首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have previously shown that the LIM domains of paxillin operate as the focal adhesion (FA)-targeting motif of this protein. In the current study, we have identified the capacity of paxillin LIM2 and LIM3 to serve as binding sites for, and substrates of serine/threonine kinases. The activities of the LIM2- and LIM3-associated kinases were stimulated after adhesion of CHO.K1 cells to fibronectin; consequently, a role for LIM domain phosphorylation in regulating the subcellular localization of paxillin after adhesion to fibronectin was investigated. An avian paxillin-CHO.K1 model system was used to explore the role of paxillin phosphorylation in paxillin localization to FAs. We found that mutations of paxillin that mimicked LIM domain phosphorylation accelerated fibronectin-induced localization of paxillin to focal contacts. Further, blocking phosphorylation of the LIM domains reduced cell adhesion to fibronectin, whereas constitutive LIM domain phosphorylation significantly increased the capacity of cells to adhere to fibronectin. The potentiation of FA targeting and cell adhesion to fibronectin was specific to LIM domain phosphorylation as mutation of the amino-terminal tyrosine and serine residues of paxillin that are phosphorylated in response to fibronectin adhesion had no effect on the rate of FA localization or cell adhesion. This represents the first demonstration of the regulation of protein localization through LIM domain phosphorylation and suggests a novel mechanism of regulating LIM domain function. Additionally, these results provide the first evidence that paxillin contributes to “inside-out” integrin-mediated signal transduction.  相似文献   

2.
A rapid increase in tyrosine phosphorylation of focal adhesion kinase (FAK), paxillin, and Crk-associated substrate (CAS) are prominent early events triggered by many G protein-coupled receptors (GPCRs), but the mechanisms involved remain unclear. Here, we examined whether the Rho-associated protein serine/threonine kinase family (ROCK) is a critical Rho effector in the pathway that links GPCR activation to the tyrosine phosphorylation of FAK, CAS, and paxillin. Treatment of Swiss 3T3 cells with Y-27632, a preferential inhibitor of ROCK, dramatically inhibited the formation of actin stress fibers, the assembly of focal contacts, and the increase in tyrosine phosphorylation of FAK and paxillin induced by bombesin in these cells. Surprisingly, we found that treatment with Y-27632 did not produce any detectable effect on bombesin-elicited CAS tyrosine phosphorylation even at the highest concentrations of Y-27632 tested. HA-1077, a preferential inhibitor of ROCK activity structurally unrelated to Y-27632, also attenuated the increase in the tyrosine phosphorylation of FAK and paxillin but did not affect the tyrosine phosphorylation of CAS induced by bombesin in Swiss 3T3 cells. The results demonstrate that ROCK-dependent tyrosine phosphorylation of FAK and paxillin can be dissociated from a ROCK-independent pathway leading to tyrosine phosphorylation of CAS.  相似文献   

3.
Abstract: In rat hippocampal slices and in neurons in primary culture, K+-induced depolarization increased markedly and rapidly tyrosine phosphorylation of a 110-kDa protein (pp110) and, to a lesser degree, of a 120-kDa protein (pp120), in a calcium-dependent fashion. Qlutamate, 1-aminocyclopentane- trans -1,3-dicarboxylic acid (an agonist of metabotropic glutamate receptors), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (an agonist of ionotropic glutamate receptors) stimulated also tyrosine phosphorylation of pp110 and pp120. These effects were not observed in astrocytes in primary culture. In hippocampal slices tyrosine phosphorylation of pp110 and pp120 was stimulated by Ca2+-ionophores and by phorbol esters and antagonized by a chelator of intracellular Ca2+and by drugs that inhibit protein kinase C. Stimulation of muscarinic and α1,-adrenergic receptors increased also tyrosine phosphorylation of pp110 and pp120. These results demonstrate that membrane depolarization and stimulation of neurotransmitter receptors activate a tyrosine phosphorylation pathway in neurons. This pathway involves an increase in intracellular Ca2+ concentrations and the activation of protein kinase C. It may provide a biochemical basis for some neurotrophic effects of electrical activity and neurotransmitters and may contribute to the role of tyrosine phosphorylation in long-term potentiation.  相似文献   

4.
Signals from the extracellular matrix can modulate cellular differentiation and gene expression. We have shown previously that in contrast to other extracellular matrix molecules pepsin-solubilized collagen VI (CVI) can stimulate DNA synthesis of various mesenchymal cell types, apparently independent of integrin-mediated signal transduction. In order to further elucidate collagen VI-induced signaling events, we exposed mouse 3T3 fibroblasts and human HT1080 fibrosarcoma cells to soluble CVI. CVI induced tyrosine phosphorylation of proteins that associate with focal adhesions, such as paxillin, focal adhesion kinase (FAK), and p130CAS. Furthermore, it activated the mitogen-activated protein kinase, erk2. Kinetic analysis showed that these phosphorylations were transient, reaching a maximum after 5 min for transformed HT1080 cells and 30 min for 3T3 fibroblasts. These effects were partly inhibited by a beta1-integrin function blocking antibody and by single chains of CVI. Our results indicate that soluble fragments of native collagen VI, a ubiquitous component of the interstitial extracellular matrix, can mediate stimulation of DNA synthesis via tyrosine phosphorylation of paxillin, FAK, p130CAS, and erk2 in the absence of classical growth factors. Thus, CVI may serve as a matrix-derived sensor that allows for rapid reconstitution of a tissue defect by activating nearby mesenchymal cells.  相似文献   

5.
Adhesion of human umbilical endothelial cells to fibronectin resulted in increased tyrosine phosphorylation of a group of proteins with molecular mass ranging from 100 to 130 kDa and of a 70 kDa protein. This pattern of tyrosine phosphorylation was also observed when endothelial cells adhered to vitronectin, collagen IV, collagen I and laminin or to culture dishes coated with antibodies directed to either βl, α3, α5, α6 or β3 integrin subunits. Increased phosphorylation of the 100–130 kDa proteins was detectable as early as 30 sec after adhesion, reached maximal level after 15 min, and remained high as long as the cells adhere to culture dishes. The 70 kDa protein was phosphorylated with a slower kinetics and its phosphorylation increased over a period of 3 h. Using specific monoclonal antibodies, the major component of the 100–130 kDa complex was identified as the focal adhesion tyrosine kinase p125FAK. The phosphorylation of the pl25FAK was also observed by inducing βl integrin clustering in rum adherent HEC, indicating that this is a primary signalling event induced by integrins. Using tyrosine kinase inhibitors, we show a direct correlation between integrin-stimulated tyrosine kinases and assembly of focal adhesions and actin fibres.  相似文献   

6.
In response to external stimuli, cells modulate their adhesive state by regulating the number and intrinsic affinity of receptor/ligand bonds. A number of studies have shown that cell adhesion is dramatically reduced at room or lower temperatures as compared with physiological temperature. However, the underlying mechanism that modulates adhesion is still unclear. Here, we investigated the adhesion of the monocytic cell line THP-1 to a surface coated with intercellular adhesion molecule-1 (ICAM-1) as a function of temperature. THP-1 cells express the integrin lymphocyte function-associated antigen-1 (LFA-1), a receptor for ICAM-1. Direct force measurements of cell adhesion and cell elasticity were carried out by atomic force microscopy. Force measurements revealed an increase of the work of de-adhesion with temperature that was coupled to a gradual decrease in cellular stiffness. Of interest, single-molecule measurements revealed that the rupture force of the LFA-1/ICAM-1 complex decreased with temperature. A detailed analysis of the force curves indicated that temperature-modulated cell adhesion was mainly due to the enhanced ability of cells to deform and to form a greater number of longer membrane tethers at physiological temperatures. Together, these results emphasize the importance of cell mechanics and membrane-cytoskeleton interaction on the modulation of cell adhesion.  相似文献   

7.
8.
In their progression from the basal to upper differentiated layers of the epidermis, keratinocytes undergo significant structural changes, including establishment of close intercellular contacts. An important but so far unexplored question is how these early structural events are related to the biochemical pathways that trigger differentiation. We show here that β-catenin, γ-catenin/plakoglobin, and p120-Cas are all significantly tyrosine phosphorylated in primary mouse keratinocytes induced to differentiate by calcium, with a time course similar to that of cell junction formation. Together with these changes, there is an increased association of α-catenin and p120-Cas with E-cadherin, which is prevented by tyrosine kinase inhibition. Treatment of E-cadherin complexes with tyrosine-specific phosphatase reveals that the strength of α-catenin association is directly dependent on tyrosine phosphorylation. In parallel with the biochemical effects, tyrosine kinase inhibition suppresses formation of cell adhesive structures, and causes a significant reduction in adhesive strength of differentiating keratinocytes. The Fyn tyrosine kinase colocalizes with E-cadherin at the cell membrane in calcium-treated keratinocytes. Consistent with an involvement of this kinase, fyn-deficient keratinocytes have strongly decreased tyrosine phosphorylation levels of β- and γ-catenins and p120-Cas, and structural and functional abnormalities in cell adhesion similar to those caused by tyrosine kinase inhibitors. Whereas skin of fyn−/− mice appears normal, skin of mice with a disruption in both the fyn and src genes shows intrinsically reduced tyrosine phosphorylation of β-catenin, strongly decreased p120-Cas levels, and important structural changes consistent with impaired keratinocyte cell adhesion. Thus, unlike what has been proposed for oncogene-transformed or mitogenically stimulated cells, in differentiating keratinocytes tyrosine phosphorylation plays a positive role in control of cell adhesion, and this regulatory function appears to be important both in vitro and in vivo.  相似文献   

9.
Leukocyte adhesion to the extracellular matrix (ECM) is tightly controlled and is vital for the immune response. Circulating lymphocytes leave the bloodstream and adhere to ECM components at sites of inflammation and lymphoid tissues. Mechanisms for regulating T-lymphocyte–ECM adhesion include (i) an alteration in the affinity of cell surface integrin receptors for their extracellular ligands and (ii) an alteration of events following postreceptor occupancy (e.g., cell spreading). Whereas H-Ras and R-Ras were previously shown to affect T-cell adhesion by altering the affinity state of the integrin receptors, no signaling molecule has been identified for the second mechanism. In this study, we demonstrated that expression of an activated mutant of Rac triggered dramatic spreading of T cells and their increased adhesion on immobilized fibronectin in an integrin-dependent manner. This effect was not mimicked by expression of activated mutant forms of Rho, Cdc42, H-Ras, or ARF6, indicating the unique role of Rac in this event. The Rac-induced spreading was accompanied by specific cytoskeletal rearrangements. Also, a clustering of integrins at sites of cell adhesion and at the peripheral edges of spread cells was observed. We demonstrate that expression of RacV12 did not alter the level of expression of cell surface integrins or the affinity state of the integrin receptors. Moreover, our results indicate that Rac plays a role in the regulation of T-cell adhesion by a mechanism involving cell spreading, rather than by altering the level of expression or the affinity of the integrin receptors. Furthermore, we show that the Rac-mediated signaling pathway leading to spreading of T lymphocytes did not require activation of c-Jun kinase, serum response factor, or pp70S6 kinase but appeared to involve a phospholipid kinase.  相似文献   

10.
CD45 is a protein tyrosine phosphatase expressed on all cells of hematopoietic origin that is known to regulate Src family kinases. In macrophages, the absence of CD45 has been linked to defects in adhesion, however the molecular mechanisms involved remain poorly defined. In this study, we show that bone marrow derived macrophages from CD45-deficient mice exhibit abnormal cell morphology and defective motility. These defects are accompanied by substantially decreased levels of the cytoskeletal-associated protein paxillin, without affecting the levels of other proteins. Degradation of paxillin in CD45-deficient macrophages is calpain-mediated, as treatment with a calpain inhibitor restores paxillin levels in these cells and enhances cell spreading. Inhibition of the tyrosine kinases proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK), kinases that are capable of mediating tyrosine phosphorylation of paxillin, also restored paxillin levels, indicating a role for these kinases in the CD45-dependent regulation of paxillin. These data demonstrate that CD45 functions to regulate Pyk2/FAK activity, likely through the activity of Src family kinases, which in turn regulates the levels of paxillin to modulate macrophage adhesion and migration.  相似文献   

11.
Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development.  相似文献   

12.
Tyrosine phosphorylation of proteins was discovered in 1979, but this posttranslational modification had been “invented” by evolution more than a billion years ago in single-celled eukaryotic organisms that were the antecedents of the first multicellular animals. Because sophisticated cell–cell communication is a sine qua non for the existence of multicellular organisms, the development of cell-surface receptor systems that use tyrosine phosphorylation for transmembrane signal transduction and intracellular signaling seems likely to have been a crucial event in the evolution of metazoans. Like all types of protein phosphorylation, tyrosine phosphorylation serves to regulate proteins in multiple ways, including causing electrostatic repulsion and inducing allosteric transitions, but the most important function of phosphotyrosine (P.Tyr) is to serve as a docking site that promotes a specific interaction between a tyrosine phosphorylated protein and another protein that contains a P.Tyr-binding domain, such as an SH2 or PTB domain. Such docking interactions are essential for signal transduction downstream from receptor tyrosine kinases (RTKs) on the cell surface, which are activated on binding a cognate extracellular ligand, and, as a consequence, elicit specific cellular outcomes.The first eukaryotic tyrosine kinases (TKs) were discovered through studies of animal tumor virus transforming proteins, such as polyoma virus middle T antigen and the Rous sarcoma virus v-Src protein (Eckhart et al. 1979; Hunter and Sefton 1980). When the v-Src TK sequence was reported in 1983, this immediately led to the revelation that despite their unique amino acid specificity, the TKs are related to the Ser/Thr kinases, exemplified by the cAMP-dependent protein kinase. Bioinformatic analysis and targeted cDNA cloning quickly revealed the existence of a surprisingly large number of related protein kinases, now known as the eukaryotic protein kinase (ePK) family. Based on bioinformatic analysis of the completely sequenced human genome (Manning et al. 2002), the number of ePK genes stands at 478 (see Fig. 1), and the total number of protein kinase genes, which includes other protein kinases either distantly related to the ePKs or unrelated to the ePKs, is 566. Surprisingly, given the scarcity of P.Tyr in cellular proteins, 90 kinases are classified as TKs (Fig. 1), although a small number of these lack significant kinase activity, but have conserved noncatalytic functions.Open in a separate windowFigure 1.The human kinome. Based on the catalog of human protein kinases compiled by Manning et al. (2002), an unrooted relatedness tree was constructed using the catalytic domain sequences of the 478 eukaryotic protein kinases (ePKs). The seven major branches of the kinome are indicated: AGC, CAMK, CMGC, TK, TKL, STE, and CK1. The ends of the branches representing individual kinases are labeled with the names of each protein kinase. The TK (tyrosine kinase) branch at the top of the tree has 90 members. The RTKs are present in four major branches: EPH, INSR/TRK/AXL, FGFR/PDGFR/CSF-1R, and EGFR. The atypical protein kinases, shown in the inset at the bottom left, fall into seven small families, which are either distantly related to the ePKs or else unrelated in sequence. (Illustration reproduced courtesy of Cell Signaling Technology, Inc., www.cellsignal.com.)The first hint that a growth factor receptor might have an intrinsic protein kinase activity came from Stanley Cohen’s 1978 report that EGF stimulated protein phosphorylation in a membrane preparation from A431 cells (Carpenter et al. 1978), which have an extraordinarily high number of surface EGF receptors. This group’s subsequent July 1979 paper concluded that EGF stimulated threonine phosphorylation of proteins in membranes (Carpenter et al. 1979). However, with the realization that phosphothreonine (P.Thr) and P.Tyr comigrate on electrophoresis at pH 1.9, they reevaluated this conclusion, and in September 1980 the Cohen group published that EGF actually stimulated Tyr phosphorylation (Ushiro and Cohen 1980). By June 1981, purified EGF receptor preparations had been shown to have TK activity (Chinkers and Cohen 1981), and EGF had been shown to stimulate Tyr phosphorylation in the cell, resulting in Tyr phosphorylation of specific proteins within minutes of EGF treatment (Hunter and Cooper 1981). The 1984 cloning of the EGF receptor revealed that it has a catalytic domain related to that of the c-Src TK (Downward et al. 1984; Lin et al. 1984), confirming the intrinsic nature of the TK activity. In quick succession, several additional growth factor receptors were shown to have TK activity, starting with the PDGF receptor in 1982. Further RTKs were added through directed cloning and sequence analysis combined with biochemical testing, and by the end of the decade >10 RTKs had been reported. By this time, it was clear that ligand-induced Tyr phosphorylation was a major mechanism for the transmission of signals across the plasma membrane. This conclusion was reinforced by the discovery of two component receptors, like the antigen receptors and the cytokine receptors, in which the ligand-binding subunit of the receptor complexes with a cytoplasmic TK, which is activated upon ligand binding. We now know that the human genome encodes 58 RTKs grouped in 20 distinct families (Lemmon and Schlessinger 2010).In general, RTKs are type 1 transmembrane proteins with an extracellular ligand-binding domain linked by a transmembrane domain to an intracellular domain that includes a TK catalytic domain, and, usually, an unstructured carboxy-terminal tail that possesses autophosphorylation sites (Lemmon and Schlessinger 2010). RTK kinase activity is increased in response to binding of a cognate ligand, such as a growth factor, to the extracellular domain. Ligand-induced dimerization and intermolecular phosphorylation was originally proposed as an RTK activation mechanism by Yarden and Schlessinger (1987), and based on much subsequent work, this is now accepted as the general mechanism of RTK activation by ligands, although the specific details differ between different RTK subfamilies. Ligand binding either alters the conformation of a preexisting RTK dimer or induces RTK dimer formation, which results in juxtaposition of the catalytic domains and activation in trans, either through an induced conformational change or via transphosphorylation of activating residues in the activation loop or the cytoplasmic juxtamembrane domain. Once activated, RTKs autophosphorylate at additional sites, enabling recruitment of SH2 and PTB domain P.Tyr-binding proteins, and also directly phosphorylate substrates to propagate downstream signals. In this regard, although we have structures of dimerized ligand-bound RTK extracellular domains, and cytoplasmic domains, structures of an intact liganded RTK dimer are still needed to understand exactly how ligand-induced dimerization of the extracellular domain results in catalytic activation through juxtaposition of the cytoplasmic kinase domain (Arkhipov et al. 2013; Endres et al. 2013).  相似文献   

13.
Protein Phosphorylation and Neuronal Function   总被引:25,自引:13,他引:12  
Studies in the past several years have provided direct evidence that protein phosphorylation is involved in the regulation of neuronal function. Electrophysiological experiments have demonstrated that three distinct classes of protein kinases, i.e., cyclic AMP-dependent protein kinase, protein kinase C, and CaM kinase II, modulate physiological processes in neurons. Cyclic AMP-dependent protein kinase and kinase C have been shown to modify potassium and calcium channels, and CaM kinase II has been shown to enhance neurotransmitter release. A large number of substrates for these protein kinases have been found in neurons. In some cases (e.g., tyrosine hydroxylase, acetylcholine receptor, sodium channel) these proteins have a known function, whereas most of these proteins (e.g., synapsin I) had no known function when they were first identified as phosphoproteins. In the case of synapsin I, evidence now suggests that it regulates neurotransmitter release. These studies of synapsin I suggest that the characterization of previously unknown neuronal phosphoproteins will lead to the elucidation of previously unknown regulatory processes in neurons.  相似文献   

14.
Peroxynitrite, the product of the radical-radical reaction between nitric oxide and superoxide anion, is a potent oxidant involved in tissue damage in neurodegenerative disorders. We investigated the modifications induced by peroxynitrite in tyrosine residues of proteins from synaptosomes. Peroxynitrite treatment (> or =50 microM) induced tyrosine nitration and increased tyrosine phosphorylation. Synaptophysin was identified as one of the major nitrated proteins and pp60src kinase as one of the major phosphorylated substrates. Further fractionation of synaptosomes revealed nitrated synaptophysin in the synaptic vesicles, whereas phosphorylated pp60src was enriched in the postsynaptic density fraction. Tyrosine phosphorylation was increased by treatment with 50-500 microM peroxynitrite and decreased by higher concentrations, suggesting a possible activation/inactivation of kinases. Immunocomplex kinase assay proved that peroxynitrite treatment of synaptosomes modulated the pp60src autophosphorylation activity. The addition of bicarbonate (CO2 1.3 mM) produced a moderate enhancing effect on some nitrated proteins but significantly protected the activity of pp60src against peroxynitrite-mediated inhibition so that at 1 mM peroxynitrite, the kinase was still more active than in untreated synaptosomes. The phosphotyrosine phosphatase activity of synaptosomes was inhibited by peroxynitrite (> or =50 microM) but significantly protected by CO2. Thus, the increase of phosphorylation cannot be attributed to peroxynitrite-mediated inhibition of phosphatases. We suggest that peroxynitrite may regulate the posttranslational modification of tyrosine residues in pre- and postsynaptic proteins. Identification of the major protein targets gives insight into the pathways possibly involved in neuronal degeneration associated with peroxynitrite overproduction.  相似文献   

15.
Abstract: In SH-SY5Y human neuroblastoma cells, insulin-like growth factor (IGF)-I mediates membrane ruffling and growth cone extension. We have previously shown that IGF-I activates the tyrosine phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated protein kinase (ERK) 2. In the current study, we examined which signaling pathway underlies IGF-I-mediated FAK phosphorylation and cytoskeletal changes and determined if an intact cytoskeleton was required for IGF-I signaling. Treatment of SH-SY5Y cells with cytochalasin D disrupted the actin cytoskeleton and prevented any morphological changes induced by IGF-I. Inhibitors of phosphatidylinositol 3-kinase (PI 3-K) blocked IGF-I-mediated changes in the actin cytoskeleton as measured by membrane ruffling. In contrast, PD98059, a selective inhibitor of ERK kinase, had no effect on IGF-I-induced membrane ruffling. In parallel with effects on the actin cytoskeleton, cytochalasin D and PI 3-K inhibitors blocked IGF-I-induced FAK tyrosine phosphorylation, whereas PD98059 had no effect. It is interesting that cytochalasin D did not block IGF-I-induced ERK2 tyrosine phosphorylation. Therefore, it is likely that FAK and ERK2 tyrosine phosphorylations are regulated by separate pathways during IGF-I signaling. Our study suggests that integrity as well as dynamic motility of the actin cytoskeleton mediated by PI 3-K is required for IGF-I-induced FAK tyrosine phosphorylation, but not for ERK2 activation.  相似文献   

16.
Integrin-mediated adhesion to extracellular matrix proteins is dynamically regulated during morphological changes and cell migration. Upon cell adhesion, protein-protein interactions among molecules at focal adhesions (FAs) play major roles in the regulation of cell morphogenesis and migration. Although tyrosine phosphorylation of paxillin is critically involved in adhesion-mediated signaling, the significance of paxillin phosphorylation at Ser-85 and the mechanism by which it regulates cell migration remain unclear. In this study, we examined how Ser-85 phosphorylation of paxillin affects FA formation and cell migration. We found that paxillin phosphorylation at Ser-85 occurred during HeLa cell adhesion to collagen I and was concomitant with tyrosine phosphorylation of both focal adhesion kinase and talin. However, the non-phosphorylatable S85A mutant of paxillin impaired cell spreading, FA turnover, and migration toward collagen I but not toward serum. Furthermore, whereas the (presumably indirect) interaction between paxillin and the C-terminal tail of talin led to dynamic FAs at the cell boundary, S85A paxillin did not bind talin and caused stabilized FAs in the central region of cells. Together, these observations suggest that cell adhesion-dependent Ser-85 phosphorylation of paxillin is important for its interaction with talin and regulation of dynamic FAs and cell migration.  相似文献   

17.
Apoptosis-associated tyrosine kinase (AATYK) is up-regulated by phosphorylation in cultured cerebellar granule neurons (CGN) undergoing apoptosis upon switch to low KCl-containing medium. However, the underlying signaling pathways remain to be fully characterized. When CGN at culture day 7 were switched from 25 mM KCl (K25) to 5 mM (K5) medium, AATYK band migration on SDS–PAGE shifted to a more slowly migrating position expected for the hyperphosphorylated protein. The apoptosis-inducing agent C2-ceramide also caused a mobility shift of the AATYK protein. Exposing CGN (K25) to L-type voltage-dependent Ca2+ channel antagonists shifted the AATYK band to the K5-induced position, while the Ca2+ channel activator FPL-64176 had the contrary effect. FK-506, a calcineurin inhibitor caused AATYK hyperphosphorylation under high KCl conditions. CGN death in K5 medium is linked to inhibition of the PI 3-kinase/Akt survival pathway and concomitant activation of the pro-apoptotic downstream target glycogen synthase kinase-3 (GSK-3). GSK-3 inhibitors blocked the K5-induced mobility shift of AATYK. Moreover, CGN cultured from AATYK-deficient mice remained sensitive to death in K5 medium. Thus, AATYK activation may not be a physiologically relevant principal regulatory target of the GSK-3 death pathway in KCl-deprived CGN.  相似文献   

18.
1. The neuronal cytoskeletal protein tau and the carboxy tails of cytoskeletal proteins neurofilament-M (NF-M) and neurofilament-H (NF-H) are phosphorylated on serine residues by the cyclin-dependent kinase cdk-5.2. In aggregating neuronal–glial cultures we show that veratridine-mediated cation influx causes dephosphorylation of tau, NF-M and NF-H. Dephosphorylation was blocked specifically by cyclosporine A but not by okadiac acid at concentrations up to 200 nM.3. These results suggest that veratridine-triggered cation influx causes activation of PP-2B (calcineurin) leading to dephosphorylation of these cytoskeletal proteins.  相似文献   

19.
Apoptosis-associated tyrosine kinase 1 (AATYK1), a novel serine/threonine kinase that is highly expressed in the brain, is involved in neurite extension and apoptosis of cerebellar granule neurons; however, its precise function remains unknown. In this study, we investigated the interaction of AATYK1A with Cyclin-dependent kinase 5 (Cdk5)/p35, a proline-directed protein kinase that is predominantly expressed in neurons. AATYK1A bound to the p35 activation subunit of Cdk5 in cultured cells and in mouse brains and colocalized with p35 on endosomes in COS-7 cells. AATYK1A was phosphorylated at Ser34 by Cdk5/p35 in vitro, in cultured neurons and in mouse brain. In PC12D cells, Ser34 phosphorylation increased after treatment with nerve growth factor and phosphorylated AATYK1A accumulated in growth cones of PC12D cells. Ser34 phosphorylation suppressed the tyrosine phosphorylation of AATYK1A by Src family kinases. These results suggest a possibility that AATYK1A plays a role in early to recycling endosomes and its function is regulated by phosphorylation with Cdk5 or Src-family kinases.  相似文献   

20.
Rho GTPases are molecular “switches” that cycle between “on” (GTP-bound) and “off” (GDP-bound) states and regulate numerous cellular activities such as gene expression, protein synthesis, cytoskeletal rearrangements, and metabolic responses. Dysregulation of GTPases is a key feature of many diseases, especially cancers. Guanine nucleotide exchange factors (GEFs) of the Dbl family are activated by mitogenic cell surface receptors and activate the Rho family GTPases Cdc42, Rac1, and RhoA. The molecular mechanisms that regulate GEFs from the Dbl family are poorly understood. Our studies reveal that Dbl is phosphorylated on tyrosine residues upon stimulation by growth factors and that this event is critical for the regulated activation of the GEF. These findings uncover a novel layer of complexity in the physiological regulation of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号