首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipoplexes, which are spontaneously formed complexes between oligonucleotide (ODN) and cationic lipid, can be used to deliver ODNs into cells, both in vitro and in vivo. The present study was aimed at characterizing the interactions associated with the formation of lipoplexes, specifically in terms of electrostatics, hydration and particle size. Large unilamellar vesicles (approximately 100 nm diameter), composed of either DOTAP, DOTAP/cholesterol (mole ratio 1:1) or DOTAP/DOPE (mole ratio 1:1) were employed as a model of cationic liposomes. Neutral vesicles ( approximately 100 nm diameter), composed of DOPC/DOPE (mole ratio 1:1), were employed as control liposomes. After ODN addition to vesicles, at different mole ratios, changes in pH and electrical surface potential at the lipid-water interface were analyzed by using the fluorophore heptadecyl-7-hydroxycoumarin. In separate 'mirror image' experiments, liposomes were added at different mole ratios to fluorescein isothiocyanate-labeled ODNs, thus yielding data about changes in the pH near the ODN molecules induced by the complexation with the cationic lipid. Particle size distribution and turbidity fluctuations were analyzed by the use of photon correlation spectroscopy and static light-scattering, respectively. In additional fluorescent probe studies, TMADPH was used to quantify membrane defects while laurdan was used to measure the level of hydration at the water-lipid interface. The results indicate that mutual neutralization of cationic lipids by ODNs and vice versa is a spontaneous reaction and that this neutralization is the main driving force for lipoplex generation. When lipid neutralization is partial, induced membrane defects cause the lipoplexes to exhibit increased size instability.  相似文献   

2.
Complexes between short oligodeoxynucleotides (ODN) with a variable dG(x)dC(y) base composition and liposomes composed of the cationic lipid DOTAP (ODN lipoplexes) were studied by differential pulse voltammetry at a glassy carbon electrode. Since lipoplexes are spontaneously formed by electrostatic interactions, the objective of the voltammetric study was to investigate their behaviour at the electrode surface/solution interface. It was verified that the peak current in the voltammograms for ODN lipoplexes was due to guanosine oxidation and that it was influenced both by the applied adsorption potential and the lipoplex (+/-) charge ratio used. It was found that for low ODN lipoplexes (+/-) charge ratios the peak current obtained was enhanced when compared to that registered with free ODN for the same concentration. This allowed a higher sensitivity in the determination of ODN by differential pulse voltammetry and a limit of detection of 5.5 ng/mL was achieved. A model that explains the organisation of ODN lipoplexes at the electrode surface/solution interface is proposed. The electrochemical results presented account for a better physicochemical characterisation of lipoplexes at charged interfaces, which can be important for the understanding and development of gene therapy vectors based on ODN lipoplexes.  相似文献   

3.
Herein, we report on the design and synthesis of a novel nontoxic cationic amphiphile N,N-di-n-tetradecyl-N-[2-[N',N'-bis(2-hydroxyethyl)amino]ethyl]-N-(2-hydroxyethyl)ammonium chloride (lipid 1) whose in vitro gene transfer efficacies in CHO, COS-1, MCF-7, and HepG2 cells are remarkably enhanced when used in combination with 30 mole percent added myristic acid. Reporter gene expression assay using p-CMV-SPORT-beta-gal reporter gene revealed poor gene transfer properties of the cationic liposomes of lipid 1 and cholesterol (colipid). However, the in vitro gene delivery efficacies of lipid 1 were found to be remarkably enhanced when the cationic liposomes of lipid 1 and cholesterol were prepared in the presence of 30 mole percent added myristic acid (with respect to lipid 1) as the third liposomal ingredient. The whole cell histochemical X-gal staining of representative CHO cells further confirmed the significantly enhanced gene transfer properties of the fatty acid-loaded cationic liposomes of lipid 1 and cholesterol. Electrophoretic gel patterns in the gel mobility shift assay supports the notion that better DNA release from fatty acid lipoplexes might play a role in their enhanced gene transfer properties. In addition, such myristic acid-loaded lipoplexes of lipid 1 were also found to be serum-compatible up to 30% added serum. Taken together, our present findings demonstrate that the transfection efficacies of fatty acid-loaded lipoplexes are worth evaluating particularly when traditional cationic liposomes prepared with either cholesterol or DOPE colipids fail to transfect cultured cells.  相似文献   

4.
Lipoplexes constituted by calf-thymus DNA (CT-DNA) and mixed cationic liposomes consisting of varying proportions of the cationic lipid 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol hydrochloride (DC-Chol) and the zwitterionic lipid, 1,2-dioleoyl-sn-glycero-3-phosphoetanolamine (DOPE) have been analyzed by means of electrophoretic mobility, SAXS, and fluorescence anisotropy experiments, as well as by theoretically calculated phase diagrams. Both experimental and theoretical studies have been run at several liposome and lipoplex compositions, defined in terms of cationic lipid molar fraction, α, and either the mass or charge ratios of the lipoplex, respectively. The experimental electrochemical results indicate that DC-Chol/DOPE liposomes, with a mean hydrodynamic diameter of around (120 ± 10) nm, compact and condense DNA fragments at their cationic surfaces by means of a strong entropically driven electrostatic interaction. Furthermore, the positive charges of cationic liposomes are compensated by the negative charges of DNA phosphate groups at the isoneutrality L/D ratio, (L/D)(?), which decreases with the cationic lipid content of the mixed liposome, for a given DNA concentration. This inversion of sign process has been also studied by means of the phase diagrams calculated with the theoretical model, which confirms all the experimental results. SAXS diffractograms, run at several lipoplex compositions, reveal that, irrespectively of the lipoplex charge ratio, DC-Chol/DOPE-DNA lipoplexes show a lamellar structure, L(α), when the cationic lipid content on the mixed liposomes α ≥ 0.4, while for a lower content (α = 0.2) the lipoplexes show an inverted hexagonal structure, H(II), usually related with improved cell transfection efficiency. A similar conclusion is reached from fluorescence anisotropy results, which indicate that the fluidity on liposome and lipoplexes membrane, also related with better transfection results, increases as long as the cationic lipid content decreases.  相似文献   

5.
Lipoplexes, which are complexes between cationic liposomes (L+) and nucleic acids, are commonly used as a nucleic acid delivery system in vitro and in vivo. This study aimed to better characterize cationic liposome and lipoplex electrostatics, which seems to play a major role in the formation and the performance of lipoplexes in vitro and in vivo. We characterized lipoplexes based on two commonly used monocationic lipids, DOTAP and DMRIE, and one polycationic lipid, DOSPA--each with and without helper lipid (cholesterol or DOPE). Electrical surface potential (Psi0) and surface pH were determined using several surface pH-sensitive fluorophores attached either to a one-chain lipid (4-heptadecyl hydroxycoumarin (C17HC)) or to the primary amino group of the two-chain lipids (1,2-dioleyl-sn-glycero-3-phosphoethanolamine-N-carboxyfluorescein (CFPE) and 1,2-dioleyl-sn-glycero-3-phosphoethanolamine-N-7-hydroxycoumarin) (HC-DOPE). Zeta potentials of the DOTAP-based cationic liposomes and lipoplexes were compared with Psi0 determined using C17HC. The location and relatively low sensitivity of fluorescein to pH changes explains why CFPE is the least efficient in quantifying the differences between the various cationic liposomes and lipoplexes used in this study. The fact that, for all cationic liposomes studied, those containing DOPE as helper lipid have the least positive Psi0 indicates neutralization of the cationic charge by the negatively-charged phosphodiester of the DOPE. Zeta potential is much less positively charged than Psi0 determined by C17HC. The electrostatics affects size changes that occurred to the cationic liposomes upon lipoplex formation. The largest size increase (based on static light scattering measurements) for all formulations occurred at DNA-/L+ charge ratios 0.5-1. Comparing the use of the one-chain C17HC and the two-chain HC-DOPE for monitoring lipoplex electrostatics reveals that both are suitable, as long as there is no serum (or other lipidic assemblies) present in the medium; in the latter case, only the two-chain HC-DOPE gives reliable results. Increasing NaCl concentrations decrease surface potential. Neutralization by DNA is reduced in a NaCl-concentration-dependent manner.  相似文献   

6.
Lipoplexes are complexes formed between cationic liposomes (L(+)) and polyanionic nucleic acids (P(-)). They are commonly used in vitro and in vivo as a nucleic acid delivery system. Our study aims are to investigate how DOTAP-based cationic liposomes, which vary in their helper lipid (cholesterol or DOPE) and in media of different ionic strengths affect the degree, mode of association and degree of condensation of pDNA. This was determined by ultracentrifugation and gel electrophoresis, methods based on different physical principles. In addition, the degree of pDNA condensation was also determined using the ethidium bromide (EtBr) intercalation assay. The results suggest that for cationic lipid compositions (DOTAP/DOPE and DOTAP/cholesterol), 1.5 M NaCl, but not 0.15 M NaCl, both prevent lipoplex formation and/or induce partial dissociation between lipid and DNA of preformed lipoplexes. The higher the salt concentration the greater is the similarity of DNA condensation (monitored by EtBr intercalation) between lipoplex DNA and free DNA. As determined by ultracentrifugation and agarose gel electrophoresis, 30-90% of the DNA is uncondensed. SDS below its critical micellar concentration (CMC) induced "de-condensation" of DNA without its physical release (assessed by ultracentrifugation) for both DOTAP/DOPE and DOTAP/cholesterol lipoplexes. As was assessed by agarose gel electrophoresis SDS induced release of 50-60% of DNA from the DOTAP/cholesterol lipoplex but not from the DOTAP/DOPE lipoplex. This study shows that there are conditions under which DNA is still physically associated with the cationic lipids but undergoes unwinding to become less condensed. We also proved that the helper lipid affects level and strength of the L(+) and DNA(-) electrostatic association; these interactions are weaker for DOTAP/cholesterol than for DOTAP/DOPE, despite the fact that the positive charge and surface pH of DOTAP/cholesterol and DOTAP/DOPE are similar.  相似文献   

7.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. We examined the relationship between the characteristics of the lipoplexes, their mode of interaction with monocytic THP-1 cells and their ability to transfect these cells. We determined the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and its mixtures with neutral lipids), and lipoplexes at different (+/-) charge ratios. As the (+/-) charge ratio of the lipoplexes decreased to (1/1), a significant reduction in zeta potential and an increase in size was observed. The increase in size resulted from fusion between liposomes promoted by DNA, as demonstrated by a lipid mixing assay, and from aggregation of the complexes. Interaction of liposomes and lipoplexes with THP-1 cells was assessed by monitoring lipid mixing ('fusion') as well as binding and cell association. While no lipid mixing was observed with the 1/2 (+/-) lipid/DNA complexes, lipoplexes with higher (+/-) charge ratios underwent significant fusion in conjunction with extensive cell binding. Liposome binding to cells was dependent on the positive charge of the liposomes, and their fusion could be modulated by the co-lipid. DOTAP/phosphatidylethanolamine (1:1) liposomes fused with THP-1 cells, unlike DOTAP/phosphatidylcholine (1:1) liposomes, although both liposome types bound to the cells to a similar extent. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. The presence of serum increased the size of the cationic liposomes, but not that of the lipoplexes. Low concentrations of serum (3%) completely inhibited the fusion of cationic liposomes with cells, while inhibiting binding by only 20%. Our results suggest that binding of cationic liposomes and lipoplexes to cells is governed primarily by electrostatic interactions, whereas their fusion is regulated by the lipid composition and sterically favorable interactions with cell surface molecules. In addition our results indicate no correlation between fusion of the lipoplexes with the plasma membrane and the levels of transfection.  相似文献   

8.
G3139 is an antisense oligonucleotide (ODN) that can down-regulate bcl-2, thus potentially acting as a potent anticancer drug. However, effective therapy requires efficient ODN delivery, which may be achieved by employing G3139 lipoplexes. Yet, lipofection is a complex, multifactorial process that is still poorly understood. In order to shed more light on this issue, we prepared 18 different G3139 lipoplex formulations and compared them in terms of their capability to transfect MCF-7 breast cancer cells. Each formulation was composed of a cationic lipid and sometimes a helper lipid. The cationic lipid was either DOTAP (N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride), DC-CHOL (3β[N-(N′,N′-dimethylaminoethane)carbamoyl]-cholesterol), or CCS (ceramide carbomoyl spermine). The helper lipid was either DOPC, DOPE, or cholesterol. Each lipid combination existed in two different structural forms — either large unilamellar vesicles (~100 nm LUV) or unsized heterolamellar vesicles (UHV). Cell proliferation assays were used to evaluate the cytotoxicity of G3139 lipoplexes, control cationic lipid assemblies, and free G3139. Western blots were used to confirm the specific activity of G3139 as an anti-bcl-2 antisense agent. We determined that treatment of MCF-7 cells with G3139:CCS lipoplexes (UHV-derived) produced a maximal 50-fold improvement in antisense efficacy compared to treatment with free G3139. The other G3139 lipoplexes were not superior to free G3139. Thus, successful lipofection requires precise optimization of lipoplex lipid composition, structure, and concentration.  相似文献   

9.
G3139 is an antisense oligonucleotide (ODN) that can down-regulate bcl-2, thus potentially acting as a potent anticancer drug. However, effective therapy requires efficient ODN delivery, which may be achieved by employing G3139 lipoplexes. Yet, lipofection is a complex, multifactorial process that is still poorly understood. In order to shed more light on this issue, we prepared 18 different G3139 lipoplex formulations and compared them in terms of their capability to transfect MCF-7 breast cancer cells. Each formulation was composed of a cationic lipid and sometimes a helper lipid. The cationic lipid was either DOTAP (N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride), DC-CHOL (3ss[N-(N',N'-dimethylaminoethane)carbamoyl]-cholesterol), or CCS (ceramide carbomoyl spermine). The helper lipid was either DOPC, DOPE, or cholesterol. Each lipid combination existed in two different structural forms--either large unilamellar vesicles (approximately 100 nm LUV) or unsized heterolamellar vesicles (UHV). Cell proliferation assays were used to evaluate the cytotoxicity of G3139 lipoplexes, control cationic lipid assemblies, and free G3139. Western blots were used to confirm the specific activity of G3139 as an anti-bcl-2 antisense agent. We determined that treatment of MCF-7 cells with G3139:CCS lipoplexes (UHV-derived) produced a maximal 50-fold improvement in antisense efficacy compared to treatment with free G3139. The other G3139 lipoplexes were not superior to free G3139. Thus, successful lipofection requires precise optimization of lipoplex lipid composition, structure, and concentration.  相似文献   

10.
Differential scanning calorimetry was used to examine the lipid exchange between model lipid systems, including vesicles of the cationic lipoids ethyldimyristoylphosphatidylcholine (EDMPC), ethyldipalmitoylphosphatidylcholine (EDPPC) or their complexes with DNA (lipoplexes), and the zwitterionic lipids (DMPC, DPPC). The changes of the lipid phase transition parameters (temperature, enthalpy, and cooperativity) upon consecutive temperature scans was used as an indication of lipid mixing between aggregates. A selective lipid transfer of the shorter-chain cationic lipoid EDMPC into the longer-chain aggregates was inferred. In contrast, transfer was hindered when EDMPC (but not EDPPC) was bound to DNA in the lipoplexes. These data support a simple molecular lipid exchange mechanism, but not lipid bilayer fusion. Exchange via lipid monomers is considerably more facile for the cationic ethylphosphatidylcholines than for zwitterionic phosphatidylcholines, presumably due to the higher monomer solubility of the charged lipids. With the cationic liposomes, lipid transfer was strongly promoted by the presence of serum in the dispersing medium. Serum proteins are presumed to be responsible for the accelerated transfer, since the effect was strongly reduced upon heating the serum to 80 °C. The effect of serum indicates that even though much lipoplex lipid is inaccessible due to the multilayered structure, the barrier due to buried lipid can be easily overcome. Serum did not noticeably promote the lipid exchange of zwitterionic liposomes. The phenomenon is of potential importance for the application of cationic liposomes to nonviral gene delivery, which often involves the presence of serum in vitro, and necessarily involves serum contact in vivo.  相似文献   

11.
A viewpoint now emerging is that a critical factor in lipid-mediated transfection (lipofection) is the structural evolution of lipoplexes upon interacting and mixing with cellular lipids. Here we report our finding that lipid mixtures mimicking biomembrane lipid compositions are superior to pure anionic liposomes in their ability to release DNA from lipoplexes (cationic lipid/DNA complexes), even though they have a much lower negative charge density (and thus lower capacity to neutralize the positive charge of the lipoplex lipids). Flow fluorometry revealed that the portion of DNA released after a 30-min incubation of the cationic O-ethylphosphatidylcholine lipoplexes with the anionic phosphatidylserine or phosphatidylglycerol was 19% and 37%, respectively, whereas a mixture mimicking biomembranes (MM: phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine /cholesterol 45:20:20:15 w/w) and polar lipid extract from bovine liver released 62% and 74%, respectively, of the DNA content. A possible reason for this superior power in releasing DNA by the natural lipid mixtures was suggested by structural experiments: while pure anionic lipids typically form lamellae, the natural lipid mixtures exhibited a surprising predilection to form nonlamellar phases. Thus, the MM mixture arranged into lamellar arrays at physiological temperature, but began to convert to the hexagonal phase at a slightly higher temperature, approximately 40-45 degrees C. A propensity to form nonlamellar phases (hexagonal, cubic, micellar) at close to physiological temperatures was also found with the lipid extracts from natural tissues (from bovine liver, brain, and heart). This result reveals that electrostatic interactions are only one of the factors involved in lipid-mediated DNA delivery. The tendency of lipid bilayers to form nonlamellar phases has been described in terms of bilayer "frustration" which imposes a nonzero intrinsic curvature of the two opposing monolayers. Because the stored curvature elastic energy in a "frustrated" bilayer seems to be comparable to the binding energy between cationic lipid and DNA, the balance between these two energies could play a significant role in the lipoplex-membrane interactions and DNA release energetics.  相似文献   

12.
Lipoplexes, which are formed spontaneously between cationic liposomes and negatively charged nucleic acids, are commonly used for gene and oligonucleotide delivery in vitro and in vivo. Being assemblies, lipoplexes can be characterized by various physicochemical parameters, including size distribution, shape, physical state (lamellar, hexagonal type II and/or other phases), sign and magnitude of electrical surface potential, and level of hydration at the lipid-DNA interface. Only after all these variables will be characterized for lipoplexes with a broad spectrum of lipid compositions and DNA/cationic lipid (L(+)) mole (or charge) ratios can their relevance to transfection efficiency be understood. Of all these physicochemical parameters, hydration is the most neglected, and therefore the focus of this study. Cationic liposomes composed of DOTAP without and with helper lipids (DOPC, DOPE, or cholesterol) or of DC-Chol/DOPE were complexed with pDNA (S16 human growth hormone) at various DNA(-)/L(+) charge ratios (0.1-3.2). (DOTAP=N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride; DC-Chol=(3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholester ol; DOPC=1, 2-dioleoyl-sn-glycero-3-phosphocholine; DOPE=1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine). The hydration levels of the different cationic liposomes and the DNA separately are compared with the hydration levels of the lipoplexes. Two independent approaches were applied to study hydration. First, we used a semi-quantitative approach of determining changes in the 'generalized polarization' (GP) of laurdan (6-dodecanoyl-2-dimethylaminonaphthalene). This method was recently used extensively and successfully to characterize changes of hydration at lipid-water interfaces. Laurdan excitation GP at 340 nm (GP(340)DOTAP. The GP(340) of lipoplexes of all lipid compositions (except those based on DC-Chol/DOPE) was higher than the GP(340) of the cationic liposomes alone and increased with increasing DNA(-)/L(+) charge ratio, reaching a plateau at a charge ratio of 1. 0, suggesting an increase in dehydration at the lipid-water interface with increasing DNA(-)/L(+) charge ratio. Confirmation was obtained from the second method, differential scanning calorimetry (DSC). DOTAP/DOPE lipoplexes with charge ratio 0.44 had 16.5% dehydration and with charge ratio 1.5, 46.4% dehydration. For DOTAP/Chol lipoplexes with these charge ratios, there was 17.9% and 49% dehydration, respectively. These data are in good agreement with the laurdan data described above. They suggest that the dehydration occurs during lipoplex formation and that this is a prerequisite for the intimate contact between cationic lipids and DNA.  相似文献   

13.
DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugal separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells.  相似文献   

14.
Lipoplexes, which are complexes between cationic liposomes (L+) and nucleic acids, are commonly used as a nucleic acid delivery system in vitro and in vivo. This study aimed to better characterize cationic liposome and lipoplex electrostatics, which seems to play a major role in the formation and the performance of lipoplexes in vitro and in vivo. We characterized lipoplexes based on two commonly used monocationic lipids, DOTAP and DMRIE, and one polycationic lipid, DOSPA—each with and without helper lipid (cholesterol or DOPE). Electrical surface potential (Ψ0) and surface pH were determined using several surface pH-sensitive fluorophores attached either to a one-chain lipid (4-heptadecyl hydroxycoumarin (C17HC)) or to the primary amino group of the two-chain lipids (1,2-dioleyl-sn-glycero-3-phosphoethanolamine-N-carboxyfluorescein (CFPE) and 1,2-dioleyl-sn-glycero-3-phosphoethanolamine-N-7-hydroxycoumarin) (HC-DOPE). Zeta potentials of the DOTAP-based cationic liposomes and lipoplexes were compared with Ψ0 determined using C17HC. The location and relatively low sensitivity of fluorescein to pH changes explains why CFPE is the least efficient in quantifying the differences between the various cationic liposomes and lipoplexes used in this study. The fact that, for all cationic liposomes studied, those containing DOPE as helper lipid have the least positive Ψ0 indicates neutralization of the cationic charge by the negatively-charged phosphodiester of the DOPE. Zeta potential is much less positively charged than Ψ0 determined by C17HC. The electrostatics affects size changes that occurred to the cationic liposomes upon lipoplex formation. The largest size increase (based on static light scattering measurements) for all formulations occurred at DNA/L+ charge ratios 0.5-1. Comparing the use of the one-chain C17HC and the two-chain HC-DOPE for monitoring lipoplex electrostatics reveals that both are suitable, as long as there is no serum (or other lipidic assemblies) present in the medium; in the latter case, only the two-chain HC-DOPE gives reliable results. Increasing NaCl concentrations decrease surface potential. Neutralization by DNA is reduced in a NaCl-concentration-dependent manner.  相似文献   

15.
Abstract

Cationic liposome (CL)-DNA complexes (lipoplexes) have appeared as leading nonviral gene carriers in worldwide gene therapy clinical trials. Arriving at therapeutic dosages requires the full understanding of the mechanism of transfection. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs have some problems, including low transfection efficiency. The aim of this study was developing novel CLs containing four neutral lipids; cholesterol, 1,2-dioleoyl phosphatidylethanolamine, distearoylphosphatidylcholine and dipalmitoylphosphatidylcholine as a helper lipid and dimethyl dioctadecyl ammonium bromide as a cationic lipid to increase transfection efficiency. We have investigated the correlation between number of lipid composition and transfection efficiency. The morphology, size and zeta potential of liposomes and lipoplexes were measured and lipoplexes formation was monitored by gel retardation assay. Transfection efficiency was assessed using firefly luciferase reporter assay. It was found that transfection efficiency markedly depended on liposome to plasmid DNA (pDNA) weight ratio, lipid composition and efficiency of pDNA entrapment. High transfection efficiency of plasmid by four component lipoplexes was achieved. Moreover, lipoplexes showed lower transfection efficiency and less cytotoxicity compared to Lipofectamine?. These results suggest that lipid composition of nanoliposomes is an important factor in control of their physical properties and also yield of transfection.  相似文献   

16.
In order to investigate the relationship between lipid structure and liposome-mediated gene transfer, we have studied biophysical parameters and transfection properties of monocationic DOTAP analogs, systematically modified in their non-polar hydrocarbon chains. Stability, size and (by means of anisotropy profiles) membrane fluidity of liposomes and lipoplexes were determined, and lipofection efficiency was tested in a luciferase reporter gene assay. DOTAP analogs were used as single components or combined with a helper lipid, either DOPE or cholesterol. Stability of liposomes was a precondition for formation of temporarily stable lipoplexes. Addition of DOPE or cholesterol improved liposome and lipoplex stability. Transfection efficiencies of lipoplexes based on pure DOTAP analogs could be correlated with stability data and membrane fluidity at transfection temperature. Inclusion of DOPE led to rather uniform transfection and anisotropy profiles, corresponding to lipoplex stability. Cholesterol-containing lipoplexes were generally stable, showing high transfection efficiency at low relative fluidity. Our results demonstrate that the efficiency of gene transfer mediated by monocationic lipids is greatly influenced by lipoplex biophysics due to lipid composition. The measurement of fluorescence anisotropy is an appropriate method to characterize membrane fluidity within a defined system of liposomes or lipoplexes and may be helpful to elucidate structure-activity relationships.  相似文献   

17.
Cationic liposomes give rise to stable complexes with DNA molecules (lipoplexes) that are of great interest for gene delivery applications. In particular, liposomes made up by a cationic lipid (DOTAP or DC-Chol) and a zwitterionic lipid (DOPE), produce stable adducts with single and double-stranded DNA oligonucleotides. Formation of these lipoplexes has been further addressed here by circular dichroism spectroscopy (CD) and by other independent biophysical methods. Titration of DNA oligonucleotides with cationic liposomes resulted into significant modifications of their circular dichroic bands. Such spectral modifications were ascribed to progressive DNA condensation and loss of native conformation, as a consequence of the electrostatic interactions taking place between the phosphate groups of DNA and the positively charged head groups of cationic lipids. In all cases, the loss of the CD feature characteristic of the native DNA conformation closely matched the inflection point of Zeta potential profiles. The resulting adducts showed peculiar and non-canonical CD spectra, while exhibiting appreciable stability at physiological pH.  相似文献   

18.
Cationic liposomes and the complexes they form with DNA (lipoplexes) constitute the most promising alternative to the use of viral vectors for gene therapy. One of the limitations to their application in vivo, however, is the inhibition of gene delivery by serum. In a previous study, we demonstrated that transferrin (Tf)-lipoplexes were superior to plain lipoplexes in transfecting HeLa cells in the presence of high concentrations of serum. With the goal of obtaining efficient gene expression in vivo, we evaluated the efficacy of Tf-lipoplexes (containing DOTAP and cholesterol) in transfecting primary hepatocytes and adipocytes in the presence of high serum concentrations. The association of transferrin with cationic liposomes increased luciferase expression compared to plain lipoplexes in primary cells as well as in HepG2 and 3T3-L1 differentiated adipocytes. The complexes were not cytotoxic and were highly effective in protecting DNA from attack by DNase I. An efficient and reliable method was developed to prepare lipoplexes containing both Tf and protamine sulfate, where the latter was mixed with transferrin, followed by the addition of cationic liposomes and DNA. The resulting protamine-Tf-lipoplexes increased significantly the levels of gene expression in cultured cells and in various tissues in mice following i.v. administration.  相似文献   

19.
Cationic liposomes and the complexes they form with DNA (lipoplexes) constitute the most promising alternative to the use of viral vectors for gene therapy. One of the limitations to their application in vivo, however, is the inhibition of gene delivery by serum. In a previous study, we demonstrated that transferrin (Tf)-lipoplexes were superior to plain lipoplexes in transfecting HeLa cells in the presence of high concentrations of serum. With the goal of obtaining efficient gene expression in vivo, we evaluated the efficacy of Tf-lipoplexes (containing DOTAP and cholesterol) in transfecting primary hepatocytes and adipocytes in the presence of high serum concentrations. The association of transferrin with cationic liposomes increased luciferase expression compared to plain lipoplexes in primary cells as well as in HepG2 and 3T3-L1 differentiated adipocytes. The complexes were not cytotoxic and were highly effective in protecting DNA from attack by DNase I. An efficient and reliable method was developed to prepare lipoplexes containing both Tf and protamine sulfate, where the latter was mixed with transferrin, followed by the addition of cationic liposomes and DNA. The resulting protamine-Tf-lipoplexes increased significantly the levels of gene expression in cultured cells and in various tissues in mice following i.v. administration.  相似文献   

20.
Supramolecular aggregates containing cationic lipids have been widely used as transfection mediators due to their ability to interact with negatively charged DNA molecules and biological membranes. First steps of the process leading to transfection are partly electrostatic, partly hydrophobic interactions of liposomes/lipoplexes with cell and/or endosomal membrane. Negatively charged compounds of biological membranes, namely glycolipids, glycoproteins and phosphatidylserine (PS), are responsible for such events as adsorption, hemifusion, fusion, poration and destabilization of natural membranes upon contact with cationic liposomes/lipoplexes. The present communication describes the dependence of interaction of cationic liposomes with natural and artificial membranes on the negative charge of the target membrane, charges which in most cases were generated by charging the PS content or its exposure. The model for the target membranes were liposomes of variable content of PS or PG (phosphatidylglycerol) and erythrocyte membranes in which the PS and other anionic compound content/exposure was modified in several ways. Membranes of increased anionic phospholipid content displayed increased fusion with DOTAP (1,2-dioleoyl-3-trimethylammoniumpropane) liposomes, while erythrocyte membranes partly depleted of glycocalix, its sialic acid, in particular, showed a decreased fusion ability. The role of the anionic component is also supported by the fact that erythrocyte membrane inside-out vesicles fused easily with cationic liposomes. The data obtained on erythrocyte ghosts of normal and disrupted asymmetry, in particular, those obtained in the presence of Ca2+, indicate the role of lipid flip-flop movement catalyzed by scramblase. The ATP-depletion of erythrocytes also induced an increased sensitivity to hemoglobin leakage upon interactions with DOTAP liposomes. Calcein leakage from anionic liposomes incubated with DOTAP liposomes was also dependent on surface charge of the target membranes. In all experiments with the asymmetric membranes the fusion level markedly increased with an increase of temperature, which supports the role of membrane lipid mobility. The decrease in positive charge by binding of plasmid DNA and the increase in ionic strength decreased the ability of DOTAP liposomes/lipoplexes to fuse with erythrocyte ghosts. Lower pH promotes fusion between erythrocyte ghosts and DOTAP liposomes and lipoplexes. The obtained results indicate that electrostatic interactions together with increased mobility of membrane lipids and susceptibility to form structures of negative curvature play a major role in the fusion of DOTAP liposomes with natural and artificial membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号