the maintenance of mammary bud 4, and that Fgf10 deficient epithelium can undergo branching morphogenesis into the mammary fat pad precursor. 相似文献
18.
Elisabetta Catalani Silvia Tomassini Massimo Dal Monte Luigi Bosco Giovanni Casini 《Cell and tissue research》2009,336(3):423-438
Fibroblast growth factors (FGFs) exert basic functions both during embryonic development and in the adult. The expression
of FGFs and their receptors has been reported in mammalian retinas, although information on the organization of the FGF system
is still incomplete. Here, we report a detailed double-label immunohistochemical investigation of the localization patterns
of FGF1 and its receptors FGFR1 and FGFR2 in adult and early postnatal mouse retinas. In adult retinas, FGF1 is localized
to ganglion cells, horizontal cells, and photoreceptor inner and outer segments. FGFR1 is found in ganglion cells and Müller
cells, whereas FGFR2 is primarily located in ganglion cells, the nuclei of Müller cells, and glycine-containing amacrine cells.
During postnatal development, the patterns of FGF1, FGFR1, and FGFR2 immunostaining are similar to those in the adult, although
transient FGF1-expressing cells have been detected in the proximal inner nuclear layer before eye opening. These patterns
are consistent with a major involvement of FGF1, FGFR1, and FGFR2 in ganglion cell maturation (during development) and survival
(in the adult). Moreover, FGF1 may affect amacrine cell development, whereas Müller cells appear to be regulated via both
FGFR1 and FGFR2 throughout postnatal life. In immature retinas, large numbers of amacrine cells, including those containing
calbindin and glycine, display both FGF1 and FGFR2 immunoreactivities in their nuclei, suggesting an action of FGF1 on FGFR2
leading to the maturation of these amacrine cells during a restricted period of postnatal development.
This work was supported by funding from the Italian Ministry of Education. 相似文献
19.
Pfeiffer syndrome (PS) is one of the classical craniosynostosis syndromes correlated with specific mutations in the human
fibroblast growth factor receptor (FGFR) genes, FGFR1 and FGFR2. In this study, we set out to examine the exons in FGFR2 most commonly associated with mutations in PS, exons IIIa and IIIc, in a panel of 78 unrelated individuals with PS by the
most sensitive method (direct DNA sequencing). We have identified a total of 18 different mutations among 40 patients; eight
of these mutations have not been previously described. The mutational spectrum displays a non-random character with the frequent
involvement of cysteine codons.
Received: 6 January 1999 / Accepted: 10 March 1999 相似文献
20.
Paternal origin of FGFR2 mutations in sporadic cases of Crouzon syndrome and Pfeiffer syndrome
下载免费PDF全文

Glaser RL Jiang W Boyadjiev SA Tran AK Zachary AA Van Maldergem L Johnson D Walsh S Oldridge M Wall SA Wilkie AO Jabs EW 《American journal of human genetics》2000,66(3):768-777
Crouzon syndrome and Pfeiffer syndrome are both autosomal dominant craniosynostotic disorders that can be caused by mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. To determine the parental origin of these FGFR2 mutations, the amplification refractory mutation system (ARMS) was used. ARMS PCR primers were developed to recognize polymorphisms that could distinguish maternal and paternal alleles. A total of 4,374 bases between introns IIIa and 11 of the FGFR2 gene were sequenced and were assayed by heteroduplex analysis, to identify polymorphisms. Two polymorphisms (1333TA/TATA and 2710 C/T) were found and were used with two previously described polymorphisms, to screen a total of 41 families. Twenty-two of these families were shown to be informative (11 for Crouzon syndrome and 11 for Pfeiffer syndrome). Eleven different mutations in the 22 families were detected by either restriction digest or allele-specific oligonucleotide hybridization of ARMS PCR products. We molecularly proved the origin of these different mutations to be paternal for all informative cases analyzed (P=2. 4x10-7; 95% confidence limits 87%-100%). Advanced paternal age was noted for the fathers of patients with Crouzon syndrome or Pfeiffer syndrome, compared with the fathers of control individuals (34. 50+/-7.65 years vs. 30.45+/-1.28 years, P<.01). Our data on advanced paternal age corroborates and extends previous clinical evidence based on statistical analyses as well as additional reports of advanced paternal age associated with paternal origin of three sporadic mutations causing Apert syndrome (FGFR2) and achondroplasia (FGFR3). Our results suggest that older men either have accumulated or are more susceptible to a variety of germline mutations. 相似文献