首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B Imperiali  R H Abeles 《Biochemistry》1987,26(14):4474-4477
We have synthesized inhibitors of chymotrypsin, based on fluoromethyl ketones, that bind at S and S' subsites. "Small" inhibitors of serine proteases, which have previously been synthesized, only interact with S subsites. The parent compound is Ac-Leu-ambo-Phe-CF2H (1) (Ki = 25 X 10(-6) M). This inhibitor was modified by successively replacing H of the -CF2H group by -CH2CH2CONHCH3, (4), -CH2CH2CONH-Leu-NHMe (5), -CH2CH2CONH-Leu-Val-OEt (6), and -CH2CH2CONH-Leu-Arg-OMe (7). Corresponding Ki values are 7.8 (4), 0.23 (5), 0.21 (6), and 0.014 (7) microM. Extending 5 to 6 by addition of Val-OEt at P3' does not decrease Ki. In contrast, extension of 5 to 7 by incorporating Arg-OMe at P3' decreases Ki approximately 15-fold, suggesting interaction between Arg and the S3' subsite but no corresponding interaction at that subsite with Val. These results are in accordance with results obtained with the homologous family of avian ovomucoid third domain proteins. Proteins with Arg at the P3' position show highly favorable interactions with the protease at the S3' subsite [Park, S. J. (1985) Ph.D. Thesis, Purdue University; M. Laskowski, Jr., personal communication]. These results establish that incorporation of residues which interact with S' subsites significantly increases the efficacy of inhibitors and that valuable information concerning the most effective amino acid composition of small inhibitors can be obtained from the amino acid sequence of protein inhibitors.  相似文献   

2.
In our studies with purified soluble guanylate cyclase from rat lung, we have tested a number of guanosine 5'-triphosphate (GTP) analogues as substrates and inhibitors, 5'-Guanylylimidodiphosphate (GMP-P(NH)P), guanylyl (beta, gamma-methylene) diphosphate (GMP-P(CH2)P), and guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) were found to be substrates for guanylate cyclase. GTP gamma S supported cyclic GMP formation at 20 or 75% of the rate seen with Mn2+-GTP and Mg2+-GTP, respectively. GMP-P(NH)P and GMP P(CH2)P supported cyclic GMP formation at 10-20% of the GTP rate with either cation cofactor. These analogues were found to have multiple Km values; one Km value was similar to GTP (150 microM with Mg2+, 20-70 microM with Mn2+), but an additional high affinity catalytic site (3 microM) was also observed. Guanosine tetraphosphate (Ki = 10 microM), adenosine triphosphate (Ki = 9 microM) and the 2'3'-dialdehyde derivative of GTP (dial GTP) (Ki = 1 microM) were not good substrates for the enzyme; however, they were potent competitive inhibitors. These GTP analogues will be useful tools for the study of GTP binding sites on guanylate cyclase and they may also help elucidate the effects of free radicals and other agents on guanylate cyclase regulation.  相似文献   

3.
1) Analogues of 3-hydroxy-3-methylglutaryl-CoA were prepared in which the substituents at C-3 of the acyl residue were altered. The same analogues were additionally modified by replacement of the thioester oxygen by hydrogen to yield reduction-resistant CoA-thioethers. The interaction of both types of CoA derivatives with a 58-kDa catalytic fragment of human 3-hydroxy-3-methylglutaryl-CoA reductase was studied. 2) This enzyme reduces glutaryl-CoA at a very low rate whereas 3-hydroxyglutaryl-CoA is well reduced, the maximal rate of reduction being 7% that of the physiological substrate. Only half of total 3-hydroxyglutaryl-CoA was attacked, thus reflecting the stereo-specificity of the enzyme for (3S)-3-hydroxy-3-methylglutaryl-CoA. The results invalidate the hitherto assumed absolute substrate specificity of the enzyme. 3) The affinity of both 3-hydroxyglutaryl-CoA and its thioether variant S-(4-carboxy-3-hydroxybutyl)CoA to the reductase, Ki = 0.3 microM and Ki = 0.4 microM, respectively, is higher than that of the physiological substrate, Km = 1.5 microM (data related to (S)-diastereomer). The results show for the first time that the methyl-group effect observed with the inhibitor lovastatin is an intrinsic property of the enzyme. 4) All of the prepared CoA derivatives are purely competitive inhibitors of the reductase, the affinities varying within a range of two powers of ten (Ki = 0.3-32 microM). On variation of the substituents at C-3 of the acyl residue of the physiological substrate the affinity of both CoA-thioesters and CoA-thioethers increases in the sequence CH2, C(CH3)2, CH(CH3), C(OH)CH3, CH(OH).  相似文献   

4.
Methyl-coenzyme M reductase (= component C) from Methanobacterium thermoautotrophicum (strain Marburg) was highly purified via anaerobic fast protein liquid chromatography on columns of Mono Q and Superose 6. The enzyme was found to catalyze the reduction of methylcoenzyme M (CH3-S-CoM) with N-7-mercaptoheptanoylthreonine phosphate (H-S-HTP = component B) to CH4. The mixed disulfide of H-S-CoM and H-S-HTP (CoM-S-S-HTP) was the other major product formed. The specific activity was up to 75 nmol min-1 mg protein-1. In the presence of dithiothreitol and of reduced corrinoids or titanium(III) citrate the specific rate of CH3-S-CoM reduction to CH4 with H-S-HTP increased to 0.5-2 mumol min-1 mg protein-1. Under these conditions the CoM-S-S-HTP formed from CH3-S-CoM and H-S-HTP was completely reduced to H-S-CoM and H-S-HTP. Methyl-CoM reductase was specific for H-S-HTP as electron donor. Neither N-6-mercaptohexanoylthreonine phosphate (H-S-HxoTP) nor N-8-mercaptooctanoylthreonine phosphate (H-S-OcoTP) nor any other thiol compound could substitute for H-S-HTP. On the contrary, H-S-HxoTP (apparent Ki = 0.1 microM) and H-S-OcoTP (apparent Ki = 15 microM) were found to be effective inhibitors of methyl-CoM reductase, inhibition being non-competitive with CH3-S-CoM and competitive with H-S-HTP.  相似文献   

5.
The effect of Mg2, ATP and some of its analogs was studied on the spontaneously active and the ATP-Mg-dependent forms of phosphorylase phosphatase extracted from adrenal cortex. Inhibition of the spontaneously active form was observed with Mg2 (Ki - 9mM), ATP (Ki = 9micronM), 2'-doxy-ATP (Ki = 8 micronM), AtetraP (Ki = 9 micronM), AMP(CH2)PP (Ki = 11 micronM), ADP(CH2)P (Ki = 19 micronM), ADP(NH)P (Ki = 16micronM) and ADP (Ki = 25micronM). Activation of the ATP-Mg-dependent form was obtained with Mg2 (Ka = 0.55mM) (to a lower extent) and with ATP (Ka = 2micronM), 2'-deoxy-ATP (Ka = 6micronM) or AtetraP (Ka = 15micronM) in the presence of 0.5mM Mg2. Activation with AMP(CH2)PP was only observed in the presence of high concentrations (5mM) of Mg2 (Ka = 13micronM). No activation at all was observed with ADP(CH2)P or ADP(NH)P. Even though the activation of the ATP-Mg-dependent form does not seem to involve a kinase reaction, the stimulation by ATP or its analogs is rather specific, since it does not occur with analogs in which a methylene group or a nitrogen is substituted for the oxygen between the beta- and gamma-phosphates.  相似文献   

6.
The rates of hydrolysis of a series of 21 N-acylglycine esters (YCONHCH2CO2CH(CH2CH3)CO2H (2)) by bovine pancreatic carboxypeptidase A (peptidyl-L-amino-acid hydrolase, EC 3.4.12.2) have been studied over the substrate concentration range 10(-4)-10(-1) M at pH 7.5, 25 degrees C, ionic strength 0.5. All substrates display substrate inhibition except Y = CH3, CH3CH2 and (CH3)3C for which normal Michaelis-Menten kinetics are observed. In all cases substrate inhibition is consistent with the formation of an ES2 complex and parameters for the second-degree rate equation v/E = (kapp2 S + kapp3 S2/KappSS)/(KappS + S + S2/KappSS) have been evaluated. For a series of eight aliphatic groups varying in size between Y = CH3 and Y = cyclo-C6H11 the following linear correlations were observed: -log KappS = 0.82 pi + 1.32 and log kapp2/KappS = 0.71 pi + 5.81 (pi is Hansch's hydrophobicity parameter). Aryl and aralkyl Y moieties deviate from these correlation lines. KappSS also depends on the hydrophobicity of Y but no quantitative correlation is obvious. Thus the Y unit of 2 is involved in a hydrophobic interaction with the enzyme when 2 binds at both the catalytically productive and inhibitor sites. Parameters for the enzymic hydrolysis of the esters YCONHCH2CO2CH(CH2CH(CH3)2)CO2H (3) (Y = C6H5(CH2)n (n = 0, 1, 2)) are also presented. Pronounced nonproductive 1: 1 enzyme.substrate complex formation is observed for each of 2: Y = C6H5(CH2)n (n = 2, 3) and 3: Y = C6H5(CH2)2. Hippurate anion is shown to be an uncompetitive inhibitor (Ki = 12 mM) for the hydrolysis of 2: Y = (CH3)3C. Data are now available which can only be interpreted in terms of at least three enzymic sites being available for hydrophobic interactions with ester substrate molecules.  相似文献   

7.
A total of 13 phosphonate analogues of bis(5'-adenosyl) tetraphosphate (AppppA) have been tested as substrates and inhibitors of the asymmetrically cleaving bis(5'-nucleosidyl) tetraphosphatase (NppppNase) from Artemia and the symmetrically cleaving NppppNase from Escherichia coli. With the Artemia enzyme, the substrate efficiency of beta beta'-substituted compounds decreased with decreasing substituent electronegativity (O greater than CF2 greater than CHF greater than CCl2 greater than CHCl greater than CH2) such that AppCF2ppA and AppCH2ppA were hydrolyzed at 70% and 2.5% of the rate of AppppA, respectively. These compounds were competitive inhibitors of this enzyme with Ki values that generally also decreased with electronegativity from 12 microM for AppCF2ppA to 0.4 microM for AppCH2ppA (Km for AppppA = 33 microM). AppCH = CHppA and AppCH2CH2ppA were neither effective substrates nor inhibitors of the Artemia enzyme. Alpha beta,alpha'beta'-Disubstituted analogues were generally less effective inhibitors with Ki values ranging from 23 microM (ApCH2ppCH2pA) to greater than 1.5 mM (ApCH2CH2ppCH2CH2pA). However, they displayed a low and unexpected rate of symmetrical cleavage by the Artemia enzyme: e.g., ApCHFppCHFpA yielded ApCHFp at 3% of the rate of AppppA breakdown. Both sets of analogues were also competitive inhibitors of the E. coli NppppNase with Ki values ranging from 7 microM (AppCH2ppA) to 250 microM (ApCH2CH2ppCH2CH2pA) (Km for AppppA = 28 microM). The only alpha beta,alpha'beta'-disubstituted analogue to be hydrolyzed by the E. coli enzyme was ApCF2ppCF2pA at 0.2% of the rate of AppppA; however, several of the beta beta'-substituted compounds showed a limited degree of asymmetrical cleavage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Leukotriene C4 binding to rat lung membranes   总被引:8,自引:0,他引:8  
A high affinity binding site for leukotriene C4 (LTC4), one component of slow reacting substance of anaphylaxis, has been identified in a membrane preparation from rat lung. As measured by a filtration technique, [3H]LTC4 binding was saturable, specific, reversible, and heat-sensitive. In the presence of 20 mM CaCl2, the dissociation constant (KD) was 41 +/- 9 nM and the maximum number of binding sites (Bmax) was 31 +/- 10 pmol/mg of protein. Specificity was demonstrated by competition studies in which LTC4 had a Ki of 40 nM against specifically bound [3H]LTC4, whereas leukotriene D4 (LTD4) had a Ki of 4 microM. The stereoisomers (5R, 6R) LTC4, (5S, 6S) LTC4, and (5R, 6S) LTC4 had Ki values 3-, 15-, and 25-fold higher than that of natural (5S, 6R) LTC4. Leukotrienes E4 and B4, several prostaglandins and fatty acids, glutathione, and platelet activating factor were even less effective with Ki values above 10 microM. A slow reacting substance of anaphylaxis antagonist, FPL 55712, which, in some systems, distinguishes LTC4- from LTD4-induced contractions, was a weak competitor with a Ki of 16 microM. Serine-borate complex which inhibits gamma-glutamyl transpeptidase, an enzyme responsible for LTC4 metabolism, did not alter binding. In addition, 100 microM FPL 55712 did not reduce metabolism. These observations suggest that the binding observed for LTC4 may represent association with a physiological receptor for this molecule which has a relatively low affinity for LTD4.  相似文献   

9.
Seravalli J  Zhao S  Ragsdale SW 《Biochemistry》1999,38(18):5728-5735
The methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase (MeTr) from Clostridium thermoaceticum catalyzes transfer of the N5-methyl group from (6S)-methyltetrahydrofolate (CH3-H4folate) to the cobalt center of a corrinoid/iron-sulfur protein (CFeSP), forming methylcob(III)amide and H4folate. This reaction initiates the unusual biological organometallic reaction sequence that constitutes the Wood-Ljungdahl or reductive acetyl-CoA pathway. The present paper describes the use of steady-state, product inhibition, single-turnover, and kinetic simulation experiments to elucidate the mechanism of the MeTr-catalyzed reaction. These experiments complement those presented in the companion paper in which binding and protonation of CH3-H4folate are studied by spectroscopic methods [Seravalli, J., Shoemaker, R. K., Sudbeck, M. J., and Ragsdale, S. W. (1999) Biochemistry 38, 5736-5745]. Our results indicate that a pH-dependent conformational change is required for methyl transfer in the forward and reverse directions; however, this step is not rate-limiting. CH3-H4folate and the CFeSP [in the cob(I)amide state] bind randomly and independently to form a ternary complex. Kinetic simulation studies indicate that CH3-H4folate binds to MeTr in the unprotonated form and then undergoes rapid protonation. This protonation enhances the electrophilicity of the methyl group, in agreement with a 10-fold increase in the pKa at N5 of CH3-H4folate. Next, the Co(I)-CFeSP attacks the methyl group in a rate-limiting SN2 reaction to form methylcob(III)amide. Finally, the products randomly dissociate. The following steady-state constants were obtained: kcat = 14.7 +/- 1.7 s-1, Km of the CFeSP = 12 +/- 4 microM, and Km of (6S)-CH3-H4folate = 2.0 +/- 0.3 microM. We assigned the rate constants for the elementary reaction steps by performing steady-state and pre-steady-state kinetic studies at different pH values and by kinetic simulations.  相似文献   

10.
The ability of D-6-deoxy-myo-inositol 1,4,5-trisphosphate [6-deoxy-Ins(1,4,5)P3], a synthetic analogue of the second messenger D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], to mobilise intracellular Ca2+ stores in permeabilised SH-SY5Y neuroblastoma cells was investigated. 6-Deoxy-Ins(1,4,5)P3 was a full agonist (EC50 = 6.4 microM), but was some 70-fold less potent than Ins (1,4,5)P3 (EC50 = 0.09 microM), indicating that the 6-hydroxyl group of Ins(1,4,5)P3 is important for receptor binding and stimulation of Ca2+ release, but is not an essential structural feature. 6-Deoxy-Ins(1,4,5)P3 was not a substrate for Ins (1,4,5)P3 5-phosphatase, but inhibited both the hydrolysis of 5-[32P]+ Ins (1,4,5)P3 (Ki 76 microM) and the phosphorylation of [3H]Ins(1,4,5)P3 (apparent Ki 5.7 microM). 6-Deoxy-Ins (1,4,5)P3 mobilized Ca2+ with different kinetics to Ins(1,4,5)P3, indicating that it is probably a substrate for Ins (1,4,5)P3 3-kinase.  相似文献   

11.
Two hybrid analogues of the kainic acid receptor agonists, 2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA) and (2S,4R)-4-methylglutamic acid ((2S,4R)-4-Me-Glu), were designed, synthesized, and characterized in radioligand binding assays using cloned ionotropic and metabotropic glutamic acid receptors. The (S)-enantiomers of E-4-(2,2-dimethylpropylidene)glutamic acid ((S)-1) and E-4-(3,3-dimethylbutylidene)glutamic acid ((S)-2) were shown to be selective and high affinity GluR5 ligands, with Ki values of 0.024 and 0.39 microM, respectively, compared to Ki values at GluR2 of 3.0 and 2.0 microM. respectively. Their affinities in the [3H]AMPA binding assay on native cortical receptors were shown to correlate with their GluR2 affinity rather than their GluR5 affinity. No affinity for GluR6 was detected (IC50 > 100 microM).  相似文献   

12.
Thymidylate synthase has been purified greater than 4000-fold from a human colon adenocarcinoma maintained as a xenograft in immune-deprived mice. In this disease, the enzyme is an important target for the cytotoxic action of 5-fluorouracil, which is influenced by the reduced folate substrate CH2-H4PteGlu. Due to the importance of this interaction, and the existence in cells of folate species as polyglutamyl forms, the interaction of folylpolyglutamates with thymidylate synthase was examined. Polyglutamates of PteGlu were used as inhibitors, and the interaction of CH2-H4PteGlu polyglutamates as substrates or in an inhibitory ternary complex were also examined. Using PteGlu1-7, Ki values were determined. A maximal 125-fold decrease in Ki was observed between PteGlu1 and PteGlu4; further addition of up to three glutamyl residues did not result in an additional decrease in Ki. Despite the increased binding affinity of folypolyglutamates for this enzyme, no change in the Km values for either dUMP (3.6 microM) or CH2-H4PteGlu (4.3 microM) were detected when polyglutamates of [6R]CH2-H4PteGlu were used as substrates. Product inhibition studies demonstrated competitive inhibition between dTMP and dUMP in the presence of CH2-H4PteGlu5. In addition, CH2-H4PteGlu4 stabilized an inhibitory ternary complex formed between FdUMP, thymidylate synthase, and CH2-H4PteGlu4. Thus the data do not support a change in the order of substrate binding and product release upon polyglutamylation of CH2-H4PteGlu reported for non-human mammalian enzyme. This is the first study to characterize kinetically thymidylate synthase from a human colon adenocarcinoma.  相似文献   

13.
Fusarium graminearum A 3/5 possesses a high affinity system (Km = 32 +/- 8 microM; mean +/- SE) for uptake of choline, which was shown to be energy-dependent and constitutive. The maximum rate of choline uptake by this system was repressed by ammonia and glucose, showing a three-fold increase in maximum activity after nitrogen (2 h) or carbon (4 h) starvation. The system was highly specific for choline with only dimethylethanolamine (Ki = 198 +/- 29 microM), betaine aldehyde (Ki = 95 +/- 14 microM) and chlorocholine (Ki = 352 +/- 40 microM) acting as competitive inhibitors. Hemicholinium-3 acted as a mixed (non-competitive) inhibitor (KIES = 1.9 +/- 0.6 microM; KIE = 3.6 +/- 1.9 microM).  相似文献   

14.
The sesquiterpenoid ketone, 1,4,4-trimethyltricyclo[5.4.0.0(3.5)]undec-7-en-9-one (1), was subjected to microbial transformation by six fungal strains: Aspergillus niger ATCC 9142, Aspergillus ochraceus DSM 824, Beauveria bassiana ATCC 7159, Cunninghamella echinulata ATCC 9244, Rhizopus arrhizus ATCC 11.145, and Absidia blakesleeana ATCC 10.148. Four main metabolites were formed from 1: 10(R)- and 10(S)-hydroxy-1,4,4-trimethyltricyclo-[5.4.0.0(3.5)]undec-7- en- 9-one (2 and 3, respectively), besides 4(R)- and 4(S)-(hydroxymethyl)-1,4-dimethyltricyclo[5.4.0.0(3.5)]undec -7-en-9-one (4 and 5, respectively). Compounds 2-5 were isolated with varying percentages from the respective transformations, and their structures established unequivocally by a combination of spectroscopic methods. Metabolites 2 and 3 are products of hydroxylation at C-10, in either R- or S-position; in 4 and 5, one geminal CH3 group each on the cyclopropane ring has been transformed into a CH2OH function.  相似文献   

15.
The kinetics of the forward tyrosyl protein sulfotransferase (TPS) reaction were examined using an assay based on the 35SO4 transfer from 3'-phosphoadenosine 5'-phospho(35S)sulfate [( 35S]PAPS) to tyrosyl residues of the non-sulfated cholecystokinin derivative, BocCCK-8(ns). TPS present in the microsomal membranes from rat cerebral cortex was used for these studies. Initial velocity measurements performed over a wide range of PAPS, BocCCK-8(ns), 3'-PAP and BocCCK-8(s) concentrations, indicated that the reaction follows an ordered mechanistic pathway. The KM value determined for BocCCK-8(ns) was 160 +/- 18 microM, and that for [35S]PAPS was 0.15 +/- 0.03 microM. 3'-Phosphoadenosine 5'-phosphate (3'-PAP) was found to be a product inhibitor with a Ki = 0.30 +/- 0.02 microM. BocCCK-8(s) produced an uncompetitive inhibition pattern on the TPS reaction. Adenosine 5'-phosphosulfate (APS) behaved as a competitive inhibitor versus PAPS with a Ki = 3.0 +/- 0.3 microM. ATP inhibited competitively the reaction when PAPS was the varied substrate with a Ki = 3.6 +/- 0.5 microM. The results of product and substrate inhibition studies and the patterns of dead end inhibition obtained with APS are best fit by an ordered Bi-Bi reaction mechanism where PAPS is the first substrate to bind and 3'-PAP is the last product to be released.  相似文献   

16.
New carboxylalkyl compounds derived from Phe-Leu and corresponding to the general formula C6H5-CH2-CH(R)CO-L.Leu with R = -COOH, 3, R = -CH2-COOH, 4, R = -NH-CH2-COOH, 5, R = -NH-(CH2)2-COOH, 6, have been found to inhibit the breakdown of the Gly3-Phe4 bond of [3H] Leu-enkephalin or [3H]D.Ala2-Leu-enkephalin resulting from the action of the mouse striatal metallopeptidases: "enkephalinase" or angiotensin-converting enzyme (A.C.E.). The carboxyl coordinating ability of the Zn atom seems to be significantly higher in ACE than in "enkephalinase". Moreover, IC50 values against "enkephalinase" were found in the same range whatever the length of the chain bearing the carboxyl group whereas a well-defined position of this group with respect to the Zn atom is required for strong ACE inhibition. These features suggest a larger degree of freedom of the carboxyalkyl moieties within the active site of "enkephalinase". Therefore the differential recognition of active sites of both peptidases leads to: i) N-(carboxymethyl)-L-Phe-L-Leu, 5, a competitive inhibitor of "enkephalinase" (KI = 0.7 microM) and ACE (KI = 1.2 microM) which could be used as mixed inhibitor for both enzymes; ii) N-[(R,S)-2-carboxy, 3-benzylpropanoyl]-L-Leucine, 3, a full competitive inhibitor of "enkephalinase" (KI = 0.34 microM) which does not interact with ACE (IC50 greater than 10,000 microM). This compound can be considered as the first example of a new series of highly potent and specific "enkephalinase" inhibitors.  相似文献   

17.
The high inhibitory potency of the previously developed bombesin antagonist [Leu13, psi CH2NHLeu14]bombesin (analogue I) (IC50 values of 30 and 18 nM for inhibition of bombesin-stimulated amylase secretion from guinea pig acinar cells and Swiss 3T3 cell growth, respectively) diminished considerably when shorter chain lengths were examined. For instance, [Leu13, psi CH2NHLeu14]bombesin-(5-14),[Leu13, psi CH2NHLeu14] bombesin-(6-14), and [Leu9, psi CH2NHLeu10]neuromedin C had IC50 values of 150, 150, and 280 nM, respectively. Incorporation of a D-Phe residue at position 6 of [Leu13, psi CH2NHLeu14] bombesin did not significantly change the various biological parameters. However, its presence in [Leu13, psi CH2NHLeu14]bombesin-(6-14) and at position 2 of psi-neuromedin C-(2-10) resulted in about 10-fold increases in potency up to and above that of the original antagonist. For instance, [D-Phe6,Leu13,psi CH2NHLeu14]bombesin-(6-14) and des-Gly1-[D-Phe2,Leu9,psi CH2NHLeu10]neuromedin C exhibited IC50 values of 5 and 28 nM, respectively. Analogues based on the litorin sequence which contains an NH2-terminal pyroglutamic acid residue at the bombesin position 6 equivalent were also quite potent. The ability of various analogues to interact with bombesin receptors on pancreatic acini correlated reasonably well with potencies derived from inhibition of bombesin-stimulated growth of Swiss 3T3 cells. Additional studies of NH2- and COOH-terminal structure-activity relationships resulted in the synthesis of [D-Phe6,Leu13,psi CH2NHPhe14]bombesin-(6-14), which was particularly effective in inhibiting 3T3 cell growth at high picomolar concentrations (IC50 = 0.72 nM and Ki = 3.1 nM for 3T3 cells; IC50 = 7.5 nM and Ki = 9.9 nM for acini). Detailed investigations with one of the most potent antagonists, [D-Phe6,Leu13,psi CH2NHLeu14]bombesin-(6-14) (Ki = 14 nM for acini cells and 7.1 for 3T3 cells), demonstrated that this analogue was a competitive inhibitor of bombesin and that this activity was specific for the bombesin receptor. Thus, inhibitory potencies have been improved generally up to 25 times over previously reported structures; and, given that bombesin itself has a Ki of 1.2 nM for 3T3 cell binding, some of these analogues are extraordinarily high affinity receptor antagonists. They can also be synthesized more readily and offer fewer proteolytic degradation sites than the original pseudopeptide and should be excellent candidates for in vivo studies aimed at inhibition of bombesin-dependent human small cell lung carcinoma growth.  相似文献   

18.
ATP analogues were used to study the active site specificity of the catalytic unit (C) of solubilized and partially purified bovine brain caudate nucleus adenylate cyclase. Phenylenediamine ATP (PD-ATP), 8-azido ATP (8-N3ATP), chromium(III) 3'-beta-alanylarylazido ATP (CrATPa), and 2',3'-dialdehyde ATP (oATP) are competitive inhibitors of C in the presence of the substrate MnATP and the activator forskolin. (Km for MnATP is 50 +/- 11 microM, n = 13). The Ki values determined under initial velocity conditions are: PD-ATP, Ki = 695 +/- 60 microM, n = 5; 8-N3ATP, Ki = 155 +/- 23 microM, n = 5; CrATPa, Ki = 7 +/- 3 microM, n = 2; oATP, Ki = 42 +/- 5 microM, n = 3. Irradiation of 100 microM 8-N3ATP by UV light (254 nm) causes the first-order loss of reagent either in the presence or absence of C. Concomitant irreversible inhibition of C in the presence of 8-N3ATP was more complex and asymptotically approached 50% within 4-6 min. Loss of C activity in controls was 10-20%. The fraction of C covalently modified by 8-N3ATP, alpha, was calculated for each time point of irradiation for an increasing initial concentration ([A]o) of 8-N3ATP. Extrapolated to infinite time of photolysis, the value of alpha reached a final level, termed alpha t whose magnitude depended on [A]o. From these data we calculated an apparent KD of 4.5 microM for 8-N3ATP. ATP protected against the irreversible inhibition due to 8-N3ATP. These data are most consistent with a mechanism of photoaffinity labeling involving equilibrium binding and covalent insertion of 8-N3ATP into the active site. These results indicate that the active site binds analogues of ATP which are considerably modified in the adenine, ribose, and gamma-phosphate portions and that the affinity of C for these analogues is within an order of magnitude of the Km for ATP.  相似文献   

19.
Both components, E and S, of the adenosylcobalamin-(coenzyme B12)-dependent glutamate mutase from Clostridium cochlearium were purified. Component S (16 kDa) must be added to component E to obtain activity, although the latter contains substoichiometric amounts of component S besides the major 50-kDa subunit. The enzyme proved to be very similar to that of C. tetanomorphum as described by Barker et al. [Barker, H. A., Rooze, V., Suzuki, F. & Iodice, A. A. (1964) J. Biol. Chem. 239, 3260-3266] but component E of C. cochlearium was more stable and led to the first pure preparation. The pink component E showed a cobamide-like absorbance spectrum with a characteristic maximum at 470 nm indicating the presence of a cob(II)amide, probably Co alpha-[alpha-(aden-9-yl)]-cob(II)amide. A typical cob(II)amide signal at g = 2.23 with hyperfine and superhyperfine splitting was observed by EPR spectroscopy. A cobamide content of about 0.43 mol/mol 50-kDa subunit was determined by cyanolysis. Substitution of the migrating hydrogen at C-4 of glutamate by fluorine yielded the potent competitive inhibitor (2S,4S)-4-fluoroglutamate (Ki = 70 microM). (2R,3RS)-3-Fluoroglutamate (Ki = 600 microM) was also inhibitory. The competitive inhibition by 2-methyleneglutarate (Ki = 400 microM) and (S)-3-methylitaconate (Ki = 100 microM) but not by (RS)-2-methylglutarate suggested the transient formation of an sp2 center during catalysis. However, the presence of an N-terminal pyruvoyl residue was excluded and no evidence for the participation of another electrophilic center in the reaction was obtained.  相似文献   

20.
Six organophosphorus compounds linked to fluorophore groups were prepared in an effort to selectively modify the active site of acetylcholinesterase and deliver probes to the gorge region. Two compounds that vary by the length of a methylene (CH2) group, pyrene-SO2NH(CH2)nNHC(O)CH2CH2P(O)(OEt)(F) (where n = 2 or 3) were found to be potent, irreversible inhibitors of recombinant mouse AChE (Ki approximately 10(5) M(-1) min(-1)). Size exclusion chromatography afforded a fluorescently-labeled cholinesterase conjugate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号