首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between fetal extravillous trophoblast cells and maternal uterine cells are of critical importance in successful placentation. In the first trimester, trophoblasts invade the uterine environment and reach the spiral arteries where they interact with vascular cells; however, little is known of the nature of these interactions. We have developed a fluorescent binding assay to investigate the contact between trophoblasts and endothelial cells and to determine its regulation by cytokines and adhesion molecules. Stimulation of an endothelial cell line (SGHEC-7) with interleukin-1beta or tumour necrosis factor-alpha significantly increased adhesion of the first-trimester extravillous trophoblast-derived cell line, SGHPL-4. Using blocking antibodies, vascular cell adhesion molecule-1 (VCAM-1) and integrin alpha4beta1 (VLA-4), but not intercellular adhesion molecule-1 (ICAM-1), were shown to be important in trophoblast binding to activated endothelial cells. SGHPL-4 cells were shown to express HLA-G, alpha4beta1 and ICAM-1 at high levels and LFA-1 and VCAM-1 at lower levels. ICAM-1 and VCAM-1 are expressed on SGHEC-7 cells and their expression was confirmed on primary decidual endothelial cells. In conclusion, we have demonstrated the importance of VCAM-1 and alpha4beta1 in trophoblasts-endothelial interactions. Improved knowledge of the nature of these fetal-maternal interactions will have implications for understanding situations when placentation is compromised.  相似文献   

2.
Nitric oxide (NO) seems to contribute to vascular homeostasis regulating neurotransmission. This work aimed at assessing the influence of NO from different sources and respective intracellular pathways on sympathetic neurotransmission, in two vascular beds. Electrically-evoked [3H]-noradrenaline release was assessed in rat mesenteric and tail arteries in the presence of NO donors or endothelial/neuronal nitric oxide synthase (NOS) inhibitors. The influence of NO on adenosine-mediated effects was also studied using selective antagonists for adenosine receptors subtypes. Location of neuronal NOS (nNOS) was investigated by immunohistochemistry (with specific antibodies for nNOS and for Schwann cells) and Confocal Microscopy. Results indicated that: 1) in mesenteric arteries, noradrenaline release was reduced by NO donors and it was increased by nNOS inhibitors; the effect of NO donors was only abolished by the adenosine A1 receptors antagonist; 2) in tail arteries, noradrenaline release was increased by NO donors and it was reduced by eNOS inhibitors; adenosine receptors antagonists were devoid of effect; 3) confocal microscopy showed nNOS staining in adventitial cells, some co-localized with Schwann cells. nNOS staining and its co-localization with Schwann cells were significantly lower in tail compared to mesenteric arteries. In conclusion, in mesenteric arteries, nNOS, mainly located in Schwann cells, seems to be the main source of NO influencing perivascular sympathetic neurotransmission with an inhibitory effect, mediated by adenosine A1 receptors activation. Instead, in tail arteries endothelial NO seems to play a more relevant role and has a facilitatory effect, independent of adenosine receptors activation.  相似文献   

3.
Vascular endothelial growth factor (VEGF) induces angiogenesis and regulates endothelial function via production and release of nitric oxide (NO), an important signaling molecule. The molecular basis leading to NO production involves phosphatidylinositiol-3 kinase (PI3K), Akt, and endothelial nitric-oxide synthase (eNOS) activation. In this study, we have examined whether small GTP-binding proteins of the ADP-ribosylation factor (ARF) family act as molecular switches to regulate signaling cascades activated by VEGF in endothelial cells. Our results show that this growth factor can promote the rapid and transient activation of ARF1. In endothelial cells, this GTPase is present on dynamic plasma membrane ruffles. Inhibition of ARF1 expression, using RNA interference, markedly impaired VEGF-dependent eNOS phosphorylation and NO production by preventing the activation of the PI3K/Akt signaling axis. Furthermore, our data indicate that phosphorylation of Tyr801, on VEGF receptor 2, is essential for activating Src- and ARF1-dependent signaling events leading to NO release from endothelial cells. Lastly, this mediator is known to regulate a broad variety of endothelial cell functions. Depletion of ARF1 markedly inhibits VEGF-dependent increase of vascular permeability as well as capillary tubule formation, a process important for angiogenesis. Taken together, our data indicate that ARF1 is a novel modulator of VEGF-stimulated NO release and signaling in endothelial cells.  相似文献   

4.
Human umbilical vein endothelial cells were transfected by electroporation with the plasmid pSV3neo, containing the early region of simian virus 40. The resultant "cell lines" divide rapidly (population doubling time of 33 h) for up to 24 passages in medium supplemented with 5% (v/v) serum and 2.5 micrograms/ml endothelial cell growth supplement. Several of these lines express basal levels of ICAM-1 and MHC class I but not MHC class II. One cell line, designated SGHEC-7, retained a number of differentiated endothelial cell functions throughout its lifespan. These functions include increased production of tissue plasminogen activator in response to histamine, thrombin, and PMA. Stability of function and rapid growth over 24 passages endow these cells with a number of advantages over primary cultures. The homogeneous cell population and consistency of response make them ideal for biochemical and immunological studies hereto impractical with primary human endothelial cells. The success of this approach may allow the production of functional cell lines from other vascular beds.  相似文献   

5.
Yamamoto M  Hara H  Adachi T 《FEBS letters》2001,505(2):296-300
Extracellular-superoxide dismutase (EC-SOD) is bound to the vascular endothelial cell surface with an affinity for heparan sulfate proteoglycan. The binding of EC-SOD to the human umbilical vein endothelial cell (HUVEC) and bovine aortic endothelial cell surface proteoglycans was significantly decreased by the incubation with S-nitroso-N-acetyl-DL-penicillamine (SNAP) and +/- -N-[(E)-4-ethyl-2-[(Z)-hydroxyimino]-5-nitro-3-hexene-1-yl]-3-pyridine carboxamide (NOR4), potent nitric oxide (NO) donors. NO derived from lipopolysaccharide-stimulated J774 A-1 cells also decreased the binding of EC-SOD to HUVEC, and this decrease was blocked by N(G)-nitro-L-arginine, a nitric oxide synthase inhibitor. SNAP and NOR4 also decreased the binding of EC-SOD to immobilized heparin. Furthermore, the decomposed derivatives of NO donors and sodium nitrite decreased the binding of EC-SOD. These observations suggest that excess NO produced in the inflammatory conditions decreases the binding of EC-SOD to the vascular endothelial cell surface, which results in a loss of the ability to protect the endothelial cell surface from oxidative stress.  相似文献   

6.
The 26S proteasome plays a fundamental role in almost all eukaryotic cells, including vascular endothelial cells. However, it remains largely unknown how proteasome functionality is regulated in the vasculature. Endothelial nitric oxide (NO) synthase (eNOS)-derived NO is known to be essential to maintain endothelial homeostasis. The aim of the present study was to establish the connection between endothelial NO and 26S proteasome functionality in vascular endothelial cells. The 26S proteasome reporter protein levels, 26S proteasome activity, and the O-GlcNAcylation of Rpt2, a key subunit of the proteasome regulatory complex, were assayed in 26S proteasome reporter cells, human umbilical vein endothelial cells (HUVEC), and mouse aortic tissues isolated from 26S proteasome reporter and eNOS knockout mice. Like the other selective NO donors, NO derived from activated eNOS (by pharmacological and genetic approach) increased O-GlcNAc modification of Rpt2, reduced proteasome chymotrypsin-like activity, and caused 26S proteasome reporter protein accumulation. Conversely, inactivation of eNOS reversed all the effects. SiRNA knockdown of O-GlcNAc transferase (OGT), the key enzyme that catalyzes protein O-GlcNAcylation, abolished NO-induced effects. Consistently, adenoviral overexpression of O-GlcNAcase (OGA), the enzyme catalyzing the removal of the O-GlcNAc group, mimicked the effects of OGT knockdown. Finally, compared to eNOS wild type aortic tissues, 26S proteasome reporter mice lacking eNOS exhibited elevated 26S proteasome functionality in parallel with decreased Rpt2 O-GlcNAcylation, without changing the levels of Rpt2 protein. In conclusion, the eNOS-derived NO functions as a physiological suppressor of the 26S proteasome in vascular endothelial cells.  相似文献   

7.
Laminar shear stress (LSS) is known to increase endothelial nitric oxide (NO) production, which is essential for vascular health, through expression and activation of nitric oxide synthase 3 (NOS3). Recent studies demonstrated that LSS also increases the expression of argininosuccinate synthetase 1 (ASS1) that regulates the provision of L-arginine, the substrate of NOS3. It was thus hypothesized that ASS1 might contribute to vascular health by enhancing NO production in response to LSS. This hypothesis was pursued in the present study by modulating NOS3 and ASS1 levels in cultured endothelial cells. Exogenous expression of either NOS3 or ASS1 in human umbilical vein endothelial cells increased NO production and decreased monocyte adhesion stimulated by tumor necrosis factor-α (TNF-α). The latter effect of overexpressed ASS1 was reduced when human umbilical vein endothelial cells were co-treated with small interfering RNAs (siRNAs) for ASS1 or NOS3. SiRNAs of NOS3 and ASS1 attenuated the increase of NO production in human aortic endothelial cells stimulated by LSS (12 dynes·cm(-2)) for 24 h. LSS inhibited monocyte adhesion to human aortic endothelial cells stimulated by TNF-α, but this effect of LSS was abrogated by siRNAs of NOS3 and ASS1 that recovered the expression of vascular cell adhesion molecule-1. The current study suggests that the expression of ASS1 harmonized with that of NOS3 may be important for the optimized endothelial NO production and the prevention of the inflammatory monocyte adhesion to endothelial cells.  相似文献   

8.
9.
Tumor necrosis factor–α, interleukin-1, and endotoxin stimulate the expression of vascular endothelial cell (EC) adhesion molecules. Here we describe a novel pathway of adhesion molecule induction that is independent of exogenous factors, but which is dependent on integrin signaling and cell–cell interactions. Cells plated onto gelatin, fibronectin, collagen or fibrinogen, or anti-integrin antibodies, expressed increased amounts of E-selectin, vascular cell adhesion molecule–1, and intercellular adhesion molecule–1. In contrast, ECs failed to express E-selectin when plated on poly-l-lysine or when plated on fibrinogen in the presence of attachment-inhibiting, cyclic Arg-Gly-Asp peptides. The duration and magnitude of adhesion molecule expression was dependent on EC density. Induction of E-selectin on ECs plated at confluent density was transient and returned to basal levels by 15 h after plating when only 7 ± 2% (n = 5) of cells were positive. In contrast, cells plated at low density displayed a 17-fold greater expression of E-selectin than did high density ECs with 57 ± 4% (n = 5) positive for E-selectin expression 15 h after plating, and significant expression still evident 72 h after plating. The confluency-dependent inhibition of expression of E-selectin was at least partly mediated through the cell junctional protein, platelet/endothelial cell adhesion molecule–1 (PECAM-1). Antibodies against PECAM-1, but not against VE-cadherin, increased E-selectin expression on confluent ECs. Co– culture of subconfluent ECs with PECAM-1– coated beads or with L cells transfected with full-length PECAM-1 or with a cytoplasmic truncation PECAM-1 mutant, inhibited E-selectin expression. In contrast, untransfected L cells or L cells transfected with an adhesion-defective domain 2 deletion PECAM-1 mutant failed to regulate E-selectin expression. In an in vitro model of wounding the wound front displayed an increase in the number of E-selectin–expressing cells, and also an increase in the intensity of expression of E-selectin positive cells compared to the nonwounded monolayer. Thus we propose that the EC junction, and in particular, the junctional molecule PECAM-1, is a powerful regulator of endothelial adhesiveness.The endothelial lining of the vascular system normally displays a nonactivated, nonadhesive phenotype. Stimulation with agents such as tumor necrosis factor-α (TNF-α)1, interleukin-1 (IL-1), or lipopolysaccharide (LPS) are known to induce the expression of proteins on the endothelial surface that mediate coagulation (Bevilacqua et al., 1986), leukocyte adhesion (Bevilacqua et al., 1985; Gamble et al., 1985; Pober et al., 1986b ; Doherty et al., 1989), and leukocyte transendothelial migration (Furie et al., 1989; Moser et al., 1989). The endothelial antigens that are important for the adhesion of leukocytes are members of the selectin family, E- and P-selectin, and the immunoglobulin gene superfamily, vascular cell adhesion molecule–1 (VCAM-1) and intercellular adhesion molecule–1 (ICAM-1) (Carlos and Harlan, 1994; Litwin et al., 1995).The induction of E-selectin expression on endothelial cells (ECs) in vitro after cytokine stimulation is transient and independent of the continued presence of the stimulant (Pober et al., 1986a ). Previous studies have shown that E-selectin mRNA and protein levels peak between 2 and 4 h, respectively, after treatment with an agonist, returning to near basal levels by 24 h (Bevilacqua et al., 1989; Read et al., 1994). VCAM-1 (Osborn et al., 1989) and ICAM-1 (Pober et al., 1986b ) are maximal 6 and 12 h, respectively, after stimulation.In contrast to the transiency of E-selectin and VCAM expression demonstrated by the in vitro data, these antigens have been detected on venular endothelium in chronic inflammatory lesions, such as the synovium in rheumatoid arthritis (Koch et al., 1991), and the skin in psoriasis (Petzelbauer et al., 1994). E-selectin expression is also detected on angiogenic vessels in human hemangiomas, a noninflammatory angiogenic disease (Kraling et al., 1996). Moreover, the architecture and anatomic localization of capillary loops influence the pattern of endothelial expression of E-selectin and VCAM-1, independently of the availability of cytokines (Petzelbauer et al., 1994). Thus it is likely that alternate control mechanisms exist to allow prolonged, locality-based expression of adhesion molecules on the endothelium. At least one of these alternate mechanisms may be flow, since increased shear stress has been shown to selectively modulate adhesion molecule expression, upregulating ICAM-1 but not E-selectin or VCAM-1 (Nagel et al., 1994).Since sites of inflammation are often associated with morphological changes including cell retraction of the endothelium (Schumacher, 1973), we hypothesized that cell contacts may be important in the regulation of endothelial phenotype. We describe here the central role of the junctional protein, platelet/endothelial cell adhesion molecule–1 (PECAM-1), through the formation of cell–cell interactions, in the maintenance of the functional integrity of the endothelial monolayer. Furthermore, we demonstrate a novel pathway for the induction of adhesion molecules on endothelial cells that is independent of exogenous addition of cytokines, but is related to integrin- and cell shape–associated signaling events.  相似文献   

10.
The onset of vascular leakage and hemorrhagic diathesis is one of the life-threatening complications occurring in dengue patients, yet the pathogenic mechanisms are not well understood. In this study, we demonstrated that Abs against dengue virus nonstructural protein 1 (NS1) generated in mice cross-reacted with human endothelial cells and mouse vessel endothelium. After binding, mouse anti-NS1 Abs induced endothelial cell apoptosis in a caspase-dependent manner. Inducible NO synthase expression could be observed; it showed a time- and dose-dependent correlation with NO production. Endothelial cell apoptosis, characterized by exposure of phosphatidylserine on the cell surface and nuclear DNA fragmentation, was blocked by treatment with the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester. Further studies demonstrated that the expression of Bcl-2 and Bcl-x(L) decreased in both mRNA and protein levels, whereas p53 and Bax increased after anti-NS1 treatment. Cytochrome c release was also observed. All of these effects could be inhibited by N(omega)-nitro-L-arginine methyl ester. Taken together, anti-NS1 Abs act as autoantibodies that cross-react with noninfected endothelial cells and trigger the intracellular signaling leading to the production of NO and to apoptosis. Endothelial cell damage may cause vascular leakage that contributes to the pathogenesis of dengue disease.  相似文献   

11.
Oxidative damage to the vascular endothelial cells may play a crucial role in mediating glucose-induced cellular dysfunction in chronic diabetic complications. The present study was aimed at elucidating the role of glucose-induced alteration of highly inducible heme oxygenase (HO) in mediating oxidative stress in the vascular endothelial cells. We have also investigated the interaction between HO and the nitric oxide (NO) system, and its possible role in alteration of other vasoactive factors.

Human umbilical vein endothelial cells (HUVECs) were exposed to low (5?mmol/l) and high (25?mmol/l) glucose levels. In order to determine the role of HO in endothelial dysfunction and to elucidate a possible interaction between the HO and NO systems, cells were exposed to HO inducer (hemin, 10?μmol/l), HO antagonist (SnPPIX, 10?μmol/l), and NO synthase blocker (l-NAME, 200?μmol/l) with or without NO donor (arginine, 1?mmol/l). mRNA expression of HO and NO isoforms was measured by real time RT-PCR. HO activity was measured by bilirubin production and cellular oxidative stress was assessed by 8-hydroxy-2′-deoxyguanosine (8-OHdG) and nitrotyrosine staining. We also determined the expression of vasoactive factors, endothelin-1 (ET-1) and vascular endothelial growth factor (VEGF).

In the endothelial cells, glucose caused upregulation of HO-1 expression and increased HO activity. A co-stimulatory relationship between HO and NO was observed. Increased HO activity also associated with oxidative DNA and protein damage in the endothelial cells. Furthermore, increased HO activity augmented mRNA expression of vasoactive factors, ET-1 and VEGF. These data suggest that HO by itself and via elaboration of other vasoactive factors may cause endothelial injury and functional alteration. These findings are of importance in the context of chronic diabetic complications.  相似文献   

12.
Vaso-occlusive crises are the main acute complication in sickle cell disease. They are initiated by abnormal adhesion of circulating blood cells to vascular endothelium of the microcirculation. Several interactions involving an intricate network of adhesion molecules have been described between sickle red blood cells and the endothelial vascular wall. We have shown previously that young sickle reticulocytes adhere to resting endothelial cells through the interaction of α4β1 integrin with endothelial Lutheran/basal cell adhesion molecule (Lu/BCAM). In the present work, we investigated the functional impact of endothelial exposure to hydroxycarbamide (HC) on this interaction using transformed human bone marrow endothelial cells and primary human pulmonary microvascular endothelial cells. Adhesion of sickle reticulocytes to HC-treated endothelial cells was decreased despite the HC-derived increase of Lu/BCAM expression. This was associated with decreased phosphorylation of Lu/BCAM and up-regulation of the cAMP-specific phosphodiesterase 4A expression. Our study reveals a novel mechanism for HC in endothelial cells where it could modulate the function of membrane proteins through the regulation of phosphodiesterase expression and cAMP-dependent signaling pathways.  相似文献   

13.
bEND.3 cells are polyoma middle T-transformed mouse brain endothelial cells that express very little or no thrombospondin-1, a natural inhibitor of angiogenesis, but express high levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) that localizes to sites of cell–cell contact. Here, we have examined the role of PECAM-1 in regulation of bEND.3 cell proliferation, migration, morphogenesis, and hemangioma formation. We show that down-regulating PECAM-1 expression by antisense transfection of bEND.3 cells has a dramatic effect on their morphology, proliferation, and morphogenesis on Matrigel. There is an optimal level for PECAM-1 expression such that high levels of PECAM-1 inhibit, whereas moderate levels of PECAM-1 stimulate, endothelial cell morphogenesis. The down-regulation of PECAM-1 in bEND.3 cells resulted in reexpression of endogenous thrombospondin-1 and its antiangiogenic receptor CD36. The expression of the vascular endothelial growth factor receptors flk-1 and flt-1, as well as integrins and metalloproteinases (which are involved in angiogenesis), were also affected. These observations are consistent with the changes observed in proliferation, migration, and adhesion characteristics of the antisense-transfected bEND.3 cells as well as with their lack of ability to form hemangiomas in mice. Thus, a reciprocal relationship exists between thrombospondin-1 and PECAM-1 expression, such that these two molecules appear to be constituents of a “switch” that regulates in concert many components of the angiogenic and differentiated phenotypes of endothelial cells.  相似文献   

14.
Diabetic retinopathy is a leading cause of visual loss and blindness, characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for the development of diabetic retinopathy and is associated with increased oxidative/nitrosative stress in the retina. Since heme oxygenase-1 (HO-1) is an enzyme with antioxidant and protective properties, we investigated the potential protective role of HO-1 in retinal endothelial cells exposed to high glucose and oxidative/nitrosative stress conditions. Retinal endothelial cells were exposed to elevated glucose, nitric oxide (NO) and hydrogen peroxide (H(2)O(2)). Cell viability and apoptosis were assessed by MTT assay, Hoechst staining, TUNEL assay and Annexin V labeling. The production of reactive oxygen species (ROS) was detected by the oxidation of 2',7'-dichlorodihydrofluorescein diacetate. The content of HO-1 was assessed by immunobloting and immunofluorescence. HO activity was determined by bilirubin production. Long-term exposure (7 days) of retinal endothelial cells to elevated glucose decreased cell viability and had no effect on HO-1 content. However, a short-time exposure (24 h) to elevated glucose did not alter cell viability, but increased both the levels of intracellular ROS and HO-1 content. Moreover, the inhibition of HO with SnPPIX unmasked the toxic effect of high glucose and revealed the protection conferred by HO-1. Oxidative/nitrosative stress conditions increased cell death and HO-1 protein levels. These effects of elevated glucose and HO inhibition on cell death were confirmed in primary endothelial cells (HUVECs). When cells were exposed to oxidative/nitrosative stress conditions there was also an increase in retinal endothelial cell death and HO-1 content. The inhibition of HO enhanced ROS production and the toxic effect induced by exposure to H(2)O(2) and NOC-18 (NO donor). Overexpression of HO-1 prevented the toxic effect induced by H(2)O(2) and NOC-18. In conclusion, HO-1 exerts a protective effect in retinal endothelial cells exposed to hyperglycemic and oxidative/nitrosative stress conditions.  相似文献   

15.
Annexin 7 deficiency has previously been shown to foster suicidal death of erythrocytes or eryptosis, which is triggered by increase of intracellular Ca2+ concentration ([Ca2+]i) and characterized by cell shrinkage and cell membrane scrambling with subsequent phosphatidylserine exposure at the cell surface. Eryptosis following increase of [Ca2+]i by Ca2+ ionophore ionomycin, osmotic shock or energy depletion was more pronounced in erythrocytes from annexinA7-deficient mice (anxA7−/−) than in erythrocytes from wild type mice (anxA7+/+). As phosphatidylserine exposure is considered to mediate adhesion of erythrocytes to the vascular wall, the present study explored adhesion of erythrocytes from anx7−/− and anx7+/+-mice following increase of [Ca2+]i by Ca2+ ionophore ionomycin (1 µM for 30 min), hyperosmotic shock (addition of 550 mM sucrose for 2 hours) or energy depletion (removal of glucose for 12 hours). Phosphatidylserine exposing erythrocytes were identified by annexin V binding, cell volume estimated from forward scatter in FACS analysis and adhesion to human umbilical vein endothelial cells (HUVEC) utilizing a flow chamber. As a result, ionomycin, sucrose addition and glucose removal all triggered phosphatidylserine-exposure, decreased forward scatter and enhanced adhesion of erythrocytes to human umbilical vein endothelial cells (HUVEC), effects significantly more pronounced in anx7−/− than in anx7+/+-erythrocytes. Following ischemia, morphological renal injury was significantly higher in anx7−/− than in anx7+/+-mice. The present observations demonstrate that enhanced eryptosis of annexin7 deficient cells is paralleled by increased adhesion of erythrocytes to the vascular wall, an effect, which may impact on microcirculation during ischemia.  相似文献   

16.
Despite the widespread use of CD34-family sialomucins (CD34, podocalyxin and endoglycan) as vascular endothelial cell markers, there is remarkably little known of their vascular function. Podocalyxin (gene name Podxl), in particular, has been difficult to study in adult vasculature as germ-line deletion of podocalyxin in mice leads to kidney malformations and perinatal death. We generated mice that conditionally delete podocalyxin in vascular endothelial cells (PodxlΔEC mice) to study the homeostatic role of podocalyxin in adult mouse vessels. Although PodxlΔEC adult mice are viable, their lungs display increased lung volume and changes to the matrix composition. Intriguingly, this was associated with increased basal and inflammation-induced pulmonary vascular permeability. To further investigate the etiology of these defects, we isolated mouse pulmonary endothelial cells. PodxlΔEC endothelial cells display mildly enhanced static adhesion to fibronectin but spread normally when plated on fibronectin-coated transwells. In contrast, PodxlΔEC endothelial cells exhibit a severely impaired ability to spread on laminin and, to a lesser extent, collagen I coated transwells. The data suggest that, in endothelial cells, podocalyxin plays a previously unrecognized role in maintaining vascular integrity, likely through orchestrating interactions with extracellular matrix components and basement membranes, and that this influences downstream epithelial architecture.  相似文献   

17.
The knowledge regarding the role of caveolin-1 (Cav-1) protein on endothelium adhesion of cancer cells is unclear. The present study revealed that Cav-1 plays a negative regulatory role on cancer-endothelium interaction. Endogenous Cav-1 was shown to down-regulate during cell detachment and the level of such a protein was conversely associated with tumor-endothelial adhesion. Furthermore, the ectopic overexpression of Cav-1 attenuated the ability of the cancer cells to adhere to endothelium while shRNA-mediated Cav-1 knock-down exhibited the opposite effect. We found that cell detachment increased cellular hydrogen peroxide and hydroxyl radical generation and such reactive oxygen species (ROS) were responsible for the increasing interaction between cancer cells and endothelial cells through vascular endothelial cell adhesion molecule-1 (VCAM-1). Importantly, Cav-1 was shown to suppress hydrogen peroxide and hydroxyl radical formation by sustaining the level of activated Akt which was critical for the role of Cav-1 in attenuating the cell adhesion. Together, the present study revealed the novel role of Cav-1 and underlying mechanism on tumor adhesion which explain and highlight an important role of Cav-1 on lung cancer cell metastasis.  相似文献   

18.
We investigated whether replicative senescence of endothelial cells contributed to the pathogenesis of atherosclerosis in human umbilical vein endothelial cells (HUVECs). HUVECs at a population-doubling level of 30 (PDL30) divided much more slowly than those at PDL9. The percentage of SA-β-Gal-positive cells and the mRNA expression levels of PAI-1 and p21 at PDL30 were significantly higher than those at PDL9. The changes induced by aging were evaluated according to the mRNA expression level of genes related to the endothelial cell function. The expression level of many adhesion molecules promoting monocytic adhesion was significantly increased, and monocytic adhesion on HUVECs was found to be significantly promoted by aging. Monocytic adhesion is an essential early event in the development of atherosclerosis, and our results suggest that replicative senescence of the vascular endothelial cells induced increased expression of adhesion molecules. The consequent increase in monocytic adhesion may then promote the pathogenesis of atherosclerosis.  相似文献   

19.
PECAM-1 is a 130-kDa member of the immunoglobulin (Ig) superfamily that is expressed on the surface of platelets and leukocytes, and at the intracellular junctions of confluent endothelial cell monolayers. Previous studies have shown that PECAM-1/PECAM-1 homophilic interactions play a key role in leukocyte transendothelial migration, in allowing PECAM-1 to serve as a mechanosensory complex in endothelial cells, in its ability to confer cytoprotection to proapoptotic stimuli, and in maintaining endothelial cell junctional integrity. To examine the adhesive properties of full-length PECAM-1 in a native lipid environment, we purified it from platelets and assembled it into phospholipid nanodiscs. PECAM-1-containing nanodiscs retained not only their ability to bind homophilically to PECAM-1-expressing cells, but exhibited regulatable adhesive interactions that could be modulated by ligands that bind membrane-proximal Ig Domain 6. This property was exploited to enhance the rate of barrier restoration in endothelial cell monolayers subjected to inflammatory challenge. The finding that the adhesive properties of PECAM-1 are regulatable suggests novel approaches for controlling endothelial cell migration and barrier function in a variety of vascular permeability disorders.  相似文献   

20.
 探讨在缺氧条件下人脐静脉血管内皮细胞对血管内皮生长因子 (vascular endothelialgrowth factor,VEGF)表达及缩血管活性物质内皮素 (ET)、舒血管活性物质一氧化氮 (NO)和 NO抑制剂 LNNA对 VEGF基因表达的影响 .体外培养人脐静脉血管内皮细胞 ,经缺氧及血管活性物质处理 .Northern杂交、酶联免疫检测和计算机图象分析等观察 VEGF m RNA和蛋白表达水平 .发现缺氧 6h内皮细胞可见 VEGF表达 .ET可促进 VEGF m RNA的表达 ,NO可明显抑制 VEGFm RNA的表达 ,NO抑制剂 LNNA也影响 VEGF m RNA的表达 .ELISA检测 VEGF蛋白水平分别为 6h组 8.2± 1 .1 ng/ L,ET+6h组 9.37± 1 .0 2 ng/ L,NO+6h组 2 .86± 0 .91 ng/ L,L - NNA+6h组 1 4.75± 1 .87ng/ L.缺氧可诱导人脐静脉血管内皮细胞分泌 VEGF并受血管活性物质ET和 NO的调控 ,ET促进其表达 ,NO抑制其表达 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号