首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ADAM17 (a disintegrin and metalloprotease)-deficient murine fibroblasts stably transfected with proTNF cDNA release significant amounts of biologically active soluble TNF. The enzyme responsible for this activity is a membrane protein that hydrolyzes the peptide bond Ala76:Val77 within proTNF. Its activity is inhibited by 1,10-phenantroline and GM6001, insusceptible to TIMP-2 (tissue inhibitor of metalloproteinases-2), and stimulated by ionomycin. These characteristics match ADAM10. The moderate silencing of ADAM10 by shRNA resulted in a significant inhibition of TNF shedding. There was no correlation between the level of ADAM10 expression and the presence of active ADAM17. Our results indicate that ADAM10 may function as the TNF sheddase in cells which lack ADAM17 activity.  相似文献   

2.
This review focuses on the role of ADAM-17 in disease. Since its debut as the tumor necrosis factor converting enzyme (TACE), ADAM-17 has been reported to be an indispensible regulator of almost every cellular event from proliferation to migration. The central role of ADAM-17 in cell regulation is rooted in its diverse array of substrates: cytokines, growth factors, and their receptors as well as adhesion molecules are activated or inactivated by their cleavage with ADAM-17. It is therefore not surprising that ADAM-17 is implicated in numerous human diseases including cancer, heart disease, diabetes, rheumatoid arthritis, kidney fibrosis, Alzheimer’s disease, and is a promising target for future treatments. The specific role of ADAM-17 in the pathophysiology of these diseases is very complex and depends on the cellular context. To exploit the therapeutic potential of ADAM-17, it is important to understand how its activity is regulated and how specific organs and cells can be targeted to inactivate or activate the enzyme.  相似文献   

3.
AIM:To determine if the cytotail of the principal sheddase tumor necrosis factor-α converting enzyme (TACE;ADAM17) controls protein ectodomain shedding.METHODS:Site-directed mutagenesis was performed to derive TACE variants. The resulting TACE expression plasmids with amino acid substitutions in the extracel-lular,cysteine-rich disintegrin domain (CRD) and/or deleted cytotail,along with an expression vector for the enhanced green fluorescence protein were transfected into shedding-defective M1 mutants stably expressing transmembrane L-selectin or transforming growth factor (TGF)-α. The expression levels of the TACE substrates at the cell surface were determined by flow cytometry. RESULTS:Consistent with published data,a single point mutation (C600Y) in the CRD led to shedding defi-ciency. However,removal of the cytotail from the C600Y TACE variant partially restored ectodomain cleavage of TGF-α and L-selectin. Cytotail-deleted mutants with any other substituting amino acid residues in place of Cys600 displayed similar function compared with tail-less C600Y TACE.CONCLUSION:The cytotail plays an inhibitory role,which becomes evident when it is removed from an enzyme with another mutation that affects the enzyme function.  相似文献   

4.
The tumor necrosis factor-alpha (TNF) converting enzyme (ADAM17) is a metalloprotease-disintegrin responsible for the cleavage of several biologically active transmembrane proteins. However, the substrate specificity of ADAM17 and the regulation of its shedding activity are still poorly understood. Here, we report that during its transport through the Golgi apparatus, ADAM17 is included in cholesterol-rich membrane microdomains (lipid rafts) where its prodomain is cleaved by furin. Consequently, ADAM17 shedding activity is sequestered in lipid rafts, which is confirmed by the fact that metalloproteinase inhibition increases the proportion of ADAM17 substrates (TNF and its receptors TNFR1 and TNFR2) in lipid rafts. Membrane cholesterol depletion increases the ADAM17-dependent shedding of these substrates demonstrating the importance of lipid rafts in the control of this process. Furthermore, ADAM17 substrates are present in different proportions in lipid rafts, suggesting that the entry of each of these substrates in these particular membrane microdomains is specifically regulated. Our data support the idea that one of the mechanisms regulating ADAM17 substrate cleavage involves protein partitioning in lipid rafts.  相似文献   

5.
6.
Proprotein convertases (PCs) have been proposed to play a role in tumor necrosis factor-alpha converting enzyme (TACE) processing/activation. Using the furin-deficient LoVo cells, as well as the furin-proficient synoviocytes and HT1080 cells expressing the furin inhibitor alpha(1)-PDX, we demonstrate that furin activity alone is not sufficient for effective maturation and activation of the TACE enzyme. Data from in vitro and in vivo cleavage assays indicate that PACE-4, PC5/PC6, PC1 and PC2 can directly cleave the TACE protein and/or peptide. PC inhibition in macrophages reduced the release of soluble TNF-alpha from transmembrane pro-TNF-alpha. We therefore conclude that furin, in addition to other candidate PCs, is involved in TACE maturation and activation.  相似文献   

7.
Tumor necrosis factor-α (TNF-α) is released from cells by proteolytic cleavage of a membrane-anchored precursor. The TNF-α-converting enzyme (TACE/ADAM17) is the major sheddase for ectodomain shedding of TNF-α. At present, however, it is poorly understood how its catalytic activity is regulated. Here, we show that nardilysin (N-arginine dibasic convertase; NRDc) enhanced TNF-α shedding. In a cell-based shedding assay, expression of NRDc synergistically enhanced TACE-induced TNF-α shedding. A peptide cleavage assay in vitro showed that recombinant NRDc enhances the cleavage of TNF-α induced by TACE. Notably, co-incubation of NRDc completely reversed the inhibitory effect of a physiological concentration of salt on TACE’s activity in vitro. Overexpression of NRDc in TACE-deficient fibroblasts resulted in an increase in the amount of TNF-α released. Co-expression of NRDc with ADAM10 promoted the release compared with the sole expression of ADAM10. These results suggested that NRDc enhances TNF-α shedding through activation of not only TACE but ADAM10. Our results indicate the involvement of NRDc in ectodomain shedding of TNF-α, which may be a novel target for anti-inflammatory therapies.  相似文献   

8.
Defects in heart development are the most common congenital abnormalities in humans, providing a strong incentive to learn more about the underlying causes. Previous studies have implicated the metalloprotease-disintegrins ADAMs (a disintegrin and metalloprotease) 17 and 19 as well as heparin binding EGF-like growth factor (HB-EGF) and neuregulins in heart development in mice. Here, we show that mice lacking both ADAMs 17 and 19 have exacerbated defects in heart development compared to mice lacking either ADAM, providing the first evidence for redundant or compensatory functions of ADAMs in development. Moreover, we identified additional compensatory or redundant roles of ADAMs 9 and 19 in morphogenesis of the mitral valve and cardiac outflow tract. Cell biological studies designed to address the functions of these ADAMs in shedding of HB-EGF uncovered a contribution of ADAM19 to this process, but this was only evident in the absence of the major HB-EGF sheddase, ADAM17. In addition, ADAM17 emerged as the major sheddase for neuregulins beta1 and beta2 in mouse embryonic fibroblasts. These results raise the possibility that ADAMs 9, 17, and 19 contribute to heart development in humans and have implications for understanding the mechanisms underlying congenital heart disease.  相似文献   

9.
ADAMs (A Disintegrin And Metalloprotease domain) are metalloprotease-disintegrin proteins that have been implicated in cell adhesion, protein ectodomain shedding, matrix protein degradation and cell fusion. Since such events are critical for bone resorption and osteoclast recruitment, we investigated whether they require ADAMs. We report here which ADAMs we have identified in bone cells, as well as our analysis of the generation, migration and resorptive activity of osteoclasts in developing metatarsals of mouse embryos lacking catalytically active ADAM 17 [TNFalpha converting enzyme (TACE)]. The absence of TACE activity still allowed the generation of cells showing an osteoclastic phenotype, but prevented their migration into the core of the diaphysis and the subsequent formation of marrow cavity. This suggests a role of TACE in the recruitment of osteoclasts to future resorption sites.  相似文献   

10.
Etoposide is a widely used anticancer drug in the treatment of different tumors. Etoposide is known to activate a wide range of intracellular signals, which may in turn induce cellular responses other than apoptosis. ADAM10 and TACE/ADAM17 belong to a family of transmembrane extracellular metalloproteinases involved in paracrine/juxtacrine regulation of many signaling pathways. The aim of this work was to evaluate if etoposide induces upregulation of ADAM10 or TACE/ADAM17 in two cell lines (GC-1 and GC-2) derived from male germ cells. Results showed that etoposide induced apoptosis in a dose-response manner in both GC-1 and GC-2 cells. Apoptosis started to increase 6 h after etoposide addition in GC-2 cells, whereas the same was observed 18 h after addition to the GC-1 cells. Protein and mRNA levels of ADAM10 and TACE/ADAM17 increased 18 h after etoposide was removed from the GC-1 cells. In GC-2 cells, the protein levels of both proteins increased 12 h after etoposide was removed. ADAM10 mRNA increased after 3 h and then steadily decreased up to 12 h after removal, whereas TACE/ADAM17 mRNA decreased after etoposide removal. Finally, apoptosis was prevented in GC-1 and GC-2 cells by the addition of pharmacological inhibitors of ADAM10 and TACE/ADAM17 to the culture medium of etoposide-treated cells. Our results show for the first time that etoposide upregulates ADAM10 and TACE/ADAM17 mRNA and protein levels. In addition, we also show that ADAM10 and TACE/ADAM17 have a role in etoposide-induced apoptosis.  相似文献   

11.
CD44 is an adhesion molecule that interacts with hyaluronic acid (HA) and undergoes sequential proteolytic cleavages in its ectodomain and intramembranous domain. The ectodomain cleavage is triggered by extracellular Ca(2+) influx or the activation of protein kinase C. Here we show that CD44-mediated cell-matrix adhesion is terminated by two independent ADAM family metalloproteinases, ADAM10 and ADAM17, differentially regulated in response to those stimuli. Ca(2+) influx activates ADAM10 by regulating the association between calmodulin and ADAM10, leading to CD44 ectodomain cleavage. Depletion of ADAM10 strongly inhibits the Ca(2+) influx-induced cell detachment from matrix. On the other hand, phorbol ester stimulation activates ADAM17 through the activation of PKC and small GTPase Rac, inducing proteolysis of CD44. Furthermore, depletion of ADAM10 or ADAM17 markedly suppressed CD44-dependent cancer cell migration on HA, but not on fibronectin. The spatio-temporal regulation of two independent signaling pathways for CD44 cleavage plays a crucial role in cell-matrix interaction and cell migration.  相似文献   

12.
13.
Cellular and molecular adaptations of satellite cells isolated from rat hindlimb muscles (n = 10) were investigated in response to serum stimulation. Flow cytometry analysis of the amounts of DNA and RNA indicated that 97.7 +/- 0.7% of satellite cells were in G0 at the end of the isolation procedure, whereas 93.2 +/- 2.0% of cells were cycling after serum exposure. The length of cell division was 34.0 +/- 2.8 h. Myoblast proliferation was asynchronous, suggesting the existence of heterogeneous cell populations in skeletal muscle. Myoblast proliferation was also accompanied by a significant increase in c-met expression, and major adaptations of energetic and proteolytic metabolisms, including an increase in the relative contribution of glycolytic metabolism for energy production, an increase in proteasome and matrix metalloproteinases 2 and 9 activities, and a decrease in plasminogen activator activities. Our data suggest that, along with molecular adaptations leading to cell cycle activation itself, adaptations in energetic and proteolytic metabolisms are crucial events involved in satellite cell activation and myoblast proliferation.  相似文献   

14.
To investigate the role of the sympathoadrenal system in glucose mobilization by the liver during hemorrhage, catecholamine (CA) output from both adrenal glands was determined in anesthetized dogs. Venous blood draining from both adrenal glands was combined in a Y-tube that was connected to an electromagnetic flow probe to measure total adrenal venous blood flow. Plasma concentrations of norepinephrine (NE), epinephrine (E), dopamine (DA), and glucose (GL) were determined in various vascular regions. Adrenal CA output (nanograms per minute) under basal conditions was 50.2 +/- 13.6, 181.4 +/- 41.9, and 13.7 +/- 4.8 for NE, E, and DA, respectively. These values were found to increase significantly (P less than 0.05) in response to 5 min of hemorrhage, reaching a maximum output (nanograms per minute) of 663.6 +/- 160.6 (NE), 2503.4 +/- 607.8 (E), and 141.7 +/- 43.7 (DA). Aortic CAs (nanograms per millilitre) increased significantly with a predominant increase in E (0.33 +/- 0.08 to 3.75 +/- 1.03, P less than 0.05). In contrast, increases in portal and hepatic venous CAs (nanograms per millilitre) were characterized by a predominant increase in NE (0.30 +/- 0.06 to 0.64 +/- 0.11 and 0.17 +/- 0.02 to 0.31 +/- 0.07, respectively, P less than 0.05). Hepatic venous and aortic GL concentrations also increased significantly during hemorrhage. Among the various correlations between plasma CA and GL concentrations, the strongest correlation was found between hepatic venous NE and hepatic venous GL (r = 0.804, P less than 0.001). Correlation coefficients obtained with aortic NE and E were weaker but significant (r = 0.603 and r = 0.608, respectively, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Parathyroid hormone (PTH) is the major mediator of calcium homeostasis and bone remodeling and is now known to be an effective drug for osteoporosis treatment. Yet the mechanisms responsible for its functions in bone are largely unknown. Here we report that the expression of amphiregulin (AR), a member of the epidermal growth factor (EGF) family, is rapidly and highly up-regulated by PTH in several osteoblastic cell lines and bone tissues. Other osteotropic hormones (1alpha,25-dihydroxyvitamin D3 and prostaglandin E2) also strongly stimulate AR expression. We found all EGF-like ligands and their receptors are expressed in osteoblasts, but AR is the only member that is highly regulated by PTH. Functional studies demonstrated that although AR is a potent growth factor for preosteoblasts, it completely inhibits further differentiation. AR also strongly and quickly stimulated Akt and ERK phosphorylation and c-fos and c-jun expression in an EGF receptor-dependent manner. Moreover, AR null mice displayed significantly less tibial trabecular bone than wild-type mice. Taken together, we have identified a novel growth factor that is PTH-regulated and appears to have an important role in bone metabolism.  相似文献   

16.
The transmembrane and multidomain neural cell adhesion molecule (NCAM) plays important functional roles in the developing and adult nervous system. NCAM is proteolytically processed and appears in soluble forms in the cerebrospinal fluid and in serum under normal and pathological conditions. In this report, we present evidence that the metalloprotease a disintegrin and a metalloprotease (ADAM)17/tumour necrosis factor alpha converting enzyme (TACE) cleaves the polysialylated as well as the non-polysialylated transmembrane isoforms of NCAM, whereas the glycophosphatidylinositol-linked isoform of NCAM is not proteolytically cleaved. A truncated, enzymatically inactive mutant of TACE did not result in release of the NCAM110 cleavage product. Proteolytic cleavage was enhanced by a calmodulin-specific inhibitor and the actin-destabilizing agents cytochalasin D and latrunculin B. In contrast, the microtubule-stabilizing agent colchicine or microtubule-destabilizing agent paclitaxel did not affect the release of the 110-kDa fragment of NCAM. Neurite outgrowth from cerebellar microexplants was inhibited in the presence of the metalloprotease inhibitor GM 6001 on substrate-coated NCAM, but not on poly-l-lysine. Upon transfection of hippocampal neurones with an enzymatically inactive mutant of TACE, NCAM-stimulated neurite outgrowth was inhibited without affecting neurite outgrowth on poly-l-lysine, showing that proteolytic processing of NCAM by the metalloprotease TACE is involved in NCAM-mediated neurite outgrowth.  相似文献   

17.
18.
We here demonstrate the presence of a plasma membrane-associated phospholipase A2 (EC 3.1.1.4; PLA2) activity in spinach (Spinacia oleracea) leaves. The pH profile of the spinach plasma membrane PLA2 activity revealed two peaks, one at pH 4.4 and one at pH 5.5. The activity at pH 5.5 had an absolute requirement of Ca2+, with full enzyme activity at 10 μmol/L Ca2+. The Ca2+-dependent PLA2 activity was both heat sensitive and stimulated by diacylglycerol, whereas ATP completely inhibited the activity. Thus, the spinach plasma membrane contains a Ca2+-dependent PLA2 activity, which has not previously been characterised in plants. Cold acclimation of spinach resulted in a 2.2-fold higher plasma membrane PLA2 activity whereas the plasma membrane phospholipase D activity remained unaffected. Taken together, our data suggest a role of PLA2 in cold acclimation in plants.  相似文献   

19.
Muller C  Calsou P  Salles B 《Biochimie》2000,82(1):25-28
The DNA-dependent protein kinase plays a critical role in mammalian DNA double strand break (DSB) repair and in specialized recombination, such as lymphoid V(D)J recombination. Its regulatory subunit Ku (dimer of the Ku70 and Ku80 protein) binds to DNA and recruits the kinase catalytic sub-unit, DNA-PKcs. We show here that three different strains deficient in either the Ku80 (xrs-6) or DNA-PKcs (V-3, scid) component of DNA-PK are markedly sensitive (3.5- to 5-fold) to a group of DNA cross-linking agents, the nitrogen mustards (NMs) (melphalan and mechlorethamine) as compared to their parental cell line. Importantly, the level of hypersensitivity to these drugs was close to the level of hypersensitivity observed for radiomimetic agents that create DSBs in DNA (bleomycin and neocarzinostatin). In addition, sensitivity to NMs was restored to the parental level in the xrs-6 cell line stably transfected with the human Ku80 gene (xrs-6/Ku80), showing unequivocally that DNA-PK is involved in this phenotype. These results indicate that a function of the whole DNA-PK protein complex is involved in the cellular response to NMs and suggest that the repair of DNA interstrand cross-links induced in DNA by NMs involved a DNA-PK dependent pathway that shares common features with DNA DSBs repair.  相似文献   

20.
Human monocytes, co-incubated for 7 days in culture with GM-CSF or IL-3 but not with IFN-gamma, exerted a variable schistosotnulicidal effect on Schistosoma mansoni parasites when grown in 96-well round-bottomed plates but not in flat-bottomed plates. Addition of LPS or IFN-gamma or both, for the last 48 h did not enhance the cidal effect. Addition of LPS but not IFN-gamma to the pre-incubated cells with GM-CSF or IL-3 markedly stimulated TNF-alpha production by the cells but not their cidal activity. The variable cidal effects obtained with the monocytes/macrophages from different donors suggest that these effects may be genetically predetermined and are possibly linked to blood group markers or to MHC class I or II antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号