首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the CD1 family of membrane glycoproteins can present antigenic lipids to T lymphocytes. Like major histocompatibility complex class I molecules, they form a heterodimeric complex of a heavy chain and beta(2)-microglobulin (beta(2)m) in the endoplasmic reticulum (ER). Binding of lipid antigens, however, takes place in endosomal compartments, similar to class II molecules, and on the plasma membrane. Unlike major histocompatibility complex class I or CD1b molecules, which need beta(2)m to exit the ER, CD1d can be expressed on the cell surface as either a free heavy chain or associated with beta(2)m. These differences led us to investigate early events of CD1d biosynthesis and maturation and the role of ER chaperones in its assembly. Here we show that CD1d associates in the ER with both calnexin and calreticulin and with the thiol oxidoreductase ERp57 in a manner dependent on glucose trimming of its N-linked glycans. Complete disulfide bond formation in the CD1d heavy chain was substantially impaired if the chaperone interactions were blocked by the glucosidase inhibitors castanospermine or N-butyldeoxynojirimycin. The formation of at least one of the disulfide bonds in the CD1d heavy chain is coupled to its glucose trimming-dependent association with ERp57, calnexin, and calreticulin.  相似文献   

2.
The cationic peanut peroxidase is a complex enzyme consisting of a heme group, two calcium ions and three complex carbohydrate chains at positions Asn60, 144 and 185. Details of the heme and calcium ligation, necessary for oxidation, have recently been revealed from the three-dimensional structure of the peroxidase. However, the three glycans that may be important for the stability of the enzyme as well as its activity were not resolved. In order to determine the configuration of one of these glycans, PNGase A was used to cleave the glycan from the enzyme at Asn-144. This glycan was studied by two dimensional 1H-NMR spectroscopy to identify the sugar linkages. The results indicated a glycan structure comprising a Man alpha1-6(Xyl beta1-2)Man beta1-4GlcNAc beta1-4(Fuc alpha1-3)GlcNAc beta core but with an additional Man alpha1-3 appendage linked to Man3. The glycan also appeared to be heterogeneous as was noted from a single terminating galactose being linked to approximately 20-25% glycan.  相似文献   

3.
Complexes of specific assembly factors and generic endoplasmic reticulum (ER) chaperones, collectively called the MHC class I peptide-loading complex (PLC), function in the folding and assembly of MHC class I molecules. The glycan-binding chaperone calreticulin (CRT) and partner oxidoreductase ERp57 are important in MHC class I assembly, but the sequence of assembly events and specific interactions involved remain incompletely understood. We show that the recruitments of CRT and ERp57 to the PLC are codependent and also dependent upon the ERp57 binding site and the glycan of the assembly factor tapasin. Furthermore, the ERp57 binding site and the glycan of tapasin enhance β(2)m and MHC class I heavy (H) chain recruitment to the PLC, with the ERp57 binding site having the dominant effect. In contrast, the conserved MHC class I H chain glycan played a minor role in CRT recruitment into the PLC, but impacted the recruitment of H chains into the PLC, and glycan-deficient H chains were impaired for tapasin-independent and tapasin-assisted assembly. The conserved MHC class I glycan and tapasin facilitated an early step in the assembly of H chain-β(2)m heterodimers, for which tapasin-ERp57 or tapasin-CRT complexes were not required. Together, these studies provide insights into how PLCs are constructed, demonstrate two distinct mechanisms by which PLCs can be stabilized, and suggest the presence of intermediate H chain-deficient PLCs.  相似文献   

4.
《Journal of Proteomics》2010,73(1):123-133
β2-glycoprotein I (β2GPI) is a five-domain protein associated with the antiphospholipid syndrome (APS), however, its normal biological function is yet to be defined. β2GPI is N-glycosylated at several asparagine residues and the glycan moiety conjugated to residue 143 has been proposed to interact with the Gly40–Arg43 motif of β2GPI. The Gly40–Arg43 motif has also been proposed to serve as the epitope for the anti-β2GPI autoantibody associated with APS. We hypothesized that the structure or composition of the glycan at Asn-143 might be associated with the APS symptom by shielding or exposing the Gly40–Arg43 motif towards the anti-β2GPI autoantibody. To test this hypothesis we used mass spectrometry (MS) for comparative glycopeptide profiling of human β2GPI obtained from blood serum from four healthy test subjects and six APS patients. It revealed significant differences in the extent of sialylation and branching of glycans at Asn-143. Biantennary glycans were more abundant than triantennary glycans at Asn-143 in both healthy subjects and patients. In APS patient samples we observed a decrease in sialylated triantennary glycans and an increase in sialylated biantennary glycan structures, as compared to controls. These data indicate that some APS patients have β2GPI molecules with a reduced number of negatively charged sialic acid units in the glycan structure at Asn-143. This alteration of the electrostatic properties of the glycan moiety may attenuate the intramolecular interactions with the positively charged Gly40–Arg43 motif of β2GPI and, in turn, leads to conformational instability and exposure of the disease-related linear epitope Gly40–Arg43 to the circulating autoantibody. Thus, our study suggests a link between site-specific glycan profiles of β2GPI and the pathology of antiphospholipid syndrome.  相似文献   

5.
The assembly of major histocompatibility complex (MHC) class I molecules with peptides in the endoplasmic reticulum (ER) is a critical step in the presentation of viral antigens to CD8+ T cells. This process is subject to quality control restrictions that prevent free class I heavy chains (HCs) and peptide-free HC-beta(2)-microglobulin (beta(2)m) dimers from exiting the ER. The lectin-like chaperone calreticulin associates with HC-beta(2)m heterodimers prior to peptide binding, but its precise role in regulating the subsequent events of peptide association and ER to Golgi transport remains undefined. In vitro analysis of the assembly process has been limited by the specificity of calreticulin for monoglucosylated N-linked glycans, which are transient biosynthetic intermediates. To address this problem, we developed a novel expression system using Saccharomyces cerevisiae glycosylation mutants to produce class I HC bearing N-linked oligosaccharides with the specific structure Glc(1)Man(9)GlcNAc(2). The monoglucosylated glycan proved to be both necessary and sufficient for in vitro binding of calreticulin to MHC class I molecules. Calreticulin bound as efficiently to peptide-loaded MHC class I complexes as it did to folding intermediates created in vitro, namely free class I HC and empty HC-beta(2)m heterodimers. Thus, calreticulin is unable to discriminate between native and non-native MHC class I conformations and therefore unlikely to play a role in the recognition and release of peptide-loaded complexes from the ER. Furthermore, the recombinant expression system developed in this study can be used to produce a broad range of calreticulin substrates to elucidate its general mechanism of activity in vitro.  相似文献   

6.
The influence of TAP-MHC class I interactions on peptide binding to the class I heavy chain is assessed during TAP-dependent assembly using Kb-specific Abs that recognize conformational changes induced by assembly with beta2-microglobulin (beta2m) and by peptide binding. A significant portion (45%) of Kb molecules in TAP+, RMA-derived microsomes are associated with the TAP complex as measured by coimmunoisolation of Kb using anti-TAP1 Abs, while only 20% of the Kb heavy chain molecules are isolated as Kbbeta2m complexes with the alpha-Kb-specific Abs, Y-3 or K-10-56. The amount of Kb isolated with Y-3 and K-10-56 increases in proportion to transport and binding of peptide to the Kb molecules within the RMA microsomes. In contrast, less than 5% of the Kb within TAP2-RMA-S microsomes associated with the remaining TAP1 subunit. However, greater than 60% of Kb heavy chain is isolated as K-10-56- and Y-3-reactive Kbbeta2m complexes. We propose that a TAP-MHC class I interaction serves to stabilize the MHC class I:beta2m complex in an immature conformation (Y-3 and K-10-56 nonreactive) prior to high affinity peptide binding, preventing the export of class I molecules complexed with low affinity peptide ligands from the ER.  相似文献   

7.
Chemical cross-linking and gel permeation chromatography were used to examine early events in the biogenesis of class I histocompatibility molecules. We show that newly synthesized class I heavy chains associate rapidly and quantitatively with an 88-kD protein in three murine tumor cell lines. This protein (p88) does not appear to possess Asn-linked glycans and it is not the abundant ER protein, GRP94. The class I-p88 complex exists transiently (t1/2 = 20-45 min depending on the specific class I heavy chain) and several lines of evidence suggest that p88 dissociates from the complex while still in the ER. Dissociation is not triggered upon binding of beta 2-microglobulin to the heavy chain (t1/2 = 2-5 min). However, the rate of dissociation does correlate with the characteristic rate of ER to Golgi transport for the particular class I molecule studied. Consequently, dissociation of p88 may be rate limiting for ER to Golgi transport. Class I molecules bind antigenic peptides, apparently in the ER, for subsequent presentation to cytotoxic T lymphocytes at the cell surface. p88 could promote peptide binding or it may retain class I molecules in the ER during formation of the ternary complex of heavy chain, beta 2-microglobulin, and peptide.  相似文献   

8.
Electrophoretic analysis of endoglycosidase-treated tissue plasminogen activator obtained from human melanoma cells showed that the heterogeneity observed for the protein in these preparations is caused by an N-glycosidically linked N-acetyllactosamine type of carbohydrate chain which is present in about 50% of the molecules. An oligomannose type and an N-acetyllactosamine type of glycan is present in all molecules. Three glycopeptides were isolated and characterized by 1H-NMR, sugar determination, methylation analysis and amino acid determination. The exact attachment site for each of the three glycans could be deduced from the amino acid compositions of the glycopeptides. Asn-117 carries the oligomannose type of glycan, the structure of which was completely determined. Asn-184 is the site where the presence or absence of a biantennary N-acetyllactosamine type of glycan causes the size heterogeneity. The third N-glycosylation site, Asn-448, was found to carry a triantennary or tetraantennary N-acetyllactosamine type of carbohydrate chain.  相似文献   

9.
Secretory IgA (SIgA) is a multi-polypeptide complex consisting of a secretory component (SC) covalently attached to dimeric IgA containing one joining (J) chain. We present the analysis of both the N- and O-glycans on the individual peptides from this complex. Based on these data, we have constructed a molecular model of SIgA1 with all its glycans, in which the Fab arms form a T shape and the SC is wrapped around the heavy chains. The O-glycan regions on the heavy (H) chains and the SC N-glycans have adhesin-binding glycan epitopes including galactose-linked beta1-4 and beta1-3 to GlcNAc, fucose-linked alpha1-3 and alpha1-4 to GlcNAc and alpha1-2 to galactose, and alpha2-3 and alpha2-6-linked sialic acids. These glycan epitopes provide SIgA with further bacteria-binding sites in addition to the four Fab-binding sites, thus enabling SIgA to participate in both innate and adaptive immunity. We also show that the N-glycans on the H chains of both SIgA1 and SIgA2 present terminal GlcNAc and mannose residues that are normally masked by SC, but that can be unmasked and recognized by mannose-binding lectin, by disrupting the SC-H chain noncovalent interactions.  相似文献   

10.
The heavy glycosylation of HIV-1 envelope gp120 shields this important Ag from recognition by neutralizing Abs and cytolytic CD8 T cells. However, very little work has been done to understand the influence of glycosylation on the generation of gp120 epitopes and their recognition by MHC class II-restricted CD4 T cells. In this study, three conserved glycans (linked to N406, N448, and N463) flanking the C4 region of gp120 that contains many known CD4 T cell epitopes were disrupted individually or in combination by asparagine-to-glutamine substitutions. The mutant proteins lacking the N448 glycan did not effectively stimulate CD4 T cells specific for the nearby C4 epitopes, although the same mutants were recognized well by CD4 T cells specific for epitopes located in the distant C1 and C2 regions. The loss of recognition was not due to amino acid substitutions introduced to the mutant proteins. Data from trypsin digestion and mass spectrometry analyses demonstrated that the N448 glycan removal impeded the proteolytic cleavage of the nearby C4 region, without affecting more distant sites. Importantly, this inhibitory effect was observed only in the digestion of the native nondenatured protein and not in that of the denatured protein. These data indicate that the loss of the N448 glycan induces structural changes in the C4 region of gp120 that make this specific region more resistant to proteolytic processing, thereby restricting the generation of CD4 T cell epitopes from this region. Hence, N-linked glycans are critical determinants that can profoundly influence CD4 T cell recognition of HIV-1 gp120.  相似文献   

11.
Glycosylation is an important posttranslational modificationin proteins, and aberrant glycosylation occurs in malignancies.Human chorionic gonadotropin (hCG) is a glycoprotein hormoneproduced in high concentrations during pregnancy. It is alsoexpressed as particular glycoforms by certain malignancies.These glycoforms, which are called "hyperglycosylated" hCG (hCGh),have been reported to contain more complex glycan moieties.We have analyzed tryptic glycopeptides of the ß-subunitof hCG of various origins by liquid chromatography (LC) connectedto an electrospray mass spectrometer. Site-specific glycan structureswere visualized by the use of differential expression analysissoftware. hCGß was purified from urine of two patientswith testicular cancer, one with choriocarcinoma, one with aninvasive mole, two pregnant women at early and late gestation,from a pharmaceutical preparation and culture medium of a choriocarcinomacell line. N-glycans at Asn-13 and Asn-30 as well as O-glycansat Ser-121, Ser-127, Ser-132, and Ser-138 were characterized.In all samples, the major type of N-glycan was a biantennarycomplex-type structure, but triantennary structures linked toAsn-30 as well as fucosylation of the Asn-13-bound glycan areincreased in cancer-derived hCGß. There were significantsite-specific differences in the O-glycans, with constant core-2glycans at Ser-121, core-1 glycans at Ser-138, and putativesites unoccupied by any glycan. Core-2 glycans at either Ser-127or Ser-132 were enriched in cancer. The glycans of free hCGßwere larger and had a higher fucose content of Asn-13-linkedoligosaccharides than intact hCG. This may facilitate the detectionof this malignancy-associated variant by a lectin assay. Analysisof hCGh affinity purified with antibody B152 confirmed thatthis antibody recognizes a core-2 glycan on Ser-132.  相似文献   

12.
The complex asparagine-linked glycans of plant glycoproteins, characterized by the presence of beta 1-->2 xylose and alpha 1-->3 fucose residues, are derived from typical mannose9(N-acetylglucosamine)2 (Man9GlcNAc2) N-linked glycans through the activity of a series of glycosidases and glycosyl transferases in the Golgi apparatus. By screening leaf extracts with an antiserum against complex glycans, we isolated a mutant of Arabidopsis thaliana that is blocked in the conversion of high-manne to complex glycans. In callus tissues derived from the mutant plants, all glycans bind to concanavalin A. These glycans can be released by treatment with endoglycosidase H, and the majority has the same size as Man5GlcNAc1 glycans. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, the mutant cells synthesize Man9GlcNAc2 and Man8GlcNAc2 glycans, suggesting that the biochemical lesion in the mutant is not in the biosynthesis of high-mannose glycans in the endoplasmic reticulum but in their modification in the Golgi. Direct enzyme assays of cell extracts show that the mutant cells lack N-acetyl glucosaminyl transferase I, the first enzyme in the pathway of complex glycan biosynthesis. The mutant plants are able to complete their development normally under several environmental conditions, suggesting that complex glycans are not essential for normal developmental processes. By crossing the complex-glycan-deficient strain of A. thaliana with a transgenic strain that expresses the glycoprotein phytohemagglutinin, we obtained a unique strain that synthesizes phytohemagglutinin with two high-mannose glycans, instead of one high-mannose and one complex glycan.  相似文献   

13.
The meprin A homo-oligomer is a highly glycosylated, secreted zinc metalloprotease of the astacin family and metzincin superfamily. This isoform of meprin is composed of disulfide-bonded dimers of alpha subunits that further associate to form large, secreted megadalton complexes of 10 or more subunits. The aim of this study was to determine the sites of glycan attachment and to assess their ability to affect the formation and stability of the homo-oligomer. Nine of the ten potential N-linked glycosylation sites (Asn-41, Asn-152, Asn-234, Asn-270, Asn-330, Asn-426, Asn-452, Asn-546, and Asn-553) were found to be glycosylated in recombinant mouse meprin A using chemical and enzymatic deglycosylation methods and electrospray ionization mass spectrometry. Chemical cross-linking demonstrated that carbohydrates are at or near the noncovalent subunit interface. The removal of two glycans in the protease domain at Asn-234 and Asn-270, as well as one in the tumor necrosis factor receptor-associated factor domain at Asn-452, by a deglycosidase under nondenaturing conditions decreased the chemical and thermal stability of the homo-oligomer without affecting quaternary structure. Site-directed mutagenesis demonstrated that no single glycan was essential for oligomer formation; however, the combined absence of the glycans at Asn-152 and Asn-270 in the protease domain hindered intersubunit disulfide bond formation, prevented noncovalent associations, and abolished enzymatic activity. These studies provide insights into the role of glycans in the biosynthesis, activity, and stability of this extracellular protease.  相似文献   

14.
A 'serotransferrin-like' protein was purified from mouse milk. This serotransferrin cross-reacts immunologically with the serotransferrin isolated from mouse plasma and not with the mouse lactotransferrin (lactoferrin). Sugar analysis of the three transferrins, i.e. serotransferrin, milk 'serotransferrin-like' protein and lactotransferrin, revealed that the major difference between the glycan primary structure of mouse serotransferrin and those of mouse milk 'serotransferrin-like' protein and lactotransferrin concerns essentially the presence of one fucose residue in the last two proteins. For structural determination, the N-glycosidically linked glycans were released from the protein by a reductive cleavage of the oligosaccharide-protein linkage under strong alkaline conditions. The primary structure of the released oligosaccharide alditols was determined by methylation analysis and 400 MHz 1H-n.m.r. spectroscopy. The oligosaccharide alditols released from milk 'serotransferrin-like' protein and lactotransferrin were identical and were identified as disialylated biantennary glycans of the N-acetyl-lactosamine type with a fucose residue alpha-1,6-linked to the N-acetylglucosamine residue conjugated to the peptide chain and having the following primary structure: NeuAc(alpha 2-6)Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-3)[NeuAc(alpha 2-6)Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-6)]Man(beta 1-4)GlcNAc(beta 1-4)[Fuc(alpha 1-6)]GlcNAc(beta 1-N)Asn. The serotransferrin glycan has the same primary structure but is only partially fucosylated (10-15%).  相似文献   

15.
The mechanism of assembly/dissociation of a recombinant water-soluble class I major histocompatibility complex (MHC) H-2Kb molecule was studied by a real-time fluorescence resonance energy transfer method. Like the H-2Kd ternary complex [Gakamsky et al. (1996) Biochemistry 35, 14841-14848], the interactions among the heavy chain, beta2-microglobulin (beta2m), and antigenic peptides were found to be controlled by an allosteric mechanism. Association of the heavy chain with beta2m increased peptide binding rate constants by more than 2 orders of magnitude and enhanced affinity of the heavy-chain molecule for peptides. Interaction of peptides with the heavy-chain binding site, in turn, increased markedly the affinity of the heavy chain for beta2m. Binding of peptide variants of the ovalbumin sequence (257-264) to the heavy chain/beta2m heterodimer was found to be a biphasic reaction. The fast phase was a second-order process with nearly the same rate constants as those of binding of peptides derived from the influenza virus nucleoprotein 147-155 to the H-2Kd heavy chain/beta2m heterodimer [(3.0 +/- 1.0) x 10(-6) M-1 s-1 at 37 degrees C]. The slow phase was a result of both the ternary complex assembly from the "free" heavy chain, beta2m, and peptide as well as an intramolecular conformational transition within the heavy chain/beta2m heterodimer to a peptide binding conformation. Biexponential kinetics of peptide or beta2m dissociation from the ternary complex were observed. They suggest that it can exist in two conformations. The rate constants of beta2m dissociation from the H-2Kb ternary complex were, in the limits of experimental accuracy, independent of the structure of the bound peptide, though their affinities differed by an order of magnitude. Dissociation of peptides from the Kb heavy chain was always faster than from the ternary complexes, yet the heavy chain/peptide complexes were considerably more stable compared with their Kd/nucleoprotein peptide counterparts.  相似文献   

16.
β2-glycoprotein I (β2GPI) is a five-domain protein associated with the antiphospholipid syndrome (APS), however, its normal biological function is yet to be defined. β2GPI is N-glycosylated at several asparagine residues and the glycan moiety conjugated to residue 143 has been proposed to interact with the Gly40–Arg43 motif of β2GPI. The Gly40–Arg43 motif has also been proposed to serve as the epitope for the anti-β2GPI autoantibody associated with APS. We hypothesized that the structure or composition of the glycan at Asn-143 might be associated with the APS symptom by shielding or exposing the Gly40–Arg43 motif towards the anti-β2GPI autoantibody. To test this hypothesis we used mass spectrometry (MS) for comparative glycopeptide profiling of human β2GPI obtained from blood serum from four healthy test subjects and six APS patients. It revealed significant differences in the extent of sialylation and branching of glycans at Asn-143. Biantennary glycans were more abundant than triantennary glycans at Asn-143 in both healthy subjects and patients. In APS patient samples we observed a decrease in sialylated triantennary glycans and an increase in sialylated biantennary glycan structures, as compared to controls. These data indicate that some APS patients have β2GPI molecules with a reduced number of negatively charged sialic acid units in the glycan structure at Asn-143. This alteration of the electrostatic properties of the glycan moiety may attenuate the intramolecular interactions with the positively charged Gly40–Arg43 motif of β2GPI and, in turn, leads to conformational instability and exposure of the disease-related linear epitope Gly40–Arg43 to the circulating autoantibody. Thus, our study suggests a link between site-specific glycan profiles of β2GPI and the pathology of antiphospholipid syndrome.  相似文献   

17.
We have devised a simple method for achieving 890-fold purification of ceramide glycanase with 17% recovery from a North American leech, Macrobdella decora. The method includes water extraction, ammonium sulfate fractionation, and chromatography on octyl-Sepharose, Matrex gel blue A, and Bio-Gel A-0.5m columns. The final preparation showed one major protein band at 54 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By using Bio-Gel A-0.5m filtration, the native enzyme was found to have a molecular mass of 330 kDa. With GM1 as substrate, the optimum pH of this enzyme was determined to be 5.0; the enzyme was stable between pH 4.5 and 8.5. Zn2+ at 5 mM and Cu2+, Ag+, and Hg2+ at 1 mM strongly inhibited the hydrolysis of GM1 by ceramide glycanase. The ceramide glycanase released the intact glycan chain from various glycosphingolipids in which the glycan chain is linked to the ceramide through a beta-glucosyl linkage. This enzyme also cleaved lyso-glycosphingolipids such as lyso-GM1 and lyso-LacCer and synthetic alkyl beta-lactosides. Among seven alkyl beta-lactosides tested, the enzyme only hydrolyzed the ones with an alkyl chain length of four or more carbons. The enzyme also hydrolyzed 2-(octadecylthio)ethyl O-beta-lactoside and 2-(2-carbomethoxyethylthio)ethyl O-beta-lactoside. p-Nitrophenyl, benzyl, and phytyl beta-lactosides, on the other hand, were not hydrolyzed. These results suggest that the enzyme can recognize the hydrophobic portion of glycolipid substrates. The fact that 2-(2-carbomethoxyethylthio)ethyl O-beta-N-acetyllactosaminide and DiGalCer were refractory to the enzyme indicated that in the substrate the first sugar attached to the hydrophobic chain cannot be N-acetylglucosamine and galactose. Furthermore, dodecyl maltoside, Gal alpha 1----6Glc beta Cer, and the LacCer in which the --CH2OH of the galactose was converted into --CHO were also resistant to the enzyme, and Man beta 1----4 Glc beta Cer was hydrolyzed at a much slower rate than LacCer. These results indicate that the nature and the linkage of the sugar attached to the glucose have a profound effect on the action of this enzyme. The hydrolysis of glycosphingolipids by ceramide glycanase is stimulated by bile salts. Among various bile salts tested, sodium cholate at a concentration of 1 microgram/microliter was found to be most effective in stimulating the hydrolysis of various glycosphingolipids with the exception of LacCer. For LacCer, sodium taurodeoxycholate at a concentration of 2-3 micrograms/microliters was most effective. Tween 20, Nonidet P-40, and Triton X-100 did not stimulate the hydrolysis of GM1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
beta2-Microglobulin (beta2m) is the non-covalently bound light chain of the human class I major histocompatibility complex (MHC-I). The natural turnover of MHC-I gives rise to the release of beta2m into plasmatic fluids and to its catabolism in the kidney. beta2m dissociation from the heavy chain of the complex is a severe complication in patients receiving prolonged hemodialysis. As a consequence of renal failure, the increasing beta2m concentrations can lead to deposition of the protein as amyloid fibrils. Here we characterize the His31-->Tyr human beta2m mutant, a non-natural form of beta2m that is more stable than the wild-type protein, displaying a ten-fold acceleration of the slow phase of folding. We report the 2.9A resolution crystal structure and the NMR characterization of the mutant beta2m, focussing on selected structural features and on the molecular packing observed in the crystals. Juxtaposition of the four mutant beta2m molecules contained in the crystal asymmetric unit, and specific hydrogen bonds, stabilize a compact protein assembly. Conformational heterogeneity of the four independent molecules, some of their mutual interactions and partial unpairing of the N-terminal beta-strand in one protomer are in keeping with the amyloidogenic properties displayed by the mutant beta2m.  相似文献   

19.
The immunoglobulin (Ig) molecule is composed of two identical heavy chains and two identical light chains (H2L2). Transport of this heteromeric complex is dependent on the correct assembly of the component parts, which is controlled, in part, by the association of incompletely assembled Ig heavy chains with the endoplasmic reticulum (ER) chaperone, BiP. Although other heavy chain-constant domains interact transiently with BiP, in the absence of light chain synthesis, BiP binds stably to the first constant domain (CH1) of the heavy chain, causing it to be retained in the ER. Using a simplified two-domain Ig heavy chain (VH-CH1), we have determined why BiP remains bound to free heavy chains and how light chains facilitate their transport. We found that in the absence of light chain expression, the CH1 domain neither folds nor forms its intradomain disulfide bond and therefore remains a substrate for BiP. In vivo, light chains are required to facilitate both the folding of the CH1 domain and the release of BiP. In contrast, the addition of ATP to isolated BiP-heavy chain complexes in vitro causes the release of BiP and allows the CH1 domain to fold in the absence of light chains. Therefore, light chains are not intrinsically essential for CH1 domain folding, but play a critical role in removing BiP from the CH1 domain, thereby allowing it to fold and Ig assembly to proceed. These data suggest that the assembly of multimeric protein complexes in the ER is not strictly dependent on the proper folding of individual subunits; rather, assembly can drive the complete folding of protein subunits.  相似文献   

20.
The T cell antigen receptor (TCR) is an oligomeric protein complex made from at least six different integral membrane proteins (alpha beta gamma delta epsilon and zeta). The TCR is assembled in the ER of T cells, and correct assembly is required for transport to the cell surface. Single subunits and partial receptor complexes are retained in the ER where TCR alpha, beta, and CD3 delta chains are degraded selectively. The information required for the ER degradation of the TCR beta chain is confined to the membrane anchor of the protein (Wileman et al., 1990c; Bonifacino et al., 1990b). In this study we show that the rapid degradation of the TCR beta chain is inhibited when it assembles with single CD3 gamma, delta, or epsilon subunits in the ER, and have started to define the role played by transmembrane anchors, and receptor ectodomains, in the masking proteolytic targeting information. Acidic residues within the membrane spanning domains of CD3 subunits were essential for binding to the TCR beta chain. TCR beta chains and CD3 subunits therefore interact via transmembrane domains. However, when sites of binding were restricted to the membrane anchor of the TCR beta chain, stabilization by CD3 subunits was markedly reduced. Interactions between membrane spanning domains were not, therefore, sufficient for the protection of the beta chain from ER proteolysis. The presence of the C beta domain, containing the first 150 amino acids of the TCR ectodomain, greatly increased the stability of complexes formed in the ER. For assembly with CD3 epsilon, stability was further enhanced by the V beta amino acids. The results showed that the efficient neutralization of transmembrane proteolytic targeting information required associations between membrane spanning domains and the presence of receptor ectodomains. Interactions between receptor ectodomains may slow the dissociation of CD3 subunits from the beta chain and prolong the masking of transmembrane targeting information. In addition, the close proximity of TCR and CD3 ectodomains within the ER may provide steric protection from the action of proteases within the ER lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号