共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of ammonium in the culture medium has significant detrimental effects on the regulation of embryo physiology and genetics. Ammonium levels build up linearly over time in the culture medium when media containing amino acids are incubated at 37 degrees C. Ammonium in the culture media significantly reduces blastocyst cell number, decreases inner cell mass development, increases apoptosis, perturbs metabolism, impairs the ability of embryos to regulate intracellular pH, and alters the expression of the imprinted gene H19. In contrast, the rate of blastocyst development and blastocyst morphology appear to be normal. The transfer of blastocysts exposed to ammonium results in a significant reduction in the ability to establish a pregnancy. Furthermore, of those embryos that manage to implant, fetal growth is significantly impaired. Embryos exposed to 300 microM ammonium are retarded by 1.5 days developmentally at Day 15 of pregnancy. It is therefore essential that culture conditions for mammalian embryos are designed to minimize the buildup of ammonium to prevent abnormalities in embryo physiology, genetic regulation, pregnancy, and fetal development. 相似文献
2.
Tran DC Yeh KC Brazeau DA Fung HL 《Biochemical and biophysical research communications》2003,310(2):439-445
Inhalant nitrites are drugs of abuse that have been shown to enhance tumor growth rate in mice and are epidemiologically linked to an increased risk of Kaposi's sarcoma. Because nitrites produce nitric oxide, we hypothesized that their toxicological effects might be partly mediated via regulation of angiogenic factors such as vascular endothelial growth factor (VEGF). Preliminary studies showed that isobutyl nitrite (ISBN) incubation stimulated VEGF protein expression in J774 macrophage cells. C57BL/6 mice exposed to ISBN in air exhibited significant up-regulation of VEGF protein and mRNA in the liver, but not in the lung. Liver mRNA expression of VEGF receptor 2 (VEGFR-2), VEGFR-3, Smad5, and Smad7 was also significantly altered. These results demonstrate that in vivo exposure to an inhalant nitrite results in altered tissue expression of VEGF and its receptors, suggesting that some of its toxicological effects may be mediated partly through a mechanism involving angiogenesis. 相似文献
3.
4.
M T Rizzo A H Leaver W M Yu R J Kovacs 《Prostaglandins, leukotrienes, and essential fatty acids》1999,60(3):187-198
Arachidonic acid (AA) plays a signaling role in the induction of several genes. We previously demonstrated that AA induces c-jun gene expression in the stromal cell line +/+.1 LDA 11 by a signaling pathway involving activation of the c-jun amino-terminal kinase (JNK). This study investigated the role of calcium in AA signaling of c-jun activation in +/+.1 LDA 11 cells. AA (10-50 microM) caused a rapid dose-dependent rise in cytosolic calcium. AA-induced calcium mobilization involved both influx of extracellular calcium and the release of intracellular calcium. The importance of calcium was investigated by variation of the extracellular calcium concentration, chelation of intracellular calcium and by calcium ionophore-induced influx of extracellular calcium. AA-induced c-jun gene expression and increased luciferase activity of a construct containing the high affinity AP-1 binding site was decreased in cells preincubated with the intracellular calcium chelator 1,2-bis(o-aminophenoxy)-eThane-N,N,N',N',-tetraacetic acid tetra(aceToxymethyl-esTer) (BAPTA-AM, 10 microM) prior to stimulation with AA. Similarly, chelation of intracellular calcium decreased AA-induced JNK activation. On the contrary, changes in the extracellular calcium concentration had no effect. Also, ionophore A23187 failed to induce c-jun and JNK activation either alone than in combination with AA. These results suggested that calcium was required for AA-dependent activation of c-jun, but that calcium alone was insufficient to induce activation of c-jun. Thus, release of calcium from intracellular stores is implicated in the signaling pathway of AA-induced c-jun activation in stromal cells. 相似文献
5.
Kaur S Norkina O Ziemer D Samuelson LC De Lisle RC 《American journal of physiology. Gastrointestinal and liver physiology》2004,287(2):G480-G490
The duodenum is abnormally acidic in cystic fibrosis (CF) due to decreased bicarbonate ion secretion that is dependent on the CF gene product CFTR. In the CFTR null mouse, the acidic duodenum results in increased signaling from the intestine to the exocrine pancreas in an attempt to stimulate pancreatic bicarbonate ion secretion. Excess stimulation is proposed to add to the stress/inflammation of the pancreas in CF. DNA microarray analysis of the CF mouse revealed altered pancreatic gene expression characteristic of stress/inflammation. When the duodenal pH was corrected genetically (crossing CFTR null with gastrin null mice) or pharmacologically (use of the proton pump inhibitor omeprazole), expression levels of genes measured by quantitative RT-PCR were significantly normalized. It is concluded that the acidic duodenal pH in CF contributes to the stress on the exocrine pancreas and that normalizing duodenal pH reduces this stress. 相似文献
6.
Diabetic cardiomyopathy (DCM) is a diabetic complication, which results in myocardial dysfunction independent of other etiological factors. Abnormal intracellular calcium ([Ca(2+)](i)) homeostasis has been implicated in DCM and may precede clinical manifestation. Studies in cardiomyocytes have shown that diabetes results in impaired [Ca(2+)](i) homeostasis due to altered sarcoplasmic reticulum Ca(2+) ATPase (SERCA) and sodium-calcium exchanger (NCX) activity. Importantly, altered calcium homeostasis may also be involved in diabetes-associated endothelial dysfunction, including impaired endothelium-dependent relaxation and a diminished capacity to generate nitric oxide (NO), elevated cell adhesion molecules, and decreased angiogenic growth factors. However, the effect of diabetes on Ca(2+) regulatory mechanisms in cardiac endothelial cells (CECs) remains unknown. The objective of this study was to determine the effect of diabetes on [Ca(2+)](i) homeostasis in CECs in the rat model (streptozotocin-induced) of DCM. DCM-associated cardiac fibrosis was confirmed using picrosirius red staining of the myocardium. CECs isolated from the myocardium of diabetic and wild-type rats were loaded with Fura-2, and UTP-evoked [Ca(2+)](i) transients were compared under various combinations of SERCA, sarcoplasmic reticulum Ca(2+) ATPase (PMCA) and NCX inhibitors. Diabetes resulted in significant alterations in SERCA and NCX activities in CECs during [Ca(2+)](i) sequestration and efflux, respectively, while no difference in PMCA activity between diabetic and wild-type cells was observed. These results improve our understanding of how diabetes affects calcium regulation in CECs, and may contribute to the development of new therapies for DCM treatment. 相似文献
7.
8.
9.
Heo SK Yoon MA Lee SC Ju SA Choi JH Suh PG Kwon BS Kim BS 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(9):6305-6310
Herpes virus entry mediator (HVEM) is a member of the TNF receptor (TNFR) superfamily and is expressed on many immune cells, including T and B cells, NK cells, monocytes, and neutrophils. Interaction of HVEM with its ligand, LIGHT, costimulates T cells and increases the bactericidal activity of monocytes and neutrophils. The interaction recruits cytoplasmic TNFR-associated factor adaptor proteins to the intracellular domain of HVEM. This leads to NFkappaB activation as a result of IkappaBalpha degradation and/or JNK/AP-1 activation, and ultimately results in the expression of genes required for cell survival, cytokine production, or cell proliferation. In this study, we show that treatment of human monocytes with recombinant human LIGHT (rhLIGHT) induces rapid elevation of intracellular calcium concentration ([Ca(2+)](i)) in a HVEM-specific manner in parallel with TNF-alpha production, and enhances the bactericidal activities of monocytes. Immunoprecipitation and Western blotting analyses revealed phosphorylation of phospholipase Cgamma1 (PLCgamma1) but not PLCgamma2. rhLIGHT-induced Ca(2+)response was completely abolished by silencing PLCgamma1, or preincubating monocytes with PLC inhibitors, antagonists of the inositol-1,4,5-triphosphate receptor, or [Ca(2+)](i) chelators. Furthermore, these PLC/Ca(2+) inhibitors also blocked rhLIGHT-mediated IkappaBalpha degradation, generation of reactive oxygen species, TNF-alpha production and the bactericidal activities of monocytes. Our results indicate that Ca(2+)is a downstream mediator of the LIGHT/HVEM interaction in monocytes. 相似文献
10.
Yin L Bien H Entcheva E 《American journal of physiology. Heart and circulatory physiology》2004,287(3):H1276-H1285
Structural and functional changes ensue in cardiac cell networks when cells are guided by three-dimensional scaffold topography. We report enhanced synchronous pacemaking activity in association with slow diastolic rise in intracellular Ca2+ concentration ([Ca2+]i) in cell networks grown on microgrooved scaffolds. Topography-driven changes in cardiac electromechanics were characterized by the frequency dependence of [Ca2+]i in syncytial structures formed of ventricular myocytes cultured on microgrooved elastic scaffolds (G). Cells were electrically paced at 0.5-5 Hz, and [Ca2+]i was determined using microscale ratiometric (fura 2) fluorescence. Compared with flat (F) controls, the G networks exhibited elevated diastolic [Ca2+]i at higher frequencies, increased systolic [Ca2+]i across the entire frequency range, and steeper restitution of Ca2+ transient half-width (n = 15 and 7 for G and F, respectively, P < 0.02). Significant differences in the frequency response of force-related parameters were also found, e.g., overall larger total area under the Ca2+ transients and faster adaptation of relaxation time to pacing rate (P < 0.02). Altered [Ca2+]i dynamics were paralleled by higher occurrence of spontaneous Ca2+ release and increased sarcoplasmic reticulum load (P < 0.02), indirectly assessed by caffeine-triggered release. Electromechanical instabilities, i.e., Ca2+ and voltage alternans, were more often observed in G samples. Taken together, these findings 1) represent some of the first functional electromechanical data for this in vitro system and 2) demonstrate direct influence of the microstructure on cardiac function and susceptibility to arrhythmias via Ca(2+)-dependent mechanisms. Overall, our results substantiate the idea of guiding cellular phenotype by cellular microenvironment, e.g., scaffold design in the context of tissue engineering. 相似文献
11.
Hadden H Soldin SJ Massaro D 《Journal of applied physiology (Bethesda, Md. : 1985)》2012,113(3):385-392
Most aspects of human physiology and behavior exhibit 24-h rhythms driven by a master circadian clock in the brain, which synchronizes peripheral clocks. Lung function and ventilation are subject to circadian regulation and exhibit circadian oscillations. Sleep disruption, which causes circadian disruption, is common in those with chronic lung disease, and in the general population; however, little is known about the effect on the lung of circadian disruption. We tested the hypothesis circadian disruption alters expression of clock genes in the lung and that this is associated with altered lung mechanics. Female and male mice were maintained on a 12:12-h light/dark cycle (control) or exposed for 4 wk to a shifting light regimen mimicking chronic jet lag (CJL). Airway resistance (Rn), tissue damping (G), and tissue elastance (H) did not differ between control and CJL females. Rn at positive end-expiratory pressure (PEEP) of 2 and 3 cmH(2)O was lower in CJL males compared with controls. G, H, and G/H did not differ between CJL and control males. Among CJL females, expression of clock genes, Bmal1 and Rev-erb alpha, was decreased; expression of their repressors, Per2 and Cry 2, was increased. Among CJL males, expression of Clock was decreased; Per 2 and Rev-erb alpha expression was increased. We conclude circadian disruption alters lung mechanics and clock gene expression and does so in a sexually dimorphic manner. 相似文献
12.
Ethanol inhibited the mitogen-induced initial increase in cytoplasmic free-calcium [Ca2+]i in mouse splenocytes. This effect was concentration-dependent, reversible, and observed at pharmacologically relevant concentrations (24-166mM). Other short-chain alcohols such as propanol, butanol, and pentanol also inhibited this mitogen-induced increase in [Ca2+]i. The potencies of these alcohols to produce this effect were highly correlated (r = 0.98, p less than 0.001) with their membrane/buffer partition coefficients. Analysis of mouse splenocyte subpopulations demonstrated that this effect was manifest in both B and T lymphocytes. Within T lymphocyte subpopulations, both CD4+ and CD8+ T cells were affected. These results suggest that the inhibition of [Ca2+]i increase may be an early event mediating ethanol-induced immunosuppression and that this may be a predisposing factor to infection and malignancies associated with alcoholism. 相似文献
13.
14.
15.
Neuropeptide inhibition of voltage-gated calcium channels mediated by mobilization of intracellular calcium. 总被引:5,自引:0,他引:5
Many neurotransmitters and hormones regulate secretion from endocrine cells and neurons by modulating voltage-gated Ca2+ channels. One proposed mechanism of neurotransmitter inhibition involves protein kinase C, activated by diacylglycerol, a product of phosphatidyl-inositol inositol hydrolysis. Here we show that thyrotropin-releasing hormone (TRH), a neuropeptide that modulates hormone secretion from pituitary tumor cells, inhibits Ca2+ channels via the other limb of the phosphatidylinositol signaling system: TRH causes inositol trisphosphate-triggered Ca2+ release from intracellular organelles, thus causing Ca2(+)-dependent inactivation of Ca2+ channels. Elevation of intracellular Ca2+ concentration is coincident with the onset of TRH-induced inhibition and is necessary and sufficient for its occurrence. The inhibition is blocked by introducing Ca2+ buffers into cells and mimicked by a variety of agents that mobilize Ca2+. Treatments that suppress protein kinase C have no effect on the inhibition. Hence inactivation of Ca2+ channels occurs not only as a result of Ca2+ influx through plasma membrane channels, but also via neurotransmitter-induced Ca2+ mobilization. This phenomenon may be common but overlooked because of the routine use of Ca2+ buffers in patch-clamp electrodes. 相似文献
16.
Tetracaine (1 mM), a local anesthetics, lowers a degree of aggregation of human thrombocytes which is induced by thrombin (0.15 u/ml) and suppresses its appearance. Aggregation of thrombocytes induced by phorbol ester, TPA (10-8 M), an activator of protein kinase C, is inhibited completely by the mentioned doses of the anesthetics. In the presence of tetracaine the release of intracellular Ca is lower to some extent, but then it surpasses the control level. It is established that under the action of ionophore A23187 tetracaine exerts no effect on mobilization of intracellular Ca2+. 相似文献
17.
Serum rapidly mobilizes calcium from an intracellular pool in quiescent fibroblastic cells 总被引:8,自引:0,他引:8
Addition of dialysed fetal bovine serum to quiescent cultures of Swiss 3T3 cells loaded with 45Ca2+ causes a very rapid increase in the rate of 45Ca2+ efflux from an intracellular pool. Exposure to serum for 2 min leads to a fall of 0.59 nmol Ca2+/mg protein in the intracellular Ca2+ content of the cells. Inhibitors of mitochondrial function prevent the stimulation of 45Ca2+ efflux by serum. The stimulation of 45Ca2+ efflux by serum is also observed in quiescent cultures of Rat-1, Swiss 3T6 and BHK cells and in secondary cultures of whole mouse embryo fibroblasts. 相似文献
18.
Human interferon (IFN) stimulates a 1.5- to 1.7-fold transient increase in the concentration of cytoplasmic-free calcium ion ([Ca2+]i) within 10-20 s upon exposure of RPMI-4788 cells to IFN. This early event of IFN-induced [Ca2+]i mobilization was measurable by loading the cells with Fura-2AM, a fluorescent Ca2+ indicator. The mobilization induced by IFN-beta or IFN-gamma was dependent on the concentration of each IFN. The increased [Ca2+]i gradually returned to its resting level within 60 s. The addition of EGTA (0.5-10 mM) to medium induced a marked decrease in the amount of [Ca2+]i mobilized by IFN-beta and a partial decrease by IFN-gamma. This finding suggests that the mechanisms of [Ca2+]i mobilization by IFN-beta and IFN-gamma might be different. While IFN-beta-induced mobilization may be mainly from an influx of the extracellular calcium ion ([Ca2+]o), IFN-gamma-induced mobilization may be a summation of an influx of [Ca2+]o and a release from intracellular Ca2+ stores. 相似文献
19.
Endothelin-1 increases intracellular calcium mobilization but not calcium uptake in rabbit vascular smooth muscle cells 总被引:3,自引:0,他引:3
R A Bialecki N J Izzo W S Colucci 《Biochemical and biophysical research communications》1989,164(1):474-479
Conflicting evidence has been reported regarding the role of endothelin-1, a potent vasconstrictor peptide, in stimulating extracellular calcium influx in rabbit vascular smooth muscle. The objective of this study was to elucidate the effects of endothelin-1 on transmembrane 45Ca2+ influx and intracellular calcium mobilization in cultured rabbit aortic smooth muscle cells. In calcium containing buffer, endothelin-1 induced a concentration-dependent 45Ca2+ efflux response over the range of 10 pM to 100 nM with an EC50 of approximately 60 pM. Maximum endothelin-stimulated 45Ca2+ efflux was not affected by the absence of extracellular calcium or the presence of 1 microM verapamil. Endothelin-1 did not induce transplasmalemmal 45Ca2+ uptake at times up to 30 min. These findings suggest that an alteration in intracellular calcium handling, rather than extracellular calcium influx, is responsible for the endothelin-stimulated increase in intracellular calcium concentration in rabbit aortic smooth muscle cells. 相似文献
20.
Flow injection microscopy for the study of intracellular calcium mobilization by muscarinic agonists
The study of cellular response to chemical agonists is essential in understanding the complex functions mediated by cell surface receptors. Flow injection microscopy has been used with the CHO-M1-WT3 cell line and the fluorescent Ca2+ indicator Fura-2-AM to monitor mobilization of internal Ca2+. Repeated stimulation of cells mounted in an inverted radial flow chamber allows the direct comparison of relative intracellular Ca2+ mobilization with respect to agonist dose. The process of determining dose-response relationships is simplified since an entire dose-response curve can be constructed from a distinct set of cells. Use of flow injection lends precision to the application and removal of agonists while allowing cellular activity to be monitored throughout the stimulation and recovery processes. In this work, dose-response curves have been constructed for the muscarinic agonists carbachol, acetylcholine, and pilocarpine resulting in EC50 values of 1.7 microM, 56 nM, and 6.8 microM, respectively. 相似文献