首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Infections caused by Acinetobacter baumannii have emerged as a significant clinical problem due to the increase in infections caused by antibiotic resistant strains. A. baumannii OmpA is a highly conserved membrane protein that has multiple roles in interacting with the host during infection, and thus represents an attractive target for the development of novel antibacterial therapies. In the present study, the coding sequence of the mature form of A. baumannii OmpA was cloned into the vector pET-15b and purified under denaturing conditions from Escherichia coli inclusion bodies using nickel affinity chromatography. A Triton X-114 wash step was incorporated into the purification method in order to remove endotoxin, resulting in endotoxin levels of <1.3 EU/mg of protein. A protocol was developed for refolding the purified protein by dilution into the non-ionic detergent n-octyl-β-D-glucopyranoside followed by dialysis to remove excess denaturant and detergent. Cytotoxicity assays demonstrated that refolded A. baumannii OmpA was able to induce cell death in A549 cells. In addition, a polyclonal antibody was raised against the refolded protein and used to assess extracellular secretion of OmpA by Western blot. This protein expression and purification system may be useful for further characterization of A. baumannii OmpA.  相似文献   

2.
PKB/Akt is a protein involved in control of apoptosis, proliferation and cellular metabolism, and it has been found to be activated in many cancers. Activation of PKB involves recruitment of the enzyme by its PH domain to the cell membrane, and phosphorylation at two residues, T308 and S473. To produce active PKB kinase from Escherichia coli, we constructed a derivative of PKB lacking the PH domain and mutated to glutamate at residues S124, T450 and the activating residue S473 (DeltaPH-PKB-EEE). DeltaPH-PKB-EEE was expressed in E. coli together with PDK1, the kinase responsible for phosphorylating PKB at T308, which was expressed as a GST-fusion. Full-length DeltaPH-PKB-EEE was obtained by using a double tag strategy: His6 at the N-terminus and FLAG at the C-terminus. The protein was purified by nickel affinity chromatography, followed by passage over an anti-FLAG column. The final purification step, anion exchange over a monoQ column, separated phosphorylated from unphosphorylated protein. Active recombinant PKB kinase was thus produced from E. coli, by a simple, reproducible procedure.  相似文献   

3.
4.
Since transglutaminase (TGase) have been widely used in industry, mass production of the enzyme is especially necessary. The mature TGase gene from Streptomyces fradiae was cloned into pET21a and overexpressed in Escherichia coli BL21(DE3). The recombinant TGase was formed as inclusion bodies, and its content was as high as 55% of the total protein content. The insoluble fractions were separated from cellular debris by centrifugation and solubilized with 8 M urea. With an on-column refolding procedure based on cation SP Fast Flow chromatography with dual-gradient, the active TGase protein was recovered efficiently from inclusion bodies. The final purified product was 95% pure detected by SDS-PAGE. Under appropriate experimental conditions, the protein yield and specific activity of the TGase were up to 53% and 21 U/mg, respectively. Furthermore, the refolded recombinant protein demonstrated nearly identical ability to polymerized BSA compared with that of native TGase. One hundred and five milligrams of refolded TGase protein was obtained from 3.2g wet weight cells in the 400 ml cell culture.  相似文献   

5.
The gene encoding hygromycin B phosphotransferase (hpt) is a widely used selectable marker in the production of genetically engineered crops. To facilitate the safety assessment of this protein, the non-fusion hpt expression plasmid was constructed and introduced into Escherichia coli to produce enough quantity of the HPT protein. High level expressed HPT was achieved but most of the expressed protein aggregated as inclusion bodies. The inclusion bodies were washed, separated from the cells, and solubilized by 0.3% Sarkosyl. The protein was renatured by dilution and dialysis, and then purified by anion-exchange chromatography. The activity is 8 U/mg protein and the purity is about 95%. Further studies showed that the microbially produced HPT protein had comparable molecular weight, immuno-reactivities, N-terminal amino acid sequences, and biological activities with those of the HPT produced by transgenic rice harboring hpt gene. All these results demonstrated the validity of utilizing the microbially produced HPT to assess the safety of the HPT protein produced in genetically engineered rice.  相似文献   

6.
The genes encoding carboxypeptidase Y (CPY) and CPY propeptide (CPYPR) from Saccharomyces cerevisiae were cloned and expressed in Escherichia coli. Six consecutive histidine residues were fused to the C-terminus of the CPYPR for facilitated purification. High-level expression of CPY and CPYPR-His(6) was achieved but most of the expressed proteins were present in the form of inclusion bodies in the bacterial cytoplasm. The CPY and CPYPR-His(6) produced as inclusion bodies were separated from the cells and solubilized in 6 and 3 M guanidinium chloride, respectively. The denatured CPYPR-His(6) was refolded by dilution 1:30 into the renaturation buffer (50 mM Tris-HCl containing 0.5 M NaCl and 3 mM EDTA, pH 8.0), and the refolded CPYPR-His(6) was further purified to 90% purity by single-step immobilized metal ion affinity chromatography. The denatured CPY was refolded by dilution 1:60 into the renaturation buffer containing CPYPR-His(6) at various concentrations. Increasing the molar ratio of CPYPR-His(6) to CPY resulted in an increase in the CPY refolding yield, indicating that the CPYPR-His(6) plays a chaperone-like role in in vitro folding of CPY. The refolded CPY was purified to 92% purity by single-step p-aminobenzylsuccinic acid affinity chromatography. When refolding was carried out in the presence of 10 molar eq CPYPR-His(6), the specific activity, N-(2-furanacryloyl)-l-phenylalanyl-l-phenylalanine hydrolysis activity per milligram of protein, of purified recombinant CPY was found to be about 63% of that of native S. cerevisiae CPY.  相似文献   

7.
The functions of each of the three subunits of the damage-specific UvrABC endonuclease is currently being studied by systematically mutagenizing the corresponding genes to generate mutant proteins for characterization in vitro. In this communication, we describe the construction of C-terminal deletion mutants of the UvrA protein and a procedure to purify the mutant and wild-type UvrA proteins from inclusion bodies in cells overexpressing the recombinant proteins. The method yields highly purified proteins with between 10 and 50% of the specific activity of wild-type UvrA purified by conventional techniques from the soluble fraction. The wild-type UvrA protein purified by this method had the properties of significant and selective loss of activity in assays of incision of damaged DNA, while still retaining high levels of the other unique molecular phenotypic properties associated with intact UvrA. Furthermore, the demonstration of the absolute requirement for zinc during refolding for recovery of activity is the first evidence that the zinc previously shown to be associated with the UvrA protein is in fact a necessary component for its function.  相似文献   

8.
9.
We have investigated the refolding and purification of the catalytic domain of human 3',5'-cyclic nucleotide phosphodiesterase 7A1 (PDE7A1) expressed in Escherichia coli. A cDNA encoding an N-terminal-truncated PDE7A1(147-482-His) was amplified by RT-PCR from human peripheral blood cells and inserted into the vector pET21-C for bacterial expression of the enzyme fused to a C-terminal His-tag. The PDE was found to be expressed in the form of inclusion bodies which could be refolded to an active enzyme in buffer containing high concentrations of arginine hydrochloride, ethylene glycol, and magnesium chloride at pH 8.5. The PDE7A1(147-482-His) construct could be purified after dialysis and concentration steps by either Zn2+-IDA-Sepharose chromatography or ResourceQ ion-exchange chromatography to homogeneity. In comparison to the metal-chelate column, the ResourceQ purification resulted in a distinctly better yield and enrichment of the protein. Both the Vmax (0.46 micromol. min(-1). mg(-1) ) and the K(m) (0.1 microM) of the purified enzyme were found to be comparable with published data for native or recombinant catalytically active expressed PDE7A1. Using SDS/PAGE, a molecular mass of 39 kDa was determined (theoretical value 38.783 kDa). As known from several other mammalian PDEs, size-exclusion chromatography using refolded PDE7A1(147-482-His) indicated the formation of dimers. The purified enzyme was soluble at concentrations up to 100 microg/ml. A further increase of protein concentration resulted, however, in precipitation of the enzyme.  相似文献   

10.
Escherichia. coli cells expressing porcine growth hormone were grown in a batch fermentation process. The expression level was estimated to be nearly 40% of the total cellular protein after 2–3 h of induction with 1?mM isopropyl β-d-thiogalactoside. Porcine growth hormone expressed as inclusion bodies was solubilized in 8 M urea. Refolding conditions following a dilution protocol in the presence of β-mercaptoethanol or using a glutathione pair were tested. Reverse phase-HPLC was applied to distinguish oxidized, misfolded and reduced forms of the hormone. A ratio of reduced to oxidized glutathione equal to 2/1 was chosen to avoid the formation of misfolded forms at high protein concentration.  相似文献   

11.
An inexpensive and fast-folding strategy for single-chain antibody (scFv) recovered from Escherichia coli inclusion bodies has been developed. Two anti-fluorescein single-chain antibodies, 4-4-20 and 4M5.3, were expressed as inclusion bodies in E. coli for use in a comparative refolding study. Active protein yields as well as degree of aggregation were evaluated for scFv produced by stepwise dialysis, redox dialysis, and a newly developed controlled dilution and filtration strategy. Although all three methods produced active protein for both 4-4-20 and 4M5.3, the extent of aggregation differed greatly among the methods. For 4-4-20, the controlled dilution and filtration strategy reduced aggregation by half, allowed batch processing times of 8h (an 18-fold improvement), and significantly reduced denaturant usage while increasing active yields by 150%. A hydroxyapatite resin polishing step was used to remove completely the aggregate species and inactive monomeric scFv from active scFv.  相似文献   

12.
Recombinant human renin synthesized in Escherichia coli in the form of inclusion bodies has been recovered in a soluble form without the use of denaturing agents. The renin protein in soluble fractions has been confirmed by Western immunoblotting.  相似文献   

13.
A cross-flow membrane filtration process was developed for the recovery of rIL-2 inclusion bodies from homogenized Escherichia coli. The membrane extraction process was comprised of a two-step diafiltration followed by an extraction with 7 M GuHCl and a 40-fold dilution of the solubilized inclusion bodies into 0.01 M Tris-HCl, 0.035 M NaCl, pH 7.9. The first diafiltration was with a 0.03 M Tris-HCl, 5 mM ethylenediaminetetraacetic acid (EDTA), pH 8, followed by a diafiltration with 1.75 M GuHCl. All of the insoluble rIL-2 was retained behind the membrane, whereas a GuHCl wash solubilized approximately 15% of the rIL-2. The membrane process increased the yield of rIL-2 in the diluted extract by threefold as compared to a similar centrifuge process with a significant increase in purity as determined by reverse-phase high-performance liquid chromatography (HPLC). (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
Heterotrimeric G proteins relay signals from G protein-coupled receptors (GPCRs) to the interior of the cell. The signaling cascades induced by G protein activation control a wide range of cellular processes. The α subunit is believed to determine which G protein couples to each GPCR, and is the primary determinant of the type of signal transmitted. Several members of the Gα family have been expressed in active form in Escherichia coli. However, production levels of these proteins are limited: in most cases only 10% of total Gα protein expressed is active; the rest accumulates in inclusion bodies. Although G has been readily expressed in soluble form (to 10 mg/L), other α subunits are minimally soluble, and many are exclusively expressed to inclusion bodies. Previous efforts to solubilize and refold Gα from inclusion bodies have not been successful. Here we did a thorough study of the characteristics of Gα subunits (human Giα(1), human Gsα(short), human G11α and human Gtα(cone)), solubilized and purified from inclusion bodies. We find that we can obtain soluble protein both by on-column and rapid-dilution techniques. Comparison to native, soluble G expressed from E. coli showed that although the refolded Gα subunits were soluble and retained partial α-helicity characteristic of the native, folded Gα subunit, they did not bind GDP or GTP as effectively as native protein. We conclude that the refolded G protein has a native-like secondary structure, but is predominately in a molten globular state.  相似文献   

15.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine, the major methyl donor for transmethylation reactions. Attempts to perform structural studies using rat liver MAT have met with problems because the protein purified from cellular extracts is heterogeneous. Overexpression of the enzyme in Escherichia coli rendered most of the protein as inclusion bodies. These aggregates were purified by specific washes using urea and Triton X-100 and used for refolding. Maximal activity was obtained when chaotropic solubilization included the structural cation Mg(2+), the protein concentration was kept below 0.1 mg/ml, and denaturant removal was carried out in a two-step process, namely, a fast dilution followed by dialysis in the presence of 10 mM DTT or GSH/GSSG redox buffers. Refolding by this procedure generated the oligomeric forms, MAT I and III, which were basically indistinguishable from the purified rat liver forms in secondary structure and catalytic properties.  相似文献   

16.
Zymomonas mobilis levansucrase was overproduced by the fed-batch culture of recombinant Escherichia coli harboring a novel expression system that is constitutively expressed by the promoter from the Rahnella aquatilis levansucrase gene. Most of the levansucrase was produced as inclusion bodies in the bacterial cytoplasm, accounting for approximately 20% of the total cellular protein. Refolding after complete denaturation by high concentrations of urea or guanidine hydrochloride was not successful, resulting in large amounts of insoluble aggregates. During the development of the refolding method, it was found that direct solubilization of the inclusion bodies with Triton X-100 reactivated the enzyme, with a considerable refolding efficiency. About 65% of inclusion body levansucrase was refolded into active levansucrase in the renaturation buffer containing 4% (v/v) Triton X-100. The in vitro refolded enzyme was purified to 95% purity by single-step DEAE-Sepharose ion exchange chromatography. Triton X-100 was removed by this ion exchange chromatography.  相似文献   

17.
The nicotinic acetylcholine receptor from electrogenic tissue of Torpedo californica was solubilized by tryptic digestion of membrane fragments obtained from autolysed tissue, without use of detergent. The water-soluble acetylcholine receptor was purified by affinity chromatography on a cobra-toxin-Sepharose resin. The purified receptor bound 4000-6000 pmol per mg protein of alpha-[125I]bungarotoxin, and toxin-binding was specifically inhibited by cholinergic ligands. Gel filtration revealed a single molecular species of Stokes radius 125 +/- 10 A and on sucrose gradient centrifugation one major peak was observed of 20-22 S. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and beta-mercaptoethanol revealed two major polypeptides of mol. wt. 30 000 and 48 000.  相似文献   

18.
Diglyceride kinase (diacylglycerol kinase, E.C. 2.7.1.-), an enzyme localized in the inner membrane of Escherichia coli, has been purified about 600-fold. The purified enzyme exhibits an absolute requirement for magnesium ion; its activity toward both lipid and nucleotide substrates is stimulated by diphosphatidylglycerol or other phospholipids. Adenine nucleotides are much better substrates for the enzyme than are other purine or pyrimidine nucleotides. The purified enzyme preparation catalyzes the phosphorylation of a number of lipids, including ceramide and several ceramide and diacylglycerol-like analogs. The broad lipid substrate specificity of diglyceride kinase suggests that this enzyme may function in vivo for the phosphorylation of an acceptor other than diacylglycerol.  相似文献   

19.
A strong and constitutive expression vector of Escherichia coli beta-glucuronidase with the isocitrate dehydrogenase promoter has been developed for producing a large amount of recombinant protein. More than 95% pure enzyme was obtained by a four step purification procedure-ammonium sulfate precipitation, DEAE ion-exchange chromatography, Superose 12 gel filtration, and hydroxyapatite steric ion-exchange chromatography. The overexpressed gene can produce 23 mg of pure enzyme from one liter of bacterial culture.  相似文献   

20.
Glutamyl-tRNA reductase catalyzes the initial step of tetrapyrrole biosynthesis in plants and prokaryotes. Recombinant Escherichia coli glutamyl-tRNA reductase was purified to apparent homogeneity from an overproducing E. coli strain by a two-step procedure yielding 5.6 mg of enzyme per gram of wet cells with a specific activity of 0.47 micromol min(-1)mg(-1). After recombinant production, denatured glutamyl-tRNA reductase from inclusion bodies was renatured by an on-column refolding procedure. Residual protein aggregates were removed using Superdex 200 gel-filtration chromatography. Solubility, specific activity, and long-term storage properties were improved compared to previous protocols. Obtained enzyme amounts of high purity now allow the research on the recognition mechanism of tRNAGlu and high-throughput inhibitor screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号