首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The attentional set-shifting deficit that has been observed in Parkinson's disease (PD) has long been considered neuropsychological evidence of the involvement of meso-prefrontal and prefrontal-striatal circuits in cognitive flexibility. However, recent studies have suggested that non-dopaminergic, posterior cortical pathologies may also contribute to this deficit. Although several neuroimaging studies have addressed this issue, the results of these studies were confounded by the use of tasks that required other cognitive processes in addition to set-shifting, such as rule learning and working memory. In this study, we attempted to identify the neural correlates of the attentional set-shifting deficit in PD using a compound letter task and 18F-fluoro-deoxy-glucose (FDG) positron emission tomography during rest. Shift cost, which is a measure of attentional set-shifting ability, was significantly correlated with hypometabolism in the right dorsolateral prefrontal cortex, including the putative human frontal eye field. Our results provide direct evidence that dysfunction in the dorsolateral prefrontal cortex makes a primary contribution to the attentional set-shifting deficit that has been observed in PD patients.  相似文献   

2.
Critchley HD  Mathias CJ  Dolan RJ 《Neuron》2001,29(2):537-545
We used functional magnetic resonance neuroimaging to measure brain activity during delay between reward-related decisions and their outcomes, and the modulation of this delay activity by uncertainty and arousal. Feedback, indicating financial gain or loss, was given following a fixed delay. Anticipatory arousal was indexed by galvanic skin conductance. Delay-period activity was associated with bilateral activation in orbital and medial prefrontal, temporal, and right parietal cortices. During delay, activity in anterior cingulate and orbitofrontal cortices was modulated by outcome uncertainty, whereas anterior cingulate, dorsolateral prefrontal, and parietal cortices activity was modulated by degree of anticipatory arousal. A distinct region of anterior cingulate was commonly activated by both uncertainty and arousal. Our findings highlight distinct contributions of cognitive uncertainty and autonomic arousal to anticipatory neural activity in prefrontal cortex.  相似文献   

3.
Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions –episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex''s role in semantic control and the dorsolateral prefrontal cortex''s role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to demonstrate dorso-ventral and rostro-caudal prefrontal cortex processing gradients in white matter integrity.  相似文献   

4.
Recent neurofunctional studies suggested that lateral prefrontal cortex is a domain-general cognitive control area modulating computation of social information. Neuropsychological evidence reported dissociations between cognitive and affective components of social cognition. Here, we tested whether performance on social cognitive and affective tasks can be modulated by transcranial direct current stimulation (tDCS) over dorsolateral prefrontal cortex (DLPFC). To this aim, we compared the effects of tDCS on explicit recognition of emotional facial expressions (affective task), and on one cognitive task assessing the ability to adopt another person’s visual perspective. In a randomized, cross-over design, male and female healthy participants performed the two experimental tasks after bi-hemispheric tDCS (sham, left anodal/right cathodal, and right anodal/left cathodal) applied over DLPFC. Results showed that only in male participants explicit recognition of fearful facial expressions was significantly faster after anodal right/cathodal left stimulation with respect to anodal left/cathodal right and sham stimulations. In the visual perspective taking task, instead, anodal right/cathodal left stimulation negatively affected both male and female participants’ tendency to adopt another’s point of view. These findings demonstrated that concurrent facilitation of right and inhibition of left lateral prefrontal cortex can speed-up males’ responses to threatening faces whereas it interferes with the ability to adopt another’s viewpoint independently from gender. Thus, stimulation of cognitive control areas can lead to different effects on social cognitive skills depending on the affective vs. cognitive nature of the task, and on the gender-related differences in neural organization of emotion processing.  相似文献   

5.

Background

While hemispheric specialization of language processing is well established, lateralization of emotion processing is still under debate. Several conflicting hypotheses have been proposed, including right hemisphere hypothesis, valence asymmetry hypothesis and region-specific lateralization hypothesis. However, experimental evidence for these hypotheses remains inconclusive, partly because direct comparisons between hemispheres are scarce.

Methods

The present fMRI study systematically investigated functional lateralization during affective stimulus processing in 36 healthy participants. We normalized our functional data on a symmetrical template to avoid confounding effects of anatomical asymmetries. Direct comparison of BOLD responses between hemispheres was accomplished taking two approaches: a hypothesis-driven region of interest analysis focusing on brain areas most frequently reported in earlier neuroimaging studies of emotion; and an exploratory whole volume analysis contrasting non-flipped with flipped functional data using paired t-test.

Results

The region of interest analysis revealed lateralization towards the left in the medial prefrontal cortex (BA 10) during positive stimulus processing; while negative stimulus processing was lateralized towards the right in the dorsolateral prefrontal cortex (BA 9 & 46) and towards the left in the amygdala and uncus. The whole brain analysis yielded similar results and, in addition, revealed lateralization towards the right in the premotor cortex (BA 6) and the temporo-occipital junction (BA 19 & 37) during positive stimulus processing; while negative stimulus processing showed lateralization towards the right in the temporo-parietal junction (BA 37,39,42) and towards the left in the middle temporal gyrus (BA 21).

Conclusion

Our data suggests region-specific functional lateralization of emotion processing. Findings show valence asymmetry for prefrontal cortical areas and left-lateralized negative stimulus processing in subcortical areas, in particular, amygdala and uncus.  相似文献   

6.
《Journal of Physiology》2013,107(6):517-525
A number of recent neuroimaging studies using self referential tasks have investigated whether self referential processing depends on a unique neural basis that operates specifically in the medial prefrontal cortex. However, these studies have provided contradictory results despite the use of similar methodologies. We hypothesized that these discrepancies are partially related to the task-difficulty that presents dissociations reaction times in the self- and other-referential tasks. We therefore measured brain activity during self and other referential tasks to determine if such activity can be dissociated according to the reaction times (fast versus slow) for the trait words. Activation differed across self and other only in the slow word condition. The self referential condition with slow reaction time produced greater activation in the ventromedial prefrontal cortex, whereas the other referential condition with slow reaction time produced activation of the middle temporal gyrus. Results suggested that the task-difficulty might affect whether or not brain activities within MPFC would be dissociated between self- and other-referential processing.  相似文献   

7.

Background and Objectives

Obesity is emerging as the most significant health concern of the twenty-first century. A wealth of neuroimaging data suggest that weight gain might be related to aberrant brain function, particularly in prefrontal cortical regions modulating mesolimbic addictive responses to food. Nevertheless, food addiction is currently a model hotly debated. Here, we conduct a meta-analysis of neuroimaging data, examining the most common functional differences between normal-weight and obese participants in response to food stimuli.

Data Source

We conducted a search using several journal databases and adhered to the ‘Preferred Reporting Items for Systematic Reviews and Meta-analyses’ (PRISMA) method. To this aim, 10 studies were found with a total of 126 obese participants, 129 healthy controls, equaling 184 foci (146 increased, 38 decreased activation) using the Activation Likelihood Estimation (ALE) technique. Out of the 10 studies, 7 investigated neural responses to food versus non-food images.

Results

In response to food images, obese in comparison to healthy weight subjects had increased activation in the left dorsomedial prefrontal cortex, right parahippocampal gyrus, right precentral gyrus and right anterior cingulate cortex, and reduced activation in the left dorsolateral prefrontal cortex and left insular cortex.

Conclusions

Prefrontal cortex areas linked to cognitive evaluation processes, such as evaluation of rewarding stimuli, as well as explicit memory regions, appear most consistently activated in response to images of food in those who are obese. Conversely, a reduced activation in brain regions associated with cognitive control and interoceptive awareness of sensations in the body might indicate a weakened control system, combined with hypo-sensitivity to satiety and discomfort signals after eating in those who are prone to overeat.  相似文献   

8.
9.
Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models for visual and auditory object processing with multiple interconnected brain regions that perform delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological parameters affect the interregional functional connectivity between functional magnetic resonance imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series correlations between integrated synaptic activities between the anterior temporal and the prefrontal cortex were larger during the DMS task than during a control task. These results were less clear when the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI activity. As the strength of the model anatomical connectivity between temporal and frontal cortex was weakened, so too was the strength of the corresponding functional connectivity. These results provide a partial validation for using fMRI functional connectivity to assess brain interregional relations.  相似文献   

10.
Functional neuroimaging metrics are thought to reflect changes in neurotransmitter flux, but changes in neurotransmitter levels have not been demonstrated in humans during a cognitive task, and the relationship between neurotransmitter dynamics and hemodynamic activity during cognition has not yet been established. We evaluate the concentration of the major inhibitory (GABA) and excitatory (glutamate + glutamine: Glx) neurotransmitters and the cerebral perfusion at rest and during a prolonged delayed match-to-sample working memory task. Resting GABA levels in the dorsolateral prefrontal cortex correlated positively with the resting perfusion and inversely with the change in perfusion during the task. Further, only GABA increased significantly during the first working memory run and then decreased continuously across subsequent task runs. The decrease of GABA over time was paralleled by a trend towards decreased reaction times and higher task accuracy. These results demonstrate a link between neurotransmitter dynamics and hemodynamic activity during working memory, indicating that functional neuroimaging metrics depend on the balance of excitation and inhibition required for cognitive processing.  相似文献   

11.
The spatiotemporal profile of activation of the prefrontal cortex in verbal and non-verbal recognition memory was examined using magnetoencephalography (MEG). Sixteen neurologically healthy right-handed participants were scanned whilst carrying out a modified version of the Doors and People Test of recognition memory. A pattern of significant prefrontal activity was found for non-verbal and verbal encoding and recognition. During the encoding, verbal stimuli activated an area in the left ventromedial prefrontal cortex, and non-verbal stimuli activated an area in the right. A region in the left dorsolateral prefrontal cortex also showed significant activation during the encoding of non-verbal stimuli. Both verbal and non-verbal stimuli significantly activated an area in the right dorsomedial prefrontal cortex and the right anterior prefrontal cortex during successful recognition, however these areas showed temporally distinct activation dependent on material, with non-verbal showing activation earlier than verbal stimuli. Additionally, non-verbal material activated an area in the left anterior prefrontal cortex during recognition. These findings suggest a material-specific laterality in the ventromedial prefrontal cortex during encoding for verbal and non-verbal but also support the HERA model for verbal material. The discovery of two process dependent areas during recognition that showed patterns of temporal activation dependent on material demonstrates the need for the application of more temporally sensitive techniques to the involvement of the prefrontal cortex in recognition memory.  相似文献   

12.
ObjectiveStructural neuroimaging studies have demonstrated lower regional gray matter volume in adolescents with severe substance and conduct problems. These research studies, including ours, have generally focused on male-only or mixed-sex samples of adolescents with conduct and/or substance problems. Here we compare gray matter volume between female adolescents with severe substance and conduct problems and female healthy controls of similar ages. Hypotheses: Female adolescents with severe substance and conduct problems will show significantly less gray matter volume in frontal regions critical to inhibition (i.e. dorsolateral prefrontal cortex and ventrolateral prefrontal cortex), conflict processing (i.e., anterior cingulate), valuation of expected outcomes (i.e., medial orbitofrontal cortex) and the dopamine reward system (i.e. striatum).MethodsWe conducted whole-brain voxel-based morphometric comparison of structural MR images of 22 patients (14-18 years) with severe substance and conduct problems and 21 controls of similar age using statistical parametric mapping (SPM) and voxel-based morphometric (VBM8) toolbox. We tested group differences in regional gray matter volume with analyses of covariance, adjusting for age and IQ at p<0.05, corrected for multiple comparisons at whole-brain cluster-level threshold.ResultsFemale adolescents with severe substance and conduct problems compared to controls showed significantly less gray matter volume in right dorsolateral prefrontal cortex, left ventrolateral prefrontal cortex, medial orbitofrontal cortex, anterior cingulate, bilateral somatosensory cortex, left supramarginal gyrus, and bilateral angular gyrus. Considering the entire brain, patients had 9.5% less overall gray matter volume compared to controls.ConclusionsFemale adolescents with severe substance and conduct problems in comparison to similarly aged female healthy controls showed substantially lower gray matter volume in brain regions involved in inhibition, conflict processing, valuation of outcomes, decision-making, reward, risk-taking, and rule-breaking antisocial behavior.  相似文献   

13.
The neural basis of episodic memory: evidence from functional neuroimaging   总被引:11,自引:0,他引:11  
We review some of our recent research using functional neuroimaging to investigate neural activity supporting the encoding and retrieval of episodic memories, that is, memories for unique events. Findings from studies of encoding indicate that, at the cortical level, the regions responsible for the effective encoding of a stimulus event as an episodic memory include some of the regions that are also engaged to process the event 'online'. Thus, it appears that there is no single cortical site or circuit responsible for episodic encoding. The results of retrieval studies indicate that successful recollection of episodic information is associated with activation of lateral parietal cortex, along with more variable patterns of activity in dorsolateral and anterior prefrontal cortex. Whereas parietal regions may play a part in the representation of retrieved information, prefrontal areas appear to support processes that act on the products of retrieval to align behaviour with the demands of the retrieval task.  相似文献   

14.
Genovesio A  Tsujimoto S  Wise SP 《Neuron》2012,74(4):656-662
Functional neuroimaging studies show that perceptual judgments about time and space activate similar prefrontal and parietal areas, and it is known that perceptions in these two cognitive domains interfere with each other. These findings have led to the theory that temporal and spatial perceptions, among other metrics, draw on a common representation of magnitude. Our results indicate that an alternative principle applies to the prefrontal cortex. Analysis at the single-cell level shows that separate, domain-specific populations of neurons encode relative magnitude in time and space. These neurons are intermixed with each other in the prefrontal cortex, along with a separate intermixed population that encodes the goal chosen on the basis of these perceptual decisions. As a result, domain-specific neural processing at the single-cell level seems to underlie domain generality as observed at the regional level, with a common representation of prospective goals rather than a common representation of magnitude.  相似文献   

15.
Cognitive control is necessary to flexibly act in changing environments. Sequence processing is needed in language comprehension to build the syntactic structure in sentences. Functional imaging studies suggest that sequence processing engages the left ventrolateral prefrontal cortex (PFC). In contrast, cognitive control processes additionally recruit bilateral rostral lateral PFC regions. The present study aimed to investigate these two types of processes in one experimental paradigm. Sequence processing was manipulated using two different sequencing rules varying in complexity. Cognitive control was varied with different cue-sets that determined the choice of a sequencing rule. Univariate analyses revealed distinct PFC regions for the two types of processing (i.e. sequence processing: left ventrolateral PFC and cognitive control processing: bilateral dorsolateral and rostral PFC). Moreover, in a common brain network (including left lateral PFC and intraparietal sulcus) no interaction between sequence and cognitive control processing was observed. In contrast, a multivariate pattern analysis revealed an interaction of sequence and cognitive control processing, such that voxels in left lateral PFC and parietal cortex showed different tuning functions for tasks involving different sequencing and cognitive control demands. These results suggest that the difference between the process of rule selection (i.e. cognitive control) and the process of rule-based sequencing (i.e. sequence processing) find their neuronal underpinnings in distinct activation patterns in lateral PFC. Moreover, the combination of rule selection and rule sequencing can shape the response of neurons in lateral PFC and parietal cortex.  相似文献   

16.
A functional polymorphism (val158met) of the gene coding for Catechol-O-methyltransferase (COM) has been demonstrated to be related to processing of emotional stimuli. Also, this polymorphism has been found to be associated with pain regulation in healthy subjects. Therefore, we investigated a possible influence of this polymorphism on pain processing in healthy persons as well as in subjects with markedly reduced pain sensitivity in the context of Borderline Personality Disorder (BPD). Fifty females (25 patients with BPD and 25 healthy control participants) were included in this study. Genotype had a significant--though moderate--effect on pain sensitivity, but only in healthies. The number of val alleles was correlated with the BOLD response in several pain-processing brain regions, including dorsolateral prefrontal cortex, posterior parietal cortex, lateral globus pallidus, anterior and posterior insula. Within the subgroup of healthy participants, the number of val alleles was positively correlated with the BOLD response in posterior parietal, posterior cingulate, and dorsolateral prefrontal cortex. BPD patients revealed a positive correlation between the number of val alleles and BOLD signal in anterior and posterior insula. Thus, our data show that the val158met polymorphism in the COMT gene contributes significantly to inter-individual differences in neural pain processing: in healthy people, this polymorphism was more related to cognitive aspects of pain processing, whereas BPD patients with reduced pain sensitivity showed an association with activity in brain regions related to affective pain processing.  相似文献   

17.

Objective

Shortly after infection, HIV enters the brain and causes widespread inflammation and neuronal damage, which ultimately leads to neuropsychological impairments. Despite a large body of neuroscience and imaging studies, the pathophysiology of these HIV-associated neurocognitive disorders (HAND) remains unresolved. Previous neuroimaging studies have shown greater activation in HIV-infected patients during strenuous tasks in frontal and parietal cortices, and less activation in the primary sensory cortices during rest and sensory stimulation.

Methods

High-density magnetoencephalography (MEG) was utilized to evaluate the basic neurophysiology underlying attentive, visual processing in older HIV-infected adults and a matched non-infected control group. Unlike other neuroimaging methods, MEG is a direct measure of neural activity that is not tied to brain metabolism or hemodynamic responses. During MEG, participants fixated on a centrally-presented crosshair while intermittent visual stimulation appeared in their top-right visual-field quadrant. All MEG data was imaged in the time-frequency domain using beamforming.

Results

Uninfected controls had increased neuronal synchronization in the 6–12 Hz range within the right dorsolateral prefrontal cortex, right frontal eye-fields, and the posterior cingulate. Conversely, HIV-infected patients exhibited decreased synchrony in these same neural regions, and the magnitude of these decreases was correlated with neuropsychological performance in several cortical association regions.

Conclusions

MEG-based imaging holds potential as a noninvasive biomarker for HIV-related neuronal dysfunction, and may help identify patients who have or may develop HAND. Reduced synchronization of neural populations in the association cortices was strongly linked to cognitive dysfunction, and likely reflects the impact of HIV on neuronal and neuropsychological health.  相似文献   

18.
Two neuroimaging studies using fMRI were conducted in order to assess the cortical processes involved in the perception and suppression of pain. In the first study, 15 healthy subjects were stimulated with variable intensities of electrical pulses during a discrimination task. In the second study, the same subjects had to try to suppress the feeling of pain during tonic stimulation. The discrimination task resulted in cortical activation of contralateral SI, corresponding in extent to the intensity of the stimulus. Activation of contralateral operculum/posterior insula (SII) and non-dominant dorsolateral prefrontal cortex (DLPFC) with non-painful stimuli changed to activations of non-dominant anterior insula upon painful stimulation. In the second study, all subjects succeeded in suppressing the feeling of pain during previously painful levels of stimulation. During this suppression task, activations changed from anterior to posterior insula; also there was a suppression of activity in the anterior cingulated cortex (ACC) and caudate nucleus. Subjects seem to be able to suppress to a certain degree the feeling of pain under constant (and previously painful) stimulation. The cortical correlate seems to be a shift of cerebral activation from anterior to posterior right insula and a suppression of activity in the ACC and caudate nucleus.  相似文献   

19.
Two neuroimaging studies using fMRI were conducted in order to assess the cortical processes involved in the perception and suppression of pain. In the first study, 15 healthy subjects were stimulated with variable intensities of electrical pulses during a discrimination task. In the second study, the same subjects had to try to suppress the feeling of pain during tonic stimulation. The discrimination task resulted in cortical activation of contralateral SI, corresponding in extent to the intensity of the stimulus. Activation of contralateral operculum/posterior insula (SII) and non-dominant dorsolateral prefrontal cortex (DLPFC) with non-painful stimuli changed to activations of non-dominant anterior insula upon painful stimulation. In the second study, all subjects succeeded in suppressing the feeling of pain during previously painful levels of stimulation. During this suppression task, activations changed from anterior to posterior insula; also there was a suppression of activity in the anterior cingulated cortex (ACC) and caudate nucleus. Subjects seem to be able to suppress to a certain degree the feeling of pain under constant (and previously painful) stimulation. The cortical correlate seems to be a shift of cerebral activation from anterior to posterior right insula and a suppression of activity in the ACC and caudate nucleus.  相似文献   

20.
The dorsolateral prefrontal cortex in human and non-human primates functions as the highest-order executor for the perception-action cycle. According to this view, when perceptual stimuli from the environment are novel or complex, the dorsolateral prefrontal cortex serves to set consciously a goal-directed scheme which broadly determines an action repertory to meet the particular demand from the environment. In this respect, the dorsolateral prefrontal cortex is a short-term activation device with the properties of a cognitive switch', because it couples a particular set of perceptual stimuli to a particular set of actions. Here, I suggest that, in order for the organism to react systematically to the environment, neural traces for the switch function must be stored in the brain. Thus, the highest-order, perception-action interface function of the dorsolateral prefrontal cortex per se depends on permanently stored neural traces in the dorsolateral prefrontal cortex and related structures. Such a memory system may be located functionally between two of the well-documented memory systems in the brain: the declarative memory system and the procedural memory system. Finally, based on available neurophysiological data, the possible mechanisms underlying the formation of cognitive switch traces are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号